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In a resource-constrained scheduling problem,
one wishes to schedule the jobs in such a way that
the given resource constraints are fulfilled and a
given objective function attains its optimal value.
In this paper, we deal with single machine schedul-
ing problems with a non-renewable resource, such
problems are also referred to as financial schedul-
ing problems.

The research in the area of scheduling problems
with a non-renewable resource is rather limited.
In [1], some polynomially bounded algorithms are
presented for scheduling problems with precedence
constraints (not restricted to single machine prob-
lems). Some results for preemptive scheduling of
independent jobs on unrelated parallel machines
have been presented in [2]. Toker et al. [3]
have shown that the problem of minimizing the
makespan with a unit supply of a resource at each
time period is polynomially solvable. Janiak et al.
[4, 5] have considered single machine problems, in
which the processing times or the release times
depend on the consumption of a non-renewable
resource.

The problems under consideration can be for-
mulated as follows. We are given a set N =
{1, 2, . . . , n} of n independent jobs that must be
processed on a single machine. Preemptions of a
job are not allowed. The machine can handle only
one job at a time. All the jobs are assumed to be
available for processing at time 0. For each job
j, j ∈ N , a processing time pj ≥ 0 and a due
date dj are given. In addition, we have one non-
renewable resource G (e.g. money, energy, etc.)
and a set of times {t0, t1, . . . , ty}, t0 = 0, t0 < t1 <

. . . < ty, of earnings of the resource. At each time
ti, i = 0, 1, . . . , y, we receive an amount G(ti) ≥ 0
of the resource. For each job j ∈ N , a consump-
tion gj ≥ 0 of the resource arises when the job is

started. Thus, we have
n∑

j=1
gj =

y∑
i=0

G(ti).

Let Sj be the starting time of the processing
of job j. A schedule S = (Sj1 , Sj2 , . . . , Sjn) de-
scribes the order of processing the jobs: π =
(j1, j2, . . . , jn). Such an order is uniquely deter-
mined by a permutation (sequence) of the jobs
of set N . A schedule S = (Sj1 , Sj2 , . . . , Sjn) is
feasible, if the machine processes no more than
one job at a time and the resource constraints
are fulfilled, i.e., for each i = 1, 2, . . . , n, we have
i∑

k=1
gjk ≤

∑
∀l: tl≤Sji

G(tl).

Moreover, we will call the sequence π a schedule
too since one can compute S = (Sj1 , Sj2 , . . . , Sjn)
in O(n) time applying a list scheduling algorithm
to the sequence π. Then Cjk(π) = Sjk + pjk de-
notes the completion time of job jk in schedule
π. If Cj(π) > dj , then job j is tardy and we
have Uj = 1, otherwise Uj = 0. Moreover, let
Tj(π) = max{0, Cj(π)−dj} be the tardiness of job
j in schedule π. We denote by Cmax = Cjn(π) the
makespan of schedule π and by Lj(π) = Cj(π)−dj
the lateness of job j in π.

1 Some Complexity Results

Theorem 1 Problems 1|NR|Cmax, 1|NR, dj =
d|

∑
Tj, 1|NR|

∑
Uj and 1|NR|Lmax are NP -

hard in the strong sense, and the problem

1



1|NR|
∑
Cj is NP -hard in the ordinary sense.

Theorem 2 The problem 1|NR, dj = d|
∑
Tj is

not in APX, where APX is the class of optimiza-
tion problems that allow polynomial-time approx-
imation algorithms with an approximation ratio
bounded by a constant.

Proof. For the proof, it suffices to note that the
special case of the problem 1|NR, dj = d|

∑
Tj

with the optimal value
∑
Tj = 0 is NP -hard in

the strong sense.

2 Problem 1|NR|∑Tj

For 1|NR, pj = p|
∑
Tj , there exists an op-

timal schedule which has the structure π =
(π1, π2, . . . , πy), where the jobs in the partial
schedule πi, i = 1, 2, . . . , y, are processed in EDD
order.

For the special case of problem 1|NR, pj =
p|

∑
Tj with g1 ≤ g2 ≤ . . . ≤ gn, d1 ≤ d2 ≤

. . . ≤ dn, schedule π∗ = (1, 2, . . . , n) is optimal.
Next, we consider a more specific situation,

namely a sub-problem denoted as 1|NR : αt =
1, pj = p|

∑
Tj (see below). After proving NP -

hardness of this special case, we consider another
special case denoted as 1|NR,G(t) = M,pj =
p|

∑
Tj and derive a relation between these two

sub-problems.
Now we consider the situation, where the

times of earnings of the resource are given by
{t1, t2, . . . , ty} = {1, 2, . . . ,

∑
gj}, t1 = 1, t2 =

2, . . . , ty =
∑
gj , and G(ti) = 1 for i = 1, 2, . . . , y.

This condition is denoted as αt = 1 [3]. Therefore,
we can denote this problem as 1|NR : αt = 1, pj =
p|

∑
Tj .

Theorem 3 The problem 1|NR : αt = 1, pj =
p|

∑
Tj is NP -hard.

Proof. We give the following reduction from the
problem 1||

∑
Tj . Given an instance of the prob-

lem 1||
∑
Tj with processing times p′j and due

dates d′j for j = 1, 2, . . . , n, we construct an in-
stance of problem 1|NR : αt = 1, pj = p|

∑
Tj

as follows. Let gj = p′j , pj = 0 and dj = d′j for

j = 1, 2, . . . , n. Then both problems are equiva-
lent.

It can be noted that the special case 1|NR :
αt = 1, pj = 0|

∑
Tj can be solved in O(n4

∑
gj)

time by Lawler’s algorithm [8] since we obtain a
problem 1||

∑
Tj with processing times gj .

According to the definition in [7], we have
LENGTH[I] = n + y. In fact, the string
x consists of 2n + 2y + 3 numbers. However,
if we consider problem 1|NR : αt = 1, pj =
0|

∑
Tj as a special case of problem 1|NR :

pj = p|
∑
Tj and use the same encoding scheme,

then LENGTH[I] = n + y = n +
∑
gj , i.e.,

the length of the input is pseudo-polynomial.
Since, as mentioned above, problem 1|NR : αt =
1, pj = 0|

∑
Tj can be solved in O(n

∑
gj) time

by Lawler’s algorithm, the complexity of this al-
gorithm would polynomially depend on the in-
put length LENGTH[I] = n +

∑
gj . For this

reason, we consider sub-problem 1|NR : αt =
1, pj = p|

∑
Tj as a separate problem and use the

encoding scheme e′, in which we present an in-
stance as a string ”p, d1, d2, . . . , dn, g1, g2 . . . , gn”,
i.e., LENGTH[I] = n.

Let us now consider the sub-case of problem
1|NR, pj = p|

∑
Tj , where the times of earn-

ings of the resource are given by t1 = M, t2 =
2M, . . . , tn = nM and G(ti) = M for all i =

1, 2, . . . , n, where M =
∑

gj
n such that M ∈ Z+.

We denote this special case by 1|NR,G(t) =
M,pj = p|

∑
Tj .

Two instances of problems 1|NR : αt =
1, pj = p|

∑
Tj and 1|NR,G(t) = M,pj =

p|
∑
Tj are called corresponding, if all parameters

dj , pj , gj , j = 1, 2, . . . , n, for the two instances are
the same.

Lemma 1 There exist two corresponding in-
stances of the problems 1|NR : αt = 1, pj =
p|

∑
Tj and 1|NR,G(t) = M,pj = p|

∑
Tj which

have different optimal schedules.

Proof. We consider an instance with n = 2 jobs
and p1 = p2 = 1, g1 = 1, g2 = 5, d1 = 7, d2 =
6. For problem 1|NR : αt = 1, pj = p|

∑
Tj , we

have
∑
Tj(π

1) = 0 and
∑
Tj(π

2) = 1, where π1 =
(2, 1) and π2 = (1, 2). On the other hand, for the
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problem 1|NR,G(t) = M,pj = p|
∑
Tj , we have∑

Tj(π
1) = 2 and

∑
Tj(π

2) = 1. Thus, the above
two instances have different optimal schedules.

Now, let dj = 0 for j = 1, 2, . . . , n. For
two corresponding instances of problems 1|NR :
αt = 1, pj = 1|

∑
Cj and 1|NR,G(t) = M,pj =

1|
∑
Cj , let Cj(π) be the completion time of job j

according to the job sequence π for the first prob-
lem and C ′j(π) be the completion time of the same
job according to π for the second problem.

For two corresponding instances of problems
1|NR : αt = 1, pj = 1|

∑
Cj and 1|NR,G(t) =

M,pj = 1|
∑
Cj , we have

n∑
j=1

C ′j(π)

n∑
j=1

Cj(π)
< 2.

There exists an instance of problems 1|NR :
αt = 1, pj = 1|

∑
Cj and 1|NR,G(t) = M,pj =

1|
∑
Cj for which we have

n∑
j=1

C ′j(π)

n∑
j=1

Cj(π)
≈ 2− 1

n
.

Theorem 4 The special case 1|NR, pj = p|
∑
Tj,

where the number of times of earnings of the re-
source given by t0, t1, . . . , ty is less than or equal
to n, is NP -hard.

Special Case 1|NR, dj = d, gj = g|
∑
Tj

We give the following reduction from the par-

tition problem. Denote M = (n
n∑

j=1
bj)

n. Let us

consider the following instance with the set of jobs
N = {1, 2, . . . , 2n+ 1}:



p2n+1 = 1,
p2i = Mn−i+1, i = 1, 2, . . . , n,
p2i−1 = p2i + bi, i = 1, 2, . . . , n,

d =
n∑

i=1
p2i + 1

2

∑
bj ,

g = 1,
t0 = 0, G(t0) = n,
t1 = d, G(t1) = 1,
t2 = t1 +

∑
bj + 1, G(t2) = 1,

t3 = t2 + p2n + bn, G(t3) = 1,
. . . . . .
ti = ti−1 + p2(n−i+3) + bn−i+3, G(ti) = 1,

. . . . . .
tn+1 = tn + p4 + b2, G(tn+1) = 1.

(3)
It is obvious that there are at least n+ 1 tardy

jobs in any feasible schedule. We define a canoni-
cal schedule as a schedule of the form

(V1,1, V2,1, . . . , Vi,1, . . . ,

Vn,1, 2n+ 1, Vn,2, . . . , Vi,2, . . . , V2,2, V1,2),

where {Vi,1, Vi,2} = {2i− 1, 2i}, i = 1, 2, . . . , n.
Moreover, let π = (E,F ) and for the two par-

tial schedules E and F , we have |{E}| = n and
|{F}| = n+ 1. Note that in any canonical sched-
ule, all jobs in sub-sequence F are tardy, the last
job in sub-sequence E can be tardy or on-time
while all other jobs in sub-sequence E are on-time.

Theorem 5 For instance (3), there exists an op-
timal schedule which is canonical.

We note that in a canonical schedule, there are
either n + 1 or n + 2 tardy jobs (job Vn,1 can be
tardy or on-time). Moreover, as we prove in the
following theorem, in an optimal canonical sched-
ule, there are only n + 1 tardy jobs and thus, all
jobs in sub-sequence E are on-time.

Theorem 6 The instance of the partition prob-
lem has an answer ”YES” if and only if in an
optimal canonical schedule, the equality∑

j∈E
pj = d

holds.
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Thus, the special case 1|NR, dj = d, gj =
g|

∑
Tj is NP -hard.

3 Budget Scheduling Problems
with Makespan Minimization

A budget scheduling problem is a financial schedul-
ing problem described in this paper, where instead
of the values gj , values g−j ≥ 0 and g+j ≥ 0 are

given. The value g−j has the same meaning as gj
in the financial scheduling problem. However, at
the completion time of job j, one has additional
earnings g+j of the resource.

If we have g−j ≥ g+j for all j = 1, 2, . . . , n, then

the new instance with gj = g−j − g
+
j is not equiv-

alent to the original one. Let G =
n∑

j=1
(g−j − g

+
j ).

If
∑
∀t
G(t) < G + max g−j , then not all sequences

(schedules) π are feasible.

We denote this problem as 1|NR, g−j , g
+
j |Cmax.

It is obvious that this problem is NP -hard in the
strong sense (since the financial scheduling prob-
lem is a special case of the budget scheduling prob-
lem).

If there exists a feasible schedule for an instance
of problem 1|NR, g−j , g

+
j , g

−
j > g+j |Cmax, then the

schedule π = (1, 2, . . . , n) with g+1 ≥ g+2 ≥ . . . ≥
g+n is feasible as well.

If inequality g−j > g+j does not hold for all
j = 1, 2, . . . , n, then we can use the following list
scheduling algorithm for constructing a feasible
schedule.

Algorithm A. First, all jobs j ∈ N with g+j −
g−j ≥ 0 are scheduled. In particular, schedule
among these jobs the job with the earliest pos-
sible starting time, if there is more than one job
with this property, select the job with the largest
value g+j − g−j . If all jobs j with g+j − g−j ≥ 0
have been sequenced, schedule the remaining jobs
according to non-increasing values g+i .

Lemma 2 The problem 1|NR, g−j , g
+
j |Cmax is in

APX.
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