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In a resource-constrained scheduling problem,
one wishes to schedule the jobs in such a way that
the given resource constraints are fulfilled and a
given objective function attains its optimal value.
In this paper, we deal with single machine schedul-
ing problems with a non-renewable resource, such
problems are also referred to as financial schedul-
ing problems.

The research in the area of scheduling problems
with a non-renewable resource is rather limited.
In [1], some polynomially bounded algorithms are
presented for scheduling problems with precedence
constraints (not restricted to single machine prob-
lems). Some results for preemptive scheduling of
independent jobs on unrelated parallel machines
have been presented in [2]. Toker et al. [3]
have shown that the problem of minimizing the
makespan with a unit supply of a resource at each
time period is polynomially solvable. Janiak et al.
[4, 5] have considered single machine problems, in
which the processing times or the release times
depend on the consumption of a non-renewable
resource.

The problems under consideration can be for-
mulated as follows. We are given a set N =
{1,2,...,n} of n independent jobs that must be
processed on a single machine. Preemptions of a
job are not allowed. The machine can handle only
one job at a time. All the jobs are assumed to be
available for processing at time 0. For each job
J» J € N, a processing time p; > 0 and a due
date d; are given. In addition, we have one non-
renewable resource G (e.g. money, energy, etc.)
and a set of times {tg,t1,...,t,}, to =0, to < t1 <

... < ty, of earnings of the resource. At each time
t;, i=0,1,...,y, we receive an amount G(¢;) > 0
of the resource. For each job j € N, a consump-

tion g; > 0 of the resource arises when the job is
y

= > G(t).

i=0

Let S; be the starting time of the processing
of job j. A schedule S = (5},,5),,...,5j,) de-
scribes the order of processing the jobs: 7w =
(j1,725---5Jn). Such an order is uniquely deter-
mined by a permutation (sequence) of the jobs
of set N. A schedule S = (5;,,Sj,,...,95;,) is
feasible, if the machine processes no more than
one job at a time and the resource constraints

n
started. Thus, we have ) g;
j=1

are fulfilled, i.e., for each ¢ = 1,2,...,n, we have
i

> 9jr < > G(tl)'

k=1 vi: tlSSji

Moreover, we will call the sequence 7 a schedule
too since one can compute S = (S, Sy, ...,5;,)
in O(n) time applying a list scheduling algorithm
to the sequence m. Then Cj, (1) = Sj, + pj, de-
notes the completion time of job ji in schedule
m. If Cj(m) > dj, then job j is tardy and we
have U; = 1, otherwise U; = 0. Moreover, let
Tj(m) = max{0,C;(m)—d;} be the tardiness of job
J in schedule m. We denote by Cinee = Cj, (7) the
makespan of schedule 7 and by L;(7) = Cj(m)—d;
the lateness of job j in .

1 Some Complexity Results
Theorem 1 Problems 1|NR|Cpez, 1|NR,d; =

d|>T;, 1|NR|YU; and 1{NR|Lpax are NP-
hard in the strong sense, and the problem



1INR|Y- Cj is N P-hard in the ordinary sense.

Theorem 2 The problem 1|NR,d; = d|> T} is
not in APX, where APX is the class of optimiza-
tion problems that allow polynomial-time approz-
imation algorithms with an approximation ratio
bounded by a constant.

Proof. For the proof, it suffices to note that the
special case of the problem 1|NR,d; = d|> Tj
with the optimal value > T} = 0 is NP-hard in
the strong sense.

2 Problem 1|NR|YT;

For 1|NR,p; = p|> Tj, there exists an op-
timal schedule which has the structure = =

(m1,m2,...,my), where the jobs in the partial
schedule 7;, 1 =1,2,...,y, are processed in EDD
order.

For the special case of problem 1|NR,p; =
p| 2T with g1 < g2 < ... < gn, di < dg <
... <dp, schedule 7* = (1,2,...,n) is optimal.

Next, we consider a more specific situation,
namely a sub-problem denoted as 1|NR : «; =
1,p; = p| > T} (see below). After proving NP-
hardness of this special case, we consider another
special case denoted as 1|NR,G(t) = M,p; =
p| > T; and derive a relation between these two
sub-problems.

Now we consider the situation, where the
times of earnings of the resource are given by
{tl,tg,...,ty} = {1,2,...,Zgj}, tl = 1, tz =
2,...,ty=>gjand G(t;) =1fori=1,2,...,y.
This condition is denoted as o = 1 [3]. Therefore,
we can denote this problem as 1|{NR: ay = 1,p; =

p| > T}

Theorem 3 The problem 1|{NR : oy = 1,p; =
p| > T is NP-hard.

Proof. We give the following reduction from the
problem 1| >~ Tj. Given an instance of the prob-
lem 1[|3°7T; with processing times p; and due
dates d;- for j = 1,2,...,n, we construct an in-
stance of problem 1|NR : oy = 1,p; = p| > Tj
as follows. Let g; = p;, pj = 0 and d; = dj for

7 =1,2,...,n. Then both problems are equiva-
lent.

It can be noted that the special case 1|NR :
ar = 1,p; = 0| 3T} can be solved in O(n*Y g;)
time by Lawler’s algorithm [8] since we obtain a
problem 1|| >~ T} with processing times g;.

According to the definition in [7], we have

LENGTH[I] = n +y. In fact, the string
x consists of 2n + 2y + 3 numbers. However,
if we consider problem 1|NR : o = 1,p; =

0|>T; as a special case of problem 1|NR
pj = p|>.T; and use the same encoding scheme,
then LENGTH[I] = n+y = n+ Y gj, ie,
the length of the input is pseudo-polynomial.
Since, as mentioned above, problem 1|NR : oy =
1,p; = 0|>°Tj can be solved in O(n}_g;) time
by Lawler’s algorithm, the complexity of this al-
gorithm would polynomially depend on the in-
put length LENGTH[I] = n+ Y g;. For this
reason, we consider sub-problem 1|NR : o =
1,p; = p| > T} as a separate problem and use the
encoding scheme ¢’, in which we present an in-
stance as a string "p,d;,d2,...,dn, 91,92 ..., 9, ,
ie., LENGTHI[I| =n.

Let us now consider the sub-case of problem
IINR,p; = p|> T;, where the times of earn-
ings of the resource are given by t1 = M,ty =
2M,...,t, = nM and G(t;) = M for all ¢ =
1,2,...,n, where M = ¥ such that M € Z,.
We denote this special case by 1|NR,G(t) =
M,p; = p| 3 T;.

Two instances of problems 1|NR : o =
Lpj = pIST; and INR,G() = M,p; =
p| >° T} are called corresponding, if all parameters
d;, pj, 95,3 = 1,2,...,n, for the two instances are
the same.

Lemma 1 There exist two corresponding in-
stances of the problems 1|NR : o = 1,p; =
p| > T; and 1I{NR,G(t) = M,p; = p| > T; which
have different optimal schedules.

Proof. We consider an instance with n = 2 jobs
and py =pe =1, g1 =1, go = 5,dy = 7,dy =
6. For problem 1|NR : oy = 1,p; = p| > Tj, we
have Y- Tj(7!) = 0 and 3 T;(7?) = 1, where n! =
(2,1) and 7% = (1,2). On the other hand, for the



problem 1|NR,G(t) = M,p; = p| > T}, we have
S Tj(mt) =2 and Y Tj(n?) = 1. Thus, the above
two instances have different optimal schedules.

Now, let dj = 0 for j = 1,2,...,n. For
two corresponding instances of problems 1|NR :
ar = 1,p; = 1|3 C; and 1|NR,G(t) = M,p; =
1|3 Cj, let Cj(m) be the completion time of job j
according to the job sequence 7 for the first prob-
lem and C}(7) be the completion time of the same
job according to 7 for the second problem.

For two corresponding instances of problems
IINR : oy = 1,p; = 1]3.C; and 1|NR,G(t) =
M,p; =13 Cj, we have

5> Ci()
SR
> Cj(m)
j=1

There exists an instance of problems 1|NR :
ar = 1,p; = 1|3 C;j and 1|NR,G(t) = M,p; =
1| > C; for which we have

5> C!()

le ~2- 1
> Cj(m) "
Jj=1

Theorem 4 The special case 1|NR,p; = p| > T},
where the number of times of earnings of the re-

source given by to,t1,...,1y is less than or equal
to n, is NP-hard.

Special Case 1|NR,d; =d,g; = g| > T;
We give the following reduction from the par-
n
tition problem. Denote M = (n ) b;)". Let us
i=1

consider the following instance with the set of jobs
N={1,2,....2n+ 1}:

Pomt1 =1,
p2i:Mn7Z+17 Z:1727 5, 1,
DP2i—1 :p2i+bi) 1= 1727' , 1,
n
d= le% + 52 bj,
1=
g=1
tg = 0, G(tO) =n,
t1 =d, G(tl) =1,
t2:t1+2bj+1, G(tQ)ZI,
t3 = t2 + pan + bn, G(ts) =1,
ti =tio1 + Pan—it3) T bn—its, G(ti) =1,
tnt1 = tn + pa + ba, G(tn—i-l) =1

(3)

It is obvious that there are at least n + 1 tardy

jobs in any feasible schedule. We define a canoni-
cal schedule as a schedule of the form

(‘/1717‘/2717"-)‘/;717"‘7
Vn,17 2n + 17 Vn,27 ey %,2; ey ‘/'2’2’ ‘/1,2)7
where {Vi1,Vio} = {2i — 1,2}, i=1,2,...,n.

Moreover, let m = (E, F) and for the two par-
tial schedules E and F', we have |[{E}| = n and
[{F}| =n+ 1. Note that in any canonical sched-
ule, all jobs in sub-sequence F' are tardy, the last
job in sub-sequence E can be tardy or on-time
while all other jobs in sub-sequence E are on-time.

Theorem 5 For instance (3), there exists an op-
timal schedule which is canonical.

We note that in a canonical schedule, there are
either n + 1 or n + 2 tardy jobs (job V1 can be
tardy or on-time). Moreover, as we prove in the
following theorem, in an optimal canonical sched-
ule, there are only n 4 1 tardy jobs and thus, all
jobs in sub-sequence E are on-time.

Theorem 6 The instance of the partition prob-
lem has an answer "YES” if and only if in an
optimal canonical schedule, the equality

Y opj=d
JEE

holds.



Thus, the special case 1|NR,d; =
g|>-Tj is NP-hard.

da.gj =

3 Budget Scheduling Problems
with Makespan Minimization

A budget scheduling problem is a financial schedul-
ing problem described in this paper, where instead
of the values g;, values g; = 0 and g;-r > 0 are
given. The value 9; has the same meaning as g;
in the financial scheduling problem. However, at
the completion time of job j, one has additional
earnings gj of the resource.

If we have g; = gj for all j =1,2,...,n, then
the new instance with g; = g;” — g]'-F is not equiv-

n
alent to the original one. Let G = > (g; — g;r)
j=1

If > G(t) < G+ maxyg; , then not all sequences
vt

(schedules) 7 are feasible.

We denote this problem as 1|NR, g},gﬂCmax.
It is obvious that this problem is N P-hard in the
strong sense (since the financial scheduling prob-
lem is a special case of the budget scheduling prob-
lem).

If there exists a feasible schedule for an instance
of problem 1|NR,gj_,g;-r,gj_ > gj]Cmam, then the
schedule 7 = (1,2,...,n) with g7 > g5 > ... >
g, is feasible as well.

If inequality g; > g;-r does not hold for all

j=1,2,...,n, then we can use the following list
scheduling algorithm for constructing a feasible
schedule.
Algorithm A. First, all jobs j € N with g —
g; = 0 are scheduled. In particular, schedule
among these jobs the job with the earliest pos-
sible starting time, if there is more than one job
with this property, select the job with the largest
value gj —g; . If all jobs j with g; -9; =20
have been sequenced, schedule the remaining jobs
according to non-increasing values gl-+ .

Lemma 2 The problem 1|NR, g;,gf]Cmax is in
APX.
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