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Abstract

An optimal control problem with two boundary
problems of finite convex optimization is consid-
ered. Dynamics of the controlled process is de-
scribed by linear differential equations. We pro-
pose an iterative extragradient-type process, for-
mulated in the functional subspace of piecewise
differentiable trajectories. The convergence in
controls and trajectories has been proved.

1 Problem statement

An optimal control problem with free right end
is considered. The dynamics of the process is de-
scribed by a system of linear equations

d

dt
x(t) = D(t)x(t) +B(t)u(t), t0 ≤ t ≤ t1, (1)

where D,B are continuous n × n and n × r ma-
trices, u : [t0, t1] → Lr

2 is control, x : [t0, t1] → Ln
2

are trajectories.
Controls are assumed to be piecewise continu-

ous functions of the set

U = {u ∈ Lr
2[t0, t1]| ui ∈ [u−i , u

+
i ], i = 1, r}. (2)

Let us introduce the linear subspace Ln
2 [t0, t1] ⊂

Čn[t0, t1] of piecewise differentiable functions, sat-
isfying the initial condition x0, and assume that
x, x∗ ∈ Čn[t0, t1].

Adding to system (1) the initial condition x0

and any control u ∈ U , and solving this problem,
we can find x. When a control u ”runs” over the
whole set U , then the right ends x1 of trajecto-
ries describe the set of attainability X1, where the

functional ϕ1(x1) is defined. We also require that
the right ends of trajectories are subject to addi-
tional restrictions C1x1 ≤ c1.

Collecting together, we have the following opti-
mal control problem with boundary optimization:

d

dt
x(t) = D(t)x(t) +B(t)u(t), t0 ≤ t ≤ t1,

x(t0) = x0, u(t) ∈ U,
x∗1 ∈ Argmin{ϕ1(x1)| C1x1 ≤ c1, x1 ∈ X1}.

(3)
It is necessary for a given x0 to find the optimal
control u∗ such that the right end x∗1 of corre-
sponding trajectory x∗ was minimizing (on the set
X1 under constraints C1x1 ≤ c1) the functional
ϕ1(x1). We assume that the solution u∗, x∗ ex-
ists, and, in general, not unique.

2 Reducing the problem to find-
ing a saddle point of La-
grangian

It is known that the optimization problem using
the Kuhn-Tucker theorem can be reduced to find-
ing the saddle points of the Lagrangian [2]. In this
case the Lagrangian has the form

L1(p1, ψ;x, u) = ϕ1(x1) + 〈p1, C1x1 − c1〉+

+
∫ t1

t0

〈ψ(t), D(t)x(t) +B(t)u(t)− d

dt
x(t)〉dt,

and is defined for all x ∈ Čn[t0, t1], u ∈ U , p1 ∈
Rm

+ , ψ ∈ Čn
∗ [t0, t1], where Čn

∗ is dual subspace. Its
saddle point (p∗1, ψ

∗;x∗, u∗) satisfies, by definition,

1



the system

L1(p1, ψ;x∗, u∗) ≤ L1(p∗1, ψ
∗;x∗, u∗) ≤

≤ L1(p∗1, ψ
∗;x, u). (4)

The equivalence of the original problem (3) to the
saddle problem (4) has been proved.

As a result of transformations, using the transi-
tion to the adjoint operator and the formula for
integration by parts, the problem (4) has been
reduced to a system that reflects the well-known
Pontryagin’s maximum principle:

d

dt
x∗(t) = D(t)x∗(t) +B(t)u∗(t), x∗(t0) = x∗0,

(5)
p∗1 = π+(p∗1 + α(C1x

∗
1 − c1)), (6)

d

dt
ψ∗(t)+DT (t)ψ∗(t) = 0, ψ∗1 = ∇ϕ1(x∗1)+CT

1 p
∗
1,

(7)
u∗(t) = πU (u∗(t)− αBT (t)ψ∗(t)), (8)

where π+(·) and πU (·) – projection operators on
Rm

+ and U , α > 0.

3 Method of solution

To solve the latter system it seems natural to ap-
ply the method of simple iteration:

d

dt
xk(t) = D(t)xk(t) +B(t)uk(t), xk(t0) = x∗0,

(9)
pk+1
1 = π+(pk

1 + α(C1x
k
1 − c1)), (10)

d

dt
ψk(t)+DT (t)ψk(t) = 0, ψk

1 = ∇ϕ1(xk
1)+CT

1 p
k
1,

(11)
uk+1(t) = πU (uk(t)− αBT (t)ψk(t)), k = 1, 2, ...

(12)
The process of (9)–(12) is the simplest of the
known numerical methods. For a strictly con-
tractive mapping it converges at a geometric rate.
But it is known that in the case of saddle prob-
lems, in general, such methods do not converge to
the solution. So, to solve the system (5)–(8) the
extragradient-type approach has been used as a
controlled simple iteration method [1].

Each iteration of the extragradient method is
divided into two half-steps:

1) prediction half-step

d

dt
xk(t) = D(t)xk(t) +B(t)uk(t), xk

0 = x∗0, (13)

p̄k
1 = π+(pk

1 + α(C1x
k
1 − c1)), (14)

d

dt
ψk(t)+DT (t)ψk(t) = 0, ψk

1 = ∇ϕ1(xk
1)+CT

1 p̄
k
1,

(15)
ūk(t) = πU (uk(t)− αBT (t)ψk(t)); (16)

2) basic half-step

d

dt
x̄k(t) = D(t)x̄k(t) +B(t)ūk(t), x̄k

0 = x∗0, (17)

pk+1
1 = π+(pk

1 + α(C1x̄
k
1 − c1)), (18)

d

dt
ψ̄k(t)+DT (t)ψ̄k(t) = 0, ψ̄k

1 = ∇ϕ1(x̄k
1)+CT

1 p̄
k
1,

(19)
uk+1(t) = πU (uk(t)− αBT (t)ψ̄k(t)), k = 1, 2, ...

(20)
Note that in this method two systems of differen-
tial equations are solved at each half-step and two
projection operations in the variables p1 and u are
fulfilled.

4 Proof of convergence for the
method

The following theorem about the convergence of
the method to solution of the problem has been
proved.

Theorem 1. Let the set of optimal trajectories of
the problem (5)-(8) is not empty and belongs to
subspace Čn[t0, t1], ϕ1(x1) is convex and differen-
tiable function with gradient satisfying the Lips-
chitz condition with constant K1; D(t), B(t) are
matrices being continuous on segment [t0, t1], U is
a set of admissible controls of the form (2). Then
the sequence

{‖uk − u∗‖2Lr
2

+ |pk
1 − p∗1|2Rm},

generated by iterative process (13)–(20),
where 0 < α < 1√

2K
, K2 = (‖C1‖2+
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B2
maxK

2
1

1
2Dmax

(
e2Dmaxt1 − 1)

)
t1B

2
maxE

2Dmaxt1 ,
decreases monotonically in Lr

2 × Rm. At the
same time any weakly convergent subsequence
{uki(t)} converges to u∗(t), and a corresponding
subsequence {xki(t)} converges to x∗(t) in the
uniform norm Čn[t0, t1].

If {uk(t)} has a strong limit point then the pro-
cess {pk

1, x
k(t), uk(t), ψk(t)} converges in norm to

the solution p∗1, x
∗(t), u∗(t), ψ∗(t), moreover by

u(t), p1 – monotonically.

5 Example of economic model of
Harrod-Domar’s type

As an economic interpretation of the above prob-
lem formulation we have considered a generaliza-
tion of the well-known Harrod-Domar model of
development of production [3]. This model relates
the change in income from production with the
consumption and investment relationship.

In the classical model, instead of (1) we have the
only equation, where x(t) is an income received by
a company at the moment t. One part of income
is consumed (P (t)) and the rest is invested in the
future development of enterprises (I(t)): x(t) =
P (t) + I(t). Income growth is proportional to the
investment: d

dtx(t) = 1
Kx(t)− 1

KP (t) (constant K
characterizes the capital productivity, where K is
a ratio of capital to income growth).

We consider this model as applied to the mul-
tidimensional situation. Suppose that x(t) and
P (t) are continuous vector-functions, where xi(t),
i = 1, n, is income earned from the sale of i-type
products, Pi(t) – costs, consumption (pay workers’
wages, depreciation, etc.), Ii(t) is investment in i-
th kind of product. Capital-gains income is given
by the matrix K(t) and also depends continuously
on time. We have a system of ODE:

d

dt
x(t) = K−1(t)I(t)−K−1(t)P (t),

where Kij(t) is a coefficient characterizing the in-
fluence (equity) of investment in the j-th kind of
product for the production of i-th kind of product.

It is required, using the regulation of consump-
tion (which in our formulation acts as a control),

to maximize revenue x1 = x(t1) at t = t1 with ad-
ditional linear constraints C1x1 ≤ c1. The mean-
ing of this inequality: income is restricted in prac-
tice by finite resources and consumer demand. As
the terminal function to be minimized, we can take

ϕ1(x1) = −〈ĉ, x1〉,

where ĉ is vector of weights.
Drawing a parallel with (1), for this model we

have: D(t) = −B(t) = K−1(t), u(t) = P (t) .
In particular, when n = 1 and there is no ter-

minal problem, we have the classical model of
Harrod-Domar. Note that the terminal problem
does not necessarily have the kind of optimization
problem. Some equation, reflecting, for example,
a balance of economic situation, can also act as a
terminal problem.

So, we have the generalization of the economic
model of the Harrod-Domar: first, the classical
model has been extended to the multidimensional
case, second, terminal problem was added, and fi-
nally, the iterative extragradient method for solv-
ing the resulting problem has been proposed.

An important feature of the proposed formula-
tion of the problem lies in the fact that the dynam-
ics of production (ODE system) is consistent with
the strategy (terminal problem). The real pos-
sibilities of the manufacturer also are taken into
account (terminal constraints).
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