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1 Introduction

The facility location problem with clients’ pref-
erences (FLPCP) is a special case of the bilevel
facility location problem [1, 2, 10]. At the up-
per level, the supplier chooses a subset of facili-
ties to be open. Then, at the lower level, each
client chooses one of these facilities according to
the client’s own preferences. The problem is to
choose a set of facilities to be open at the upper
level so that the clients are served with minimal
total cost. FLPCP is also known as facility loca-
tion problem with order [3].

This problem was firstly considered in [5]. To
find an optimal solution of FLPCP a reduction
to integer linear programs is usually used. Lower
bounds of LP-relaxation for these integer pro-
grams usually used to improve exact methods,
based on Brunch and Cut schemes. The lower
bounds for FLPCP were studied in [1, 3, 6, 9, 10].
In [3], the lower bound with some families of valid
inequalities was proposed and the computational
experiment was carried out. The new family of
valid inequalities was proposed in [10] too. They
are based on the extended formulation of FLPCP
from [1, 6]. The computational experience with
these inequalities was performed in [9] and ap-
proved the effectiveness of the new lower bound
in comparison with the other approaches [1, 3].
Moreover, in [10] the new formulation and the cor-
responding lower bound for FLPCP was designed
with clique inequalities which were constructed on
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the basis of relaxation of FLPCP to the Set Pack-
ing problem. But the computational experiment
with clique inequalities was not performed.

The purpose of this paper is checking the effi-
ciency of the family of clique inequalities [10]. We
implemented a cutting plane method for calculat-
ing the corresponding lower bound. A computa-
tional experiment was carried out on series of test
instances and approved the efficiency of the pro-
posed formulation of FLPCP.

2 Problem statement

In FLPCP we are given by I = {1, . . . , m} the
set of facilities; J = {1, . . . , n} the set of clients;
fi ≥ 0 (i ∈ I) is the cost of opening the fa-
cility i; cij ≥ 0 (i ∈ I, j ∈ J) is the matrix
of the production and delivery costs for servicing
the clients; gij ≥ 0 (i ∈ I, j ∈ J) is the ma-
trix of the clients’ preferences, more precisely, if
gi1j < gi2j , i1 6= i2, then client j prefers the open
facility i1 to the open facility i2.

The following variables are used in the model:
xij = 1 if the client j is served from facility i
(otherwise xij = 0); yi = 1 if facility i is open
(otherwise, yi = 0).

Using this notations, one can write the following
bilevel integer programming formulation [1, 10]:

∑

i∈I

∑

j∈J

cijxij +
∑

i∈I

fiyi ↓ min
y

,

yi ∈ {0, 1}, i ∈ I,
(1)

where x(y) is optimal solution of the client prob-
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lem:
∑

i∈I

∑

j∈J

gijxij ↓ min
x

,

∑

i∈I

xij = 1, 0 ≤ xij ≤ yi,

xij ∈ {0, 1}, i ∈ I, j ∈ J.

(2)

The objective function of the upper level prob-
lem (1) minimizes the cost of servicing clients and
opening facilities. The objective function of the
lower level problem (2) guarantees that the clients
are served by the most preferable facility.

If the clients’ optimal choice in problem (2)
is unique, then bilevel integer problem (1)—(2)
can be reduced to equivalent Linear Integer Pro-
gram [1, 10].

Let’s denote by Wij
△
={k ∈ I | gkj < gij} the set

of facilities which are worse for the client j than

the facility i and Bij
△
={k ∈ I | gkj > gij} the

set of facilities which are better for the customer
j than the facility i. Linear Integer Programming
formulation for the FLPCP is following:

∑

i∈I

∑

j∈J

cijxij +
∑

i∈I

fiyi ↓ min
x,y

, (3)

yi +
∑

k∈Wij

xkj ≤ 1, i ∈ I, j ∈ J, (4)

∑

i∈I

xij = 1, j ∈ J, (5)

0 ≤ xij ≤ yi ≤ 1, i ∈ I, j ∈ J, (6)

xij , yi ∈ {0, 1}, i ∈ I, j ∈ J. (7)

The constraints (4) ensure, that each client is
served by the most preferable facility. In the next
section, we describe techniques for strengthening
formulation (3)–(7) which were proposed in [10].

3 Clique Inequalities

The relation between the (3)–(7) and the well-
known Set Packing problem [7] was examined
in [10]. The connection was exploited to derive
valid inequalities for FLPCP.

Consider a 0 − 1 matrix D and a nonnegative
vector d. The formulation for the Set Packing
problem with the variables z is:

〈d, z〉 ↑ max
z

, Dz ≤ 1.

A Set Packing problem can be easily trans-
formed into a Stable Set problem by considering
graph G = (V, E) constructed as follows. Every
column of D is associated with a vertex in G. The
vertices i and j are connected by an edge if and
only if the columns i and j are not orthogonal.

We will denote by PG the polytope of the Set
Packing problem, which is the convex hull of 0−1
vectors corresponding to stable sets of graph G.
Any complete subgraph in a given graph is called
clique. A clique that is not a subclique of a larger
one is called a locally maximal clique. Let K be a
clique in G. It is known (see [8]) that the clique
inequality

∑

k∈K

zk ≤ 1 is valid for PG and it is facet

defining if K is a locally maximal clique.

It was noted in [10] that initial constraints (4),
(5) and valid inequalities from [3] and [10] de-
fine the Set Packing relaxation of the FLPCP (for
more information see [10]) Denote by K the set
of all cliques in graph G constructed as described
above for this relaxation of the FLPCP, and con-
sider the following family of clique inequalities:

∑

k∈Ki

(x, y)k ≤ 1, Ki ∈ K. (8)

These inequalities (8) are valid for the polytope of
FLPCP (see [10]).

Now we develop the Cutting Plane method for
calculating the lower bound, corresponding to the
formulation of the FLPCP with clique inequalities.
To find locally maximal cliques in graph G we use
the continuous formulation of clique problem as a
convex quadratic minimization problem over the
canonical simplex with a constraint given by dif-
ference of two convex functions. This formulation
was proposed in [4]:

φ(x)
△
=

N
∑

i=1

1

wi

x2
i ↓ min, x ∈ S,

Φ(x)
△
=

〈

x,Bx
〉

≤ 0,















(9)

where S
△
= {x ∈ IRN | x ≥ 0,

N
∑

i=1

xi = 1},

node’s weights are given by the vector w ∈ R
|V |
+

and the matrix B = {bij} (N × N) is constructed
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by following rule: bij =
1

2wi

+
1

2wj

if i 6= j, (i, j) /∈

E; bij = 0 otherwise.
The characteristic vector z(K, w) = (z1, .., zN )

of a clique K is: zi =
wi

W (K)
if i ∈ K, zi = 0

otherwise, where W (K) =
∑

i∈K

wi.

It was proved in [4] that K∗ ⊂ V is a maxi-
mum weighted clique of G(V, E) iff z(K, w) is a
global solution of problem (9). An algorithm for
finding maximum weighted cliques was developed
in [4] as well. It’s based on global algorithm for
problem (9). The algorithm was tested on the DI-
MACS benchmark graphs and showed promising
results. In this paper we adopt this algorithm for
finding violated clique inequalities (8) in our Cut-
ting plane method. The scheme of the method is
given below.

Cutting plane method

for clique inequalities

Step 0. Solve linear program (3)–(6). Let (x̄, ȳ)
be it’s solution.
Step 1. Construct graph G(V, E) and weight vec-

tor w := z̄
△
=(x̄, ȳ).

Step 2. Using the algorithm for finding maxi-
mum weighted cliques from [4] construct the set
of violated clique inequalities: Q ⊂ K such that
W (K) > 1 ∀K ∈ Q.
Step 3. If Q = ∅, then STOP: the lower bound
of FLPCP is

∑

i∈I

∑

j∈J

cij x̄ij +
∑

i∈I

fiȳi.

Step 4. Using set Q construct clique inequal-
ities (8) and add them to the formulation of
FLPCP.
Step 5. Solve linear program (3)–(6), with the
current subset of inequalities (8) and goto Step 1.

4 Numerical results

We carried out computational experiment with
the proposed cutting plane method for inequalities
family (8). The obtained by CP lower bound for
the optimal value of FLPCP was compared with
the other known lower bounds from [3] and [9].
We used the test field from [3] for the experiment.

This test field consists of 3 groups of instances:
“small” ones with m = 50 and n = 50; the sec-
ond block of “middle” size problems, m = 50
and n = 75; and the the “large” problems with
m = 75 and n = 100. To solve auxiliary linear
programming and quadratic programming prob-
lems we used solvers IBM ILOG CPLEX (URL:
www.ibm.com) and FICO Xpress Opitmization
Suite (URL: www.fico.com). The computations
were performed on PC Pentium-4 (3 GHz).

In tables 1-3 we present the integrality
gaps for the 3 formulations of FLPCP, where

gap
△
= Opt−LB

Opt
100%, LB is the lower bound and

Opt is the optimal value. The following notations
are used in the tables: gap is the integrality gap
for the lower bound of LP-relaxation of the ini-
tial fomulation (3)-(7), gap[3] is the gap for lower
bound presented in [3], gap[9] is the gap obtained
by cutting plane method in [9] for the inequali-
ties family proposed in [10], finaly, gapnew is the
inegrality gap for the lower bound obtained by im-
plemented in this paper cutting plane method for
clique inequalities.

Table 1. Integrality gaps for the problems
m = 50, n = 50.

Name gap gap [3] gap[9] gapnew

132-1 10.27 8.66 1.95 0

132-2 14.44 11.82 4.49 1.3

132-3 11.97 10.10 3.55 0

132-4 6.80 6.07 1.61 0

133-1 9.52 8.47 0.28 0

133-2 6.15 5.25 0.47 0

133-3 12.61 11.73 2.97 0

133-4 7.60 6.30 1.64 0.61

134-1 12.12 7.79 1.99 0

134-2 7.12 5.43 0.00 0

134-3 12.66 12.23 4.30 1.61

134-4 13.25 11.84 5.58 3.14

As it can be seen in Table 1 the designed cutting
plane method doesn’t not manage to solve only 4
“small” problems of 12. For this instances the best
gap[9] is significantly reduced.

The computational results for the problems of
“middle” and “large” sizes are presented in Ta-
bles 2 and 3 correspondingly. The improvement
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of the lower bound for these groups is also sig-
nificant. For the problems of the second class, the
integrality gaps are reduced on 65%, 60% and 35%
corespondingly for gap, gap [3] and gap[9]. As to
problems of a “large” size the reduction of inte-
grality gaps is 40%, 34% and 9%.

Table 2. Integrality gaps for the problems
m = 50, n = 75.

Name gap gap [3] gap[9] gapnew

a75-50-1 27.67 24.47 16.47 12.69

a75-50-2 27.22 23.71 16.38 12.76

a75-50-3 27.14 23.66 16.08 12.75

a75-50-4 24.29 21.75 14.53 11.36

b75-50-1 28.11 24.49 13.73 8.66

b75-50-2 31.06 27.15 17.73 12.09

b75-50-3 28.22 24.36 14.58 8.39

b75-50-4 27.28 22.67 12.01 6.78

c75-50-1 31.85 26.83 14.75 9.12

c75-50-2 29.04 25.18 12.99 7.22

c75-50-3 28.47 22.29 11.19 4.95

c75-50-4 30.47 26.63 16.05 10.23

Table 3. Integrality gaps for the problems
m = 75, n = 100.

Name gap gap [3] gap[9] gapnew

a100-75-1 21.27 18.96 11.99 10.55

a100-75-2 27.19 25.20 18.77 16.83

a100-75-3 25.97 24.16 17.71 15.48

a100-75-4 24.57 22.27 15.98 14.79

b100-75-1 31.80 28.51 21.64 20.55

b100-75-2 33.08 30.48 23.29 21.74

b100-75-3 34.47 30.97 23.76 22.41

b100-75-4 28.56 27.07 19.18 17.72

c100-75-1 32.15 27.95 20.52 18.82

c100-75-2 31.49 28.35 20.14 17.87

c100-75-3 32.30 28.92 20.78 18.25

c100-75-4 32.36 29.41 21.16 19.11

Thus, the results of the computational exper-
iment confirm the efficiency of the implemented
cutting plane method for the family of clique in-
equalities in view of improving the lower bounds.
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