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Let Xi be a nonempty subset of a Euclidean space
Ei, fi a function taking finite real values and defined
over the set X, which is the direct product of the sub-
sets X1, . . . , Xk, 1 ≤ i ≤ k, and E the direct product
of the Euclidean spaces E1, . . . ,Ek, k ≥ 2. Introduce
a non-cooperative game Γ with k players by defining a
set of strategies Xi and a payoff function fi for each
player i, 1 ≤ i ≤ k.

We say that the game Γ is convex if the function
fi, 1 ≤ i ≤ k, is continuous on its domain {x =
(x1, . . . , xk): xs ∈ Xs, 1 ≤ s ≤ k, xi ∈ X̃i} and con-
cave with respect to xi ∈ X̃i for any fixed xs ∈ Xs,
1 ≤ s ≤ k, s 6= i, where X̃i is a convex open set
comprising Xi. Let X∗(Γ) be the set of all Nash equi-
librium points of the game Γ. If Γ is a convex game
then the set of its Nash equilibrum points is non-empty:
X∗(Γ) 6= ∅. However, the convexity of the game Γ does
not generally imply that the set X∗(Γ) is convex, too.

The problem of finding the Nash equilibrium points
of the game Γ can be reduced to the solution of a spe-
cial variational inequality related to Γ. Let T be a
point-to-set mapping that associates a subset T (x) of
the Euclidean space E with each point x ∈ X. The
variational inequality in question defined by the map-
ping T has the form,

t ∈ T (x), 〈t, x′ − x〉 ≥ 0 ∀ x′ ∈ X. (1)

Denote the set of all solutions to the variational in-
equality (1) by X

∗
(T ).

In order to reduce the Nash equilibrium problem of
the convex game Γ to the solution of the variational
inequality (1), we associate the game Γ with a point-
to-set mapping TΓ defined by the following relationship

TΓ(x)={t=(t1, . . . , tk): −ti∈∂xi
fi(x), 1≤ i≤k}, (2)

x ∈ X, where ∂xi
fi(x) is the superdifferential of the

function fi with respect to xi calculated at the point
x ∈ X.

The definitions of the Nash equilibrium and the so-
lution of the variational inequality (1) imply that the

set X∗(Γ) of the Nash equilibrium points of the game
Γ coincides with the set X

∗
(TΓ) of the solutions to

the variational inequality (1) if T = TΓ. Therefore,
the methods solving the variational inequality (1) de-
fined by the mapping TΓ can be used to find the Nash
equilibrium points of the non-cooperative game Γ. In
[1, 2], we described a sufficiently efficient numerical
method to solve the variational inequality (1), which,
under some additional assumptions about the mapping
T , generates sequences of iterations converging to the
set X

∗
(T ).

We say that a convex non-cooperative game Γ has
a convex structure if the mapping TΓ defined by (2) is
monotone. If the game Γ has a convex structure then
the mapping T = TΓ satisfies the requirements guaran-
teeing the convergence of the above-mentioned numer-
ical method to solve the variational inequality (1).

Now consider a modification Γ(R) of the convex
game Γ defined by the following payoff functions of
the players:

fi(x,Ri) = fi(x)− Ri

2
‖xi‖2, x ∈ X, 1 ≤ i ≤ k, (3)

where R = (R1, . . . , Rk) ≥ 0, and fi(x) (x ∈ X) is the
payoff function of player i in the game Γ.

It is interesting to find out for what values of the
vector parameter R the convex game Γ(R) has a convex
structure. This talk answers this question for finite
non-cooperative games Γ with mixed strategies.

Each player has a finite number of strategies in a fi-
nite non-cooperative game. To describe such games,
it is worthy to make use of tables, every entry of
which is numerated with several indices (namely, k
indices, according to the number of players). Such
tables are sometimes referred to as k-dimensional
ones. We denote a k-dimensional table A by A =
(as1s2...sk

)n1n2...nk
, where sα is the α-th index running

the integers from 1 to nα. Here, 1 ≤ α ≤ k, and
as1s2...sk

is the entry of the table A defined with k in-
dices taking values s1, s2, . . . , sk, respectively.
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Now let us examine a finite non-cooperative game
with k players, in which player i governs ni starte-
gies, while her payoff function is determined by a
k-dimensional table Ai = (a(i)

s1s2...sk)n1n2...nk
, where

a
(i)
s1s2...sk is the payoff to player i if player α selects

strategy sα, 1 ≤ α ≤ k. If we expand the players’ strat-
egy sets by allowing mixed strategies, then we come to
a game Γ with k players, in which

Xi =
{

xi = (xi1, . . . , xini
):

n1∑
j=1

xij = 1,

xij ≥ 0, j = 1, . . . , ni

}
,

fi(x) =
∑

s1...sk

a(i)
s1...sk

x1s1 · · ·xksk
, 1≤ i≤k,

x=(x1, . . . , xk) ∈ X =X1 × · · · ×Xk.

(4)

Necessary and sufficient requirements toward the ta-
bles Ai such that the finite game Γ defined with these
tables has a convex structure, were described in the
previous papers [3, 4]. These conditions make it clear
that the subclass of finite games with a convex struc-
ture is extremely narrow. For instance, when k = 2, a
convex structure is found only in such finite bi-matrix
games, for which the aggregate players’ payoffs matrix
A = A1 + A2 can be represented in the following form:

A = (as1s2)n1n2 = (α′s1
+ α′′s2

)n1n2 . (5)

If a bi-matrix game Γ defined by the matrices Ai =
(a(i)

s1s2)n1n2 , i = 1, 2, satisfies condition (5), then it is
easy to check that its set of Nash equilibrium points
coincides with the set of saddle points of the antago-
nistic game Γ of two players (the matrix game) defined
by the matrix A1 = (a(1)

s1s2)n1n2 = (a(1)
s1s2 − α′′s2

)n1n2 .
Due to this fact, we will refer to a bi-matrix game sat-
isfying (5) as an almost-matrix game. Hence, the class
of bi-matrix games with a convex structure consists of
the almost-matrix games and thus does not practically
differ from the class of matrix games.

Now let A = (aij)nm be an arbitrary matrix with
m rows and n columns, ui =

∑n
j=1 aij/n, vj =∑m

i=1 aij/m, a =
∑m

i=1

∑n
j=1 aij/(mn). Denote

r(A) =
( m∑

i=1

n∑
j=1

(aij − ui − vj + a)2
)1/2

. (6)

As it is demonstrated in [3], the nonnegative quan-
tity r(A) can be interpreted as the degree of the best
Euclidean approximation of a matrix A by the matrices
of the form (α′i + α′′j )mn.

Consider a game Γ = Γ(A1, . . . , Ak) defined, accord-
ing to (4), by the collection of tables Ai, 1 ≤ i ≤

k. Due to (3), we will refer to the game Γ(R) =
Γ(A1, . . . , Ak, R), in which player i has the payoff func-
tion

fi(x1, . . . , xk, Ri) =
∑

s1...sk

a(i)
s1...sk

xis1 · · ·xksk

−Ri

2
‖xi‖2, xi =(xi1, . . . , xini

)∈Xi, 1≤ i≤k,
(7)

as a modification of the game Γ; here, R =
(R1, . . . , Rk) ≥ 0 is the vector parameter of the modi-
fication.

For each pair (i, j), i 6= j, of players of a finite game
Γ, we understand by s(i, j) a collection of (pure) strate-
gies of the remaining k − 2 players. Denote the set of
all such collections by S(i, j). It is evident that S(i, j)
is contains

∏
1≤α<k, α6=i,j nα elements. We denote by

Γ(s(i, j)) a bi-matrix game generated by the game Γ,
which comprises players i, j from the game Γ, whereas
the remaining k − 2 players have fixed pure strategies
s(i, j) ∈ S(i, j). Let Aij(s(i, j)) be the aggregate play-
ers’ payoff matrix in the bi-matrix game Γ(s(i, j)). For
arbitrary i, j (1 ≤ i ≤ k, 1 ≤ j ≤ k, i 6= j), define

rij = max
s(i,j)∈S(i,j)

r(Aij(s(i, j)), (8)

where r(A) for any matrix A is determined by relation-
ship (6). Clearly, rij = rji.

Theorem 1. Let Γ = Γ(A1, . . . , Ak) be a finite
non-cooperative k player game, k ≥ 2, defined by (4)
with the tables Ai, and Γ(R) = Γ(A1, . . . , Ak, R) be
a modification of the game Γ, defined by (7), R∗

i =
0, 5

∑
1≤j≤k, j 6=i rij , where the numbers rij are given

by formula (8), 1 ≤ i ≤ k, R = (R1, . . . , Rk), R∗ =
(R∗

1, . . . , R
∗
k). Then the modified game Γ(R) has a con-

vex structure if R ≥ R∗.
The latter result is demonstrated for k = 2 in [3],

whereas the case k > 2 is examined in [5]. Making
use of theorem 1 one can establish another necessary
and sufficient condition guaranteeing the existence of a
convex structure in a finite non-cooperative game Γ =
Γ(A1, . . . , Ak).

Theorem 2. A game Γ = Γ(A1, . . . , Ak) has a con-
vex structure if, and only if for any i 6= j, 1 ≤ i ≤ k,
1 ≤ j ≤ k and s(i, j) ∈ S(i, j), the bi-matrix game
Γ(s(i, j)) is an almost-matrix game.
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