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We make several observations on efficient approx-
imation algorithms with proven guarantees for some
discrete routing problems that are NP-hard in general
case. One of the most popular problems of this kind
is the Travelling Salesman Problem (TSP) [26]. The
problem is MAX SNP-hard: existence of a polynomial
approximation scheme for it yields P = NP.

Another problem considered is a problem of find-
ing several edge-disjoint Hamiltonian circuits of ex-
treme summary edge weight. The first mention of
the problem, called m-Peripatetic Salesman Problem
(m-PSP), in the literature came in [21]. The prob-
lem consists in finding edge-disjoint Hamiltonian cir-
cuits Hi ⊂ E, i = 1,m, in complete undirected
n-vertex graph G = (V,E) with weight functions
wi : E → R, i = 1,m, such that their total weight
W1(H1) + . . . + Wm(Hm) is minimal (or maximal),
where it is denoted Wi(H) =

∑
e∈H wi(e), i = 1,m.

De Kort [9] shows that the problem of finding
two edge-disjoint Hamiltonian circuits is NP-complete.
This result implies that 2-PSP with identical weight
functions is NP-hard both in maximization and min-
imization variants. The problem is also NP-hard for
the case of different weight functions [3].

De Brey and Volgenant [8] identify several polyno-
mially solvable cases of 2-PSP. De Kort [9, 10, 11] de-
sign and analyze lower and upper bounds for 2-PSP as
possible ingredients of branch-and-bound algorithms.
Duchenne, Laporte and Semet discass a polyhedral ap-
proach for solving m-PSP [12].

The problem on minimum we denote by m-PSPmin
and m-PSPdmin(in the case common and different
weight function correspondingly). Denotation for the
problem on maximum is similar. We use also notation
of kind 2-PSP[1, q] if edge-weights possess the arbitrary
values on interval [1, q], and 2-PSP{r, q} if weight func-
tion takes on two values r and q.

Recently we developed several polynomial algo-
rithms with performance guarantees for solving prob-
lems 2-PSP and metric 2-PSP (in cases of common and
different weight functions), 2-PSPmax and m-PSPmax

on graphs in multidimensional Euclidean space. It is
considered also some problems on random instances:
the multi-index axial and planar assignment problems,
Vehicle Routing Problems with restricted number of
clients in each rout (k-VRP) for cases single and mul-
tiple depot.

1 Finding two edge disjoint
Hamiltonian circuits

1.1 2-PSPmax: algorithms A3/4 and A7/9

A polynomial approximation algorithm A3/4 with per-
formance guarantee of 3/4 for solving 2-PSPmax was
presented in [1]. First of all a cubic (if n is even) of ”al-
most” cubic (if n is odd) subgraphG3 ofG of maximum
total edge weight is constructed by Gabow’s algorithm
[13]. Then G3 is split into partial tour and 2-matching.
Then the subgraphs are modified into two partial tours
by regrouping their edges. The resulting partial tours
can be fulfilled into two edge-disjoint Hamiltonian cir-
cuits by adding other edges. The weight of the so-
lution is at least (3/4)OPT , where OPT is the opti-
mal weight. The performance guarantee relies on the
facts that the summary edge weight of G3 is at least
(3/4)OPT and all the edges of G3 were included into
the solution. The running time of the algorithm is de-
termined by the time complexity of finding G3 in G
and is bounded by O(n3) as described by Gabow [13].

In [19] it is presented a cubic time approximation
algorithm A7/9 for this problem with guaranteed ratio
7/9, the best known for today. The starting point of
the algorithm is finding 4-regular subgraph G4 ⊂ G of
maximum edge weight using Gabow’s algorithm [13].
Then a couple of edge-disjoint specific tours are found
in G4 with great enough number of edges, following
which these tours are transformed to the tours with
total weight at least (7/9)OPT and finally completed
to edge-disjoint Hamiltonian cycles that correspond to
approximate solution of the problem.
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1.2 Metric 2-PSPmin: A9/4 and A2

It is supposed in this section that the triangle inequal-
ity holds: w(i, j) ≤ w(i, k) + w(j, k) for each vertices
i, j, k ∈ V . It is known that the problem 2-PSPmin is
NP-hard even in the metric case and does not admit
any constant-factor approximation in the general case.

A cubic time approximation algorithm A9/4 for solv-
ing Metric 2-PSPmin was presented in [3]. Performance
ratio of this algorithm asymptotically tends to 9/4..
Later the performance ratio of 9/4 for the problem was
also announced in [7].

In [2] it is presented a 2-approximation algorithm
A2 for solving Metric 2-PSPmin. In due time for Met-
ric TSP Christofides and Serdyukov well known 3/2-
approximation algorithm constructed using transfor-
mation of shortest spanning tree to Hamiltonian cir-
cuit. In [2] Ageev and Pyatkin proceed from two
edge-disjoint spanning trees (T ∗1 , T

∗
2 ) of minimum total

weight that can be done in time O(n2 log n) using the
algorithm Roskind and Tarjan [22]. At Stage 1, trans-
forming the couple (T ∗1 , T

∗
2 ) to another pair (T1, T2),

satisfying T ∗1 ∪ T ∗2 = T1 ∪ T2, it is built first Hamilto-
nian cycle H1,which is edge-disjoint with T2 and has a
weight at most 2W (T1). At Stage 2, no changing edges
between H1 and T2, the second Hamiltonian cycle H2

is built. Meanwhile graphs H1 ∪ T1 H2 ∪ T2 are outer
planar with outer faces H1 H2 correspondingly.

1.3 Metric 2-PSPd
min

For this problem 12/5-approximation algorithm with
the time complexity O(n3) was presented in [3]. Ini-
tially two approximate solutions H1 and H2 of TSPmin

with weight functions w1 and w2 respectively are found
by the 3/2-approximation Christofides-Serdyukov’s al-
gorithm. After that a second circuit H2 is transformed
in H ′2 such that H ′2 is edge-disjoint with H1 and whose
weight is at most twice the weight of H1. Then roles of
graphs H1 and H2 are exchanged and the pair (H1, H

′
2)

or (H ′1, H2) of minimum total weight is chosen as an
approximate solution of the problem considered.

1.4 2-PSPmin[1, q]

The problem 2-PSPmin[1, q] can be solved in O(n3)-
time with performance ratio (4 + q)/5 [14]. A central
place in proving this result belongs to the following
(useful for construction and analysis algorithms) struc-
ture statement: in n-vertex 4-regular graph a pair of
edge-disjoint partial tours with total number of edges
at least 8n/5 can be found in quadratic time complex-
ity.

1.5 2-PSPmin{1, 2}
It is clear that 2-PSPmin{1, 2} is particular case of Met-
ric problem.

In [7] performance ratio of about 1.37 was announced
for this problem in assumption that performance ratio
7/6 holds for solution TSPmin{1, 2}, found by algo-
rithm presented in [24].

In [5] the following connection between problems on
maximum and minimum is shown: let there be a poly-
nomial ρ-approximation algorithm for the problem 2-
PSPmax(0, 1). Then (2 − ρ)-approximate solution for
2-PSPmin(1, 2) can be found in polynomial running-
time. Thus approximate solutions with total weight
of at most 5/4 and 11/9 times the optimal for 2-
PSPmin(1, 2) can be found in O(n3) running-time using
algorithms from [1] and [19] correspondingly.

Improved approximation ratio 6/5 results from the
structure statement in previous section.

1.6 2-PSPmax[1, q]

In [16] a combined using of the 3/4-approximation al-
gorithm for 2-PSPmax and the 5/(q+4)-approximation
algorithm for 2-PSPmin[1, q], that follows from [14], an
improved approximation ratio (3q+2)/(4q+1) for solv-
ing the problem 2-PSPmax[1, q] is achieved. It means
also the bound 8/9 for the problem with q = 2.

1.7 2-PSPd
min(1, 2)

In [14] it is shown that a solution with performance
ratio (1 + ρ′/2) can be obtain, where ρ′ is the approx-
imation guarantee for the problem TSPmin(1, 2). Us-
ing an algorithm from [6] with ρ′ = 8/7 for solving
TSPmin(1, 2) it is possible to find a feasible solution
of 2-PSP dmin(1, 2) with total weight of at most 11/7 of
the optimal. Though the running time of the algorithm
used is polynomial, it is very high: O(nK+4), where
the constant K in [6] is equal to 21. Thus, using an
11/9-approximation algorithm for TSP (1, 2) from [24],
greater value of 29/18 implies, however the running-
time of the algorithm is much smaller. In this case
the time complexity is determined by one of the stages
of the algorithm, where a minimum-weight cycle cover
in G with edge-weights 1 and 2 is found. In [24] it is
proposed, that it can be done in time O(n2.5).

In [20] it is presented the 4/3-approximation algo-
rithm with time complexity O(n4) for 2-PSPdmin(1, 2).
This result improves above mentioned performance
guarantees 11/7 and 29/18. Algorithm is based on the
ideas from [6], where 8/7-approximation algorithm for
TSPmin with edge weights 1 and 2 is announced. In
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particular, a perspective charge technique is used, ap-
plying for prove structure theorems in graph theory.

1.8 2-PSPd
max(1, 2)

For the problem 2-PSPdmax(1, 2), the polynomial ap-
proximation algorithm constructed whose guaranteed
exactness depends on approximation ratio ρ ≥ 1
(known for the minimization version of the problem)
as a function 11ρ−8

18ρ−15 . Then to known bounds 11/7,
7/5 and 4/3 of ρ for the problem 2-PSPdmin(1, 2), that
were mentioned above, it is correspond the following
estimations of performance ratios for considered prob-
lem 2-PSPdmax(1, 2): 65

113 <
37
51 <

20
27 respectively [16].

2 Euclidean m-PSPmax

The problem TSP is called Euclidean if vertexes in
graph correspond to points in Euclidean space Rk, and
edge-weights equal to lengths of relative intervals.

It is known [Fekete&Barvinok] that Euclidean
TSPmax (ETSPmax) in space Rk is NP-hard when
k ≥ 3. (For k = 2 hardness status of ETSPmax is
open).

Nevertheless for ETSPmax it does work asymptoti-
cally exact algorithm [23] with time complexity O(n3).
The idea of solving the problem is to transform max-
imum weight matching (cycle cover) into Hamilto-
nian circuit by means of consecutive patching ”near-
parallel” matching edges (intervals) into cycles. Pre-
liminarily maximum weight matching is divided into
heavy and light edges. At first the heavy edges are
patched, and then the light edges are used.

This idea was used for solving the problems of sev-
eral edge-disjoint Hamiltonian circuits: 2-EPSPmax
[15] and m-EPSPmax [4]. Noteworthily that the
same maximum-weight matching intervals are used as
”building material” or more exactly as ”falsework”
when in use successive constructing Hamiltonian cy-
cles H1, . . . ,Hm.

In [4] for solving m-EPSPmax an approximation al-
gorithm with time complexity O(n3) and relative error
O
(
(mn )

2
k+1
)

is constructed. So the algorithm is asymp-
totically exact under the condition m = o(n) on the
number of edge-disjoint Hamiltonian routs.

3 Multi-index Assignment
Problem (MAP)

The MAP is NP-hard for the number of indexes at least
three in axial and planar cases both [25].

In the case of the of axial MAP, n elements must
be selected in the multi-dimensional matrix such that
in every ”cross-section” exactly one element is chosen.
(The ”cross-section” is such set of matrix elements
when one index is fixed).

For the multi-index axial Assignment Problem on
random instances, asymptotic optimality conditions
were established for a quadratic-time algorithm based
on the choice of minimal element in the current line of
a special matrix formed from the initial matrix [3].

The three-index Planar Assignment Problem
deals with selection of n2 elements in a cubic matrix
(cijk). Exactly one element in each line is chosen.
(A line is the set of n elements with two fixed indexes).

Conditions of asymptotic optimality were estab-
lished for the m-layer three-index planar assignment
problem on random input data when the number m of
layers in the matrix (cijk) is at most O(lnn) [3] and
O(nθ), 0 < θ < 1 [18].

Note that m-layer three-index planar assignment
problem on single-cyclic permutations coincides with
the m-Peripatetic Salesman Problem.

4 k-VRP on random instances

k-VRP is a typical routing problem. There are ap-
plications in logistics, tracing on large-scale integrated
circuits, the organization of drilling robot on board and
etc. The problem consists in finding a family clients-
disjoint routs of vehicles, when each client is served
by exactly one vehicle, each of vehicle comes out of the
specific vertex (the depot), visits (serves) no more then
k vertices (clients) and moves back to the depot. The
goal is to minimize the total length of all routs.

Some approximation algorithms for solving k-VRP
on random data was constructed [17]. A probabilistic
analysis was completed under the assumption that the
distances between the vertexes of graph are indepen-
dent random variables having the common distribution
function like uniform, exponential, truncated normal
and majorized type.

For k-VRP and multi-depot k-VRP it is obtained
the bounds of the relative errors, the failure probabili-
ties of the approximation algorithms and conditions of
their asymptotic exactness on random initial data. It is
shown in [17] that k-VRT on inputs UNIFORM(an, bn)
can be solved asymptotically exact if k ≥

√
2n and

bn/an = o(n/ lnn).
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