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We consider the computation of tight bounds for
multivariate polynomials based on the expansion
of such a polynomial into Bernstein polynomials.
Bound functions may be employed for a solution to
a constrained global optimization problem, where
the objective function and the functions describ-
ing the inequalities are all multivariate polynomi-
als and the optimization problem is solved by a
relaxation method in a branch and bound frame-
work.

A method is presented for the computation of
constant bound functions which uses an implicit
representation of the Bernstein control points
so that the computational complexity becomes
nearly linear w.r.t. the number of the terms in
the polynomial instead of exponential w.r.t. the
number of the variables. The bound functions can
be guaranteed also in the presence of data uncer-
tainties and rounding errors.

We apply the approach to the enclosure of the
solution set of a system of linear equations where
the coefficients of the system are rational functions
of parameters varying within given intervals, and
present an example from the analysis of structural
frames, where such parametric systems appear.

1 The Bernstein Form

We first recall some fundamental properties of the
Bernstein expansion, cf. [2].

We define multiindices i = (i1, . . . , in)T as vec-
tors, where the n components are nonnegative
integers. The vector 0 denotes the multiindex
with all components equal to 0. Comparisons are

used entrywise. Also the arithmetic operators on
multiindices are defined componentwise such that
i⊙ l := (i1⊙ l1, . . . , in⊙ ln)T , for ⊙ = +,−,×, and
/ (with l > 0). For x ∈ R

n its monomials are

xi :=

n
∏

µ=1

x
iµ
µ . (1)

For the n-fold sum we use the notation

l
∑

i=0

:=

l1
∑

i1=0

. . .

ln
∑

in=0

. (2)

The generalised binomial coefficient is defined by

(

l

i

)

:=

n
∏

µ=1

(

lµ
iµ

)

. (3)

An n-variate polynomial p,

p(x) =
l

∑

i=0

aix
i, x = (x1, . . . , xn), (4)

can be represented over

[x] := [x1, x1] × . . . × [xn, xn], (5)

x = (x1, . . . , xn), x = (x1, . . . , xn),

as

p(x) =
l

∑

i=0

biBi(x), (6)

where Bi is the i-th Bernstein polynomial of degree

l = (l1, . . . , ln),

Bi(x) =

(

l

i

)

(x − x)i(x − x)l−i

(x − x)l
, (7)
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and the so-called Bernstein coefficients bi of the
same degree are given by

bi =

i
∑

j=0

(

i
j

)

(

l
j

)(x − x)j
l

∑

κ=j

(

κ

j

)

xκ−jaκ, 0 ≤ i ≤ l.

(8)
The essential property of the Bernstein expan-

sion is the range enclosing property, namely that
the range of p over [x] is contained within the
interval spanned by the minimum and maximum
Bernstein coefficients:

min
i
{bi} ≤ p(x) ≤ max

i
{bi}, x ∈ [x]. (9)

The traditional approach (see, for example, [2])
requires that all of the Bernstein coefficients are
computed, and their minimum and maximum is
determined. By use of de Casteljau’s algorithm,
this computation can be made efficient, with time
complexity O(nl̂n+1) and space complexity (equal
to the number of Bernstein coefficients) O((l̂ +
1)n), where l̂ = maxn

i=1 li. This exponential com-
plexity is a drawback of the traditional approach,
rendering it infeasible for polynomials with mod-
erately many (typically, 10 or more) variables.

In the following we consider a new method for
the representation and computation of the Bern-
stein coefficients, which is especially well suited to
sparse polynomials. For details and examples the
reader is referred to [4].

1.1 Bernstein Coefficients of Monomi-

als

Let q(x) = xr, x = (x1, . . . , xn), for some 0 ≤ r ≤
l. Then the Bernstein coefficients of q (of degree
l) over [x] (5) are given by

bi =
n

∏

m=1

b
(m)
im

, (10)

where b
(m)
im

is the imth Bernstein coefficient (of
degree lm) of the univariate monomial xrm over
[xm, xm]. If the box [x] is restricted to a single
orthant of R

n then the Bernstein coefficients of q
over [x] are monotone with respect to each vari-
able xj, j = 1, . . . , n.

With this property, for a single-orthant box,
the minimum and maximum Bernstein coefficients
must occur at a vertex of the array of Bern-
stein coefficients. Finding the minimum and max-
imum Bernstein coefficients is therefore straight-
forward; it is not necessary to explicitly compute
the whole set of Bernstein coefficients. Computing
the component univariate Bernstein coefficients
for a multivariate monomial has time complex-
ity O(n(l̂ + 1)2). Given the exponent r and the
orthant in question, one can determine whether
the monomial (and its Bernstein coefficients) is
increasing or decreasing with respect to each coor-
dinate direction, and then evaluate the monomial
at these two vertices.

1.2 The Implicit Bernstein Form

Firstly, we can observe that since the Bernstein
form is linear, if a polynomial p consists of t terms,
as follows,

p(x) =

t
∑

j=1

aijx
ij , 0 ≤ ij ≤ l, x = (x1, . . . , xn),

(11)
then each Bernstein coefficient is equal to the sum
of the corresponding Bernstein coefficients of each
term, as follows:

bi =
t

∑

j=1

b
{j}
i , 0 ≤ i ≤ l, (12)

where b
{j}
i are the Bernstein coefficients of the jth

term of p.
Therefore one may implicitly store the Bern-

stein coefficients of each term, and compute the
Bernstein coefficients as a sum of t products, only
as needed. The implicit Bernstein form thus con-
sists of computing and storing the n sets of uni-
variate Bernstein coefficients (one set for each
component univariate monomial) for each of t
terms. Computing this form has time complexity
O(nt(l̂ + 1)2) and space complexity O(nt(l̂ + 1)),
as opposed to O((l̂ + 1)n) for the explicit form.
Computing a single Bernstein coefficient from the
implicit form requires (n + 1)t − 1 arithmetic op-
erations.
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1.3 Determination of the Bernstein En-

closure for Polynomials

We consider the determination of the minimum
Bernstein coefficient; the determination of the
maximum Bernstein coefficient is analogous. For
simplicity we assume that [x] is restricted to a sin-
gle orthant.

We wish to determine the value of the mul-
tiindex of the minimum Bernstein coefficient in
each direction. In order to reduce the search
space (among the (l̂ + 1)n Bernstein coefficients)
we can exploit the monotonicity of the Bernstein
coefficients of monomials and employ uniqueness,
monotonicity, and dominance tests, cf. [4] for
details. As the examples therein show, it is of-
ten possible in practice to dramatically reduce the
number of Bernstein coefficients that have to be
computed.

2 Application to Structural Me-

chanics

A standard method for solving problems in struc-
tural mechanics, such as linear static problems, is
the finite element method (FEM). In the case of
linearised geometric displacement equations and
linear elastic material behaviour, the method leads
to a system of linear equations which in the pres-
ence of uncertain parameters becomes a para-
metric system. Treating the parametric system
as an interval system and using a typical inter-
val method in general results in solution intervals
which are too wide for practical purposes.

We illustrate the usage of a new parametric
solver based on bounding polynomial ranges by
the implicit Bernstein form as described above.
The improved efficiency is demonstrated by com-
paring both the computing time and the quality of
the enclosure of the parametric solution set for the
new solver and a previous solver which is based on
the combination of the parametric residual itera-
tion with the method for bounding the range of a
rational function presented in [3]. To compare the
quality of two enclosures [a] and [b] with [a] ⊆ [b]
we employ a measure Oω for the overestimation of

Figure 1: One-bay structural steel frame [1].

[a] by [b] which is defined by

Oω([a], [b]) := 100(1 − ω([a])/ω([b])), (13)

where ω denotes the width of an interval.

2.1 One-Bay Steel Frame

We consider a simple one-bay structural steel
frame, as shown in Figure 1, which was initially
studied by interval methods in [1]. Following stan-
dard practice, the authors have assembled a para-
metric linear system of order eight and involving
eight uncertain parameters. The typical nomi-
nal parameter values and the corresponding worst
case uncertainties, as proposed in [1] are shown in
Table 1, in SI-units.

As in [1], we solved the system first with pa-
rameter uncertainties which are 1% of the values
presented in the last column of Table 1.

The example was run on a PC with an AMD
Athlon-64 3GHz processor. The previous para-
metric solver finds an enclosure for the solution
set in about 0.34 s, whereas the new solver needs
only 0.05 s. The quality of the enclosures pro-
vided by both solvers is comparable. As shown in
[3], the solution enclosure obtained by the para-
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Table 1: Parameters involved in the steel frame example.
parameter nominal value uncertainty

Eb 1.999 ∗ 108 kN/m2 ±2.399 ∗ 107 kN/m2

Young modulus
Ec 1.999 ∗ 108 kN/m2 ±2.399 ∗ 107 kN/m2

Ib 2.123 ∗ 10−4 m4 ±2.123 ∗ 10−5 m4

Second moment
Ic 1.132 ∗ 10−4 m4 ±1.132 ∗ 10−5 m4

Ab 6.645 ∗ 10−3 m2 ±6.645 ∗ 10−4 m2

Area
Ac 9.290 ∗ 10−3 m2 ±9.290 ∗ 10−4 m2

External force H 23.600 kN ±9.801 kN
Joint stiffness α 3.135 ∗ 105 kNm/rad ±1.429 ∗ 105 kNm/rad

Length Lc 3.658 m, Lb 7.316 m

Table 2: One-bay steel frame example with worst-
case parameter uncertainties (Table 1). Interval
end-points are multiplied by 105. The enclosure
[u] is compared to the combinatorial solution [h̃].

105∗ solution enclosure [u] Oω([h̃], [u])
d2x: [138.54954, 627.59325] 12.5
d2y : [0.29323100, 2.1529384] 8.0
r2z : [-129.02428, -22.381136] 23.7
r5z : [-113.21399, -17.95789] 25.6
r6z : [-105.9681, -17.64526] 25.0
d3x: [135.25570, 616.85513] 12.7
d3y : [-3.7624791, -0.41629803] 13.2
r3z : [-122.3362, -21.69878] 23.5

metric solver is better by more than one order of
magnitude than that obtained in [1].

We next solve the same parametric linear sys-
tem for the worst case parameter uncertainties in
Table 1 ranging between about 10% and 46%.
Firstly, we notice that the parametric solution
depends linearly on the parameter H, so that
we can obtain a better solution enclosure if we
solve two parametric systems with the correspond-
ing end-points for H. Secondly, enclosures of
the hull of the solution set are obtained by sub-
division of the worst case parameter intervals
(Eb, Ec, Ib, Ic, Ab, Ac, α)⊤ into (2, 2, 2, 2, 1, 1, 6)⊤

subintervals of equal width, respectively. We use
more subdivision with respect to α since α is sub-
ject to the greatest uncertainty. The solution en-
closure, obtained within 11 s, is given in Table 2.
Moreover, the quality of the solution enclosure [u]
of the respective eight quantities is compared to
the combinatorial solution [h̃], i.e. the convex hull
of the solutions to the point linear systems ob-
tained when the parameters take all possible com-

binations of the interval end-points, which serves
as an inner estimation of the solution enclosure.
A good solution enclosure is quickly obtained for
the worst-case parameter uncertainties.

2.2 Two-Bay Two-Story Frame

We consider a two-bay two-story steel frame sub-
jected to lateral static forces and vertical uniform
loads, where a system of 18 linear equations is ob-
tained. In the first case we run this example with
13 uncertain parameters and then, allowing each
element to adopt independent material parame-
ters, it is extended to 37 interval parameters.
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