
Gradient projection based optimization methods for

untangling and optimization of 3d meshes in implicit

domains

V.A. Garanzha∗, L.N. Kudriavtseva †

∗Computing Center RAS, garan@ccas.ru
†Computing Center RAS, arnir@rambler.ru

Definition of complex domain as zero isosurface
of scalar function resembling signed distance func-
tion is powerful and flexible mechanism of geo-
metric modeling. Signed implicit functions can
be constructed using surface triangulation, point
clouds, set of planar cross-sections, “soup” consist-
ing of disjoint edges and faces, and can be com-
bined with analytical definitions and primitives
using boolean operations. In order to construct
tetrahedral meshes in implicit domains, special it-
erative technique for self-organization of points ac-
cording to prescribed sizing function was devel-
oped in [1]. The points are distributed in such a
way that sharp edges on the isosurface are approx-
imated by Delaunay edges without special edge
detection procedures. Thus meshes in volume and
on the surface are constructed simultaneously.

Fig. 1. Tetrahedral mesh around body which was
built from primitives using boolean operations.

This algorithm has heuristic nature but it has

demonstrated its applicability to relatively com-
plex test cases. In resulting Delaunay mesh
a few flat tetrahedra (slivers) can be present.
For their elimination we use variational optimiza-
tion method [2] allowing vertex movement along
boundary.

Essentially the same method is used to con-
struct structured hexahedral meshes. In this case
one should use special algorithm for variational
construction of surface meshes on implicit sur-
faces, and to optimize simultaneously meshes in
volume and on the surface. Variational optimiza-
tion is based on iterative technique which is closely
related to gradient projection based optimization
methods.

Consider in more detail variational problem for
shape and volume optimization of mesh cells.
Consider tetrahedral mesh T in polyhedral do-
main Ωh consisting of ns tetrahedra with nv ver-
tices, including nb boundary vertices. Denote by
zi, i = 1 . . . nv vertices of the mesh T and intro-
duce on each tetrahedron Tk ∈ T local numbering
of vertices y0, y1, y2, y3. For each tetrahedron we
introduce the so-called target tetrahedron, which
is chosen here as equilateral one. Denote by ζ0,
ζ1, ζ2, ζ3 the vertices of target tetrahedron T tk.

Consider matrices H = (ζ1 − ζ0 ζ2 − ζ0 ζ3 − ζ0)
and Q = (y1 − y0 y2 − y0 y3 − y0). It is assumed
that their determinants are positive. The volume
of mesh tetrahedron and target tetrahedron is de-
fined by volT tk = 1

6 detH, volTk = 1
6 detQ, while

the Jacobian matrix S = ∇ξxh of affine mapping
xh(ξ) : T tk → Tk is written as S = QH−1.

1



Consider the following functional which may
serve as distortion measure for mesh cells

F (z1, . . . , znv) =
ns∑
k=1

ϕ(QH−1)
∣∣∣
T t
k

volT tk = (1)

=
1

6

ns∑
k=1

ϕ(QH−1) detH
∣∣∣
T t
k

,

where
ϕ(S) = θµ(S) + (1− θ)ν(S) (2)

Function ϕ is the sum of shape distortion measure

ν(S) =
1

3

tr STS

(detS)2/3
(3)

and volume distortion measure

µ(S) =
1

2
(
v0

detS
+

detS

v0
) (4)

Here θ = 0.8 and parameter v0 = f(c)3 is ratio of
target cell volume to volume of equilateral tetra-
hedron with unit edge length, while f(c) is the
value of prescribed size function computed in the
centroid of the tetrahedron Tk.

We consider two types of boundary conditions.
The first one is the boundary condition of the first
kind when boundary vertex zk is fixed. The sec-
ond case is a slip boundary condition when in the
process of optimization the vertex zk can move
along the implicit surface

u(x) = 0

We assume that vector ∇u(zk) is defined. If func-
tion u does not have classical derivative at zk, one
can still define tangent cone to ∂Ω at zk which
defines the set of generalized derivative vectors.
Thus one can compute vectors l1, l2 which can be
considered as tangent vectors to ∂Ω and satisfy
equality lTi ∇u(xk) = 0. In practice gradient is
computed using finite differences.

The condition of stationarity of the functional
at the vertex zk can be written as

lTi
∂F

∂zk
= 0, i = 1, 2 (5)

u(zk) = 0 (6)

These three equations correspond to three degrees
of freedom in vector zk.

Let δzk denote displacement at zk. Linearizing
equation (6) with respect to δzk one can obtain
the following relation

δzTk∇u(zk) + u(zk) = 0

Since for boundary vertex u(zk) = 0, displacement
δzk can be represented as

δzk = β1l1 + β2l2, (7)

where βi are arbitrary coefficients. In other words,
boundary displacement is allowed only in the
plane tangent to ∂Ω.

Since after tangent displacement vertex can
move away from exact boundary, one should intro-
duce the boundary projection operator V which
is identity operator for any internal vertex and
projects every boundary vertex onto ∂Ω using the
following simple iterative scheme.

pm+1 = pm − τ1
u(pm)∇u(pm)

|∇u(pm)|2
(8)

Here parameter m is local iteration count. When
u(x) is linear function and τ1 = 1, then formula
(8) is just normal projector onto plane u(x) = 0.
In general case iterates approximately travel along
gradient curves of u(x) until deviation of pm from
∂Ω is below certain threshold.

Gradient vector R of function F (z1, . . . , znv)
consists of 3d vectors rk = ∂F

∂zk
, while Hessian ma-

trix H of F is built from 3×3 blocks Hij = ∂2F
∂zi∂zTj

,

where matrix Hij is placed on the intersection of
i-th block row and j-th block column.

The Newton-Raphson method for finding sta-
tionary point of mesh functional without slip con-
dition can be written as follows

nv∑
j=1

Hij(Z
l)δzj + ri(Z

l) = 0 (9)

zl+1
k = zlk − τlδzk, k = 1, . . . , nv (10)

Denote by Lk the 3 × 3 matrix with first two
columns being vectors li computed at boundary
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vertex zk, while last column is equal to zero. If
vertex zk is internal one then Lk = I.

In order to include slip condition into iterative
technique (9), (10), let us multiply equality (9)
by LTi from the left and take into account the
fact that boundary displacement δzj satisfies (7),
namely

δzj = Lj

(
αj
0

)
Hence in linear system (9) one can use 2d vec-
tor αj as unknown instead of δzj . Denote by δz̃j
displacement vector equal to δzj for internal ver-
tices and equal to (αTj , 0)T for boundary vertices.
Hence δzj = Ljδz̃j . Using above notations one
can write iterative scheme for finding stationary
point of the function F (Z).

nv∑
j=1

LTi HijLjδz̃j + LTi ri(Z
l) = 0 (11)

zl+1
k = V (zlk − τlLkδz̃k), k = 1, . . . , nv. (12)

Equality (12) can be written as

Z l+1 = V (Z l − τlδZ),

Relaxation parameter τl can be found using search
technique for 1d minization problem

τl = arg min
τ
F (V (Z l − τδZ)) (13)

We use simplest dihotomy method for finding τl.
In principle one could use well-known Armijo tech-
nique as 1d solver, however function F is not
Lipschitz continuous hence applicability of Armijo
scheme is still under question.

In order to deduce from generic formulation (11)
practical iterative technique essentially identical
to barrier method of Ivanenko [3] one should set
Hij = 0 when i 6= j. Then in order to find δz̃i
it is necessary to solve independent linear systems
with 3 × 3 matrices at internal nodes and 2 × 2
matrices at the boundary vertices. It is conve-
nient to call resulting preconditioning by diagonal
scaling. Simple explicit gradient search technique
can be obtained by setting H = I. Main advan-
tage of this method is that time consuming second

derivatives are not computed, however its conver-
gence may suffer and 1d search stage (13) may
require large number of steps and become quite
costly.

In order to derive from (11) implicit method
[2] one should eliminate in matrices LTi HijLj all
off-diagonal entries. The resulting linear system
LTi HijLj (11) will be decomposed into three in-
dependent linear systems with respect to vectors
δZ̃m which are obtained from δz̃i using identity

(δZ̃m)i = (δz̃i)m

Linear systems with these matrices are solved
using preconditioned conjugate gradient (CG)
method. Fortunately there is no need to solve
these systems with high accuracy.

Variational method can be used in the case
when algebraic volume of some tetrahedra in ini-
tial mesh is not positive. Special “untangling”
technique suggested in [4] was quite efficient tool
for constructing admissible meshes. The idea of
this technique is based on replacing the barrier by
penalty function, namely the determinant of Ja-
cobian matrix in denominator of (2) is replaced
by

χ(detS) =
1

2
(detS +

√
ε2 + detS2)

Bad mesh is untangled using special continuation
technique for parameter ε from relatively large val-
ues to zero. Special untangling technique is sug-
gested which is robust and efficient enough in or-
der to construct admissible meshes with hundreds
of thousands of vertices. Algorithm which solves
quite hard problem of surface mesh untangling on
implicit surfaces is also developed. It turned out
that untangling procedure plays critical role in
automatic hexahedral meshing. After untangling
and optimization of initial medium-sized mesh,
one can construct huge meshes using relatively
simple local refinement and optimization scheme
without mesh quality deterioration.

We have found distinct application fields for ex-
plicit methods and for preconditioned methods.
Preconditioned methods are good choice for global
surface flattening with minimal distortion, global
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untangling for complicated domains. Their main
advantages are stability, robustness and good con-
vergence, and main drawback - relatively large
memory consumption. Applications of diagonal
scaling and explicit methods include admissible
mesh smoothing and optimization especially in the
case of slip boundary conditions, local untangling.
These methods are much faster for suitable appli-
cations, in some cases one can just avoid costly
computation of second derivatives. Unfortunately
it was found that explicit methods simply cannot
solve some problems.

Fig. 2. Zero isosurfaces (above) and structured
hexahedral meshes. Several coordinate surfaces

are shown.

Fig. 2 illustrates test case where signed implicit
function is constructed using surface triangulation

(STL model). Hexahedral mesh which is com-
pressed and orthogonalized near boundary is con-
structed in a black-box mode. Let us note that in
order to adjust mesh taking into account precise
CAD data one can just use function which com-
putes distance from the surface. Such functions
are available in modern geometry kernels.

Optimization problem in this case involves
about 10 millions of tetrahedra. Explicit solver
and diagonal scaling-based solver were not able
to do the untangling. Implicit method using CG-
based linear solver with second order incomplete
Choleski preconditioner was found to be too mem-
ory consuming. Thus implicit solver only CG-
based solver without preconditioner was able to
solve this problem. After initial untangling diag-
onal scaling-based solver is good option for mesh
optimization.
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