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1 Introduction

Many numerical methods for solving multiobjective op-
timization problems have been proposed so far. Most
of them are heuristic, i.e. they don’t guarantee the
optimality of the found solutions. In this paper we
extend the non-uniform space covering technique for
the global multiobjective optimization. This technique
was initially proposed in [1] for global optimization of
non-linear functions and later [2] applied to multiobjec-
tive problems. This method constructs the finite set of
feasible points and proves its global ε-optimality. The
space-covering algorithm is guaranteed to converge to
a global ε-Pareto set within a specified tolerance in a
finite number of steps.
A multiobjective optimization problem is stated as

follows:

min
x∈X

f(x). (1)

Function f(·) : Rn → Rm is a vector objective com-
prising m scalar objectives. Assume that f(·) is contin-
uous and a feasible set X ⊆ Rn is compact. The image
Ω = f(X) of the feasible set is called an attainable set.
Let SW(θ) = {y ∈ Rm : y ≤ θ} and NE(θ) = {y ∈

Rm : y ≥ θ}. For an arbitrary set Θ ⊆ Rm denote its
Pareto-optimal subset as P(Θ) = {θ ∈ Θ : Θ∩SW(θ) =
θ}. The goal of multiobjective optimization is to find
a Pareto set Ω∗ = P(Ω) and a Pareto-optimal solution
set X∗ ⊆ X such that f(X∗) = Ω∗. Notice that the
Pareto set is searched in Rm and a solution is searched
in Rn.

2 ε-Pareto set

Except for special cases where the Pareto set is finite
or representable by a finite collection of faces of poly-
hedron it is in general very difficult to determine the
entire Pareto set. Therefore the suitable approxima-
tion concept is needed.

Let ε > 0 be a positive real number. Following [2]
we say that a finite set Ωε ⊆ Ω is an ε-Pareto set if

1. for any ω ∈ Ω∗ there exists such ωε ∈ Ωε that
ωε − ε · em ≤ ω;

2. P(Ωε) = Ωε.

Here em = (1, 1, ..., 1) is a vector with all components
equal to 1.

From the definition of the Pareto-optimal subset it
immediately follows that for any ω ∈ Ω there exists
such ωε ∈ Ωε that ωε − ε · em ≤ ω. With other words:
each point in the attainable set is ε-dominated by at
least one point from the ε-Pareto set.

A set Aε ⊆ X such that f(Aε) = Ωε is called an
ε-optimal solution of the problem (1).

The following statement establishes a relation be-
tween Pareto and ε-Pareto sets. Let

ρ(a,B) = inf
b∈B

∥a− b∥

be a distance between a point a ∈ Rm and a set B ⊆ Rm

and
d(A,B) = sup

a∈A
ρ(a,B)

be a distance between sets A ⊆ Rm and B ⊆ Rm.
Statement 1. Let Ω be compact. Then for any

δ > 0 there exists such ε > 0, that for any ε-Pareto set
Ωε the following inequality holds

d(Ω∗,Ωε) ≤ δ, (2)

Statement 1 describes the limit behaviour but
doesn’t provide a link between ε and δ. Such connec-
tion can be established for Geoffrion’s points. Recall
the slightly modified definition from [3]:

A point ω̂ ∈ Ω is called Geoffrion’s point if there is
a real number M > 0 such that for all i = 1, ...,m and
ω ∈ Ω satisfying ω(i) < ω̂(i) there exists an index j
such that ω̂(j) < ω(j) and

ω̂(i) − ω(i)

ω(j) − ω̂(j)
≤ M.
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Statement 2. If ω is a Geoffrion’s point then for
any ε-Pareto set Ωε, ε > 0 the following inequality
holds

ρ(ω,Ωε) ≤ ε
√
m ·max(1,M). (3)

3 Space Covering Technique

The first version of space-covering method proposed in
[2] was based on an assumption that objectives satisfy
the Lipschitzian condition and relied on Lipschitzian
lower bounds. We extend this algorithm to the case of
arbitrary underestimations.
In the sequel we’ll use the notion of the Lebesque

set. For arbitrary sets Λ ⊆ Ω, Z ⊆ Rn and a function
f(·) : Rn → Rm define a Lebesque set L(f(·), Z,Λ) =
{x ∈ Z : f(x) ∈ NE(Λ)}, where NE(Λ) = ∪λ∈ΛNE(λ).
Consider a sequence X1, . . . , Xk, Xi ⊆ X and a se-

quence Λ1, . . . ,Λk, Λi ⊆ Ω. Sets Λi are finite. Let µi(·)
be a lower bound for f(·) over Xi i.e. µi(x) ≤ f(x) for
any x ∈ Xi. The covering sequence consists of sets
L1, . . . ,Lk satisfying the following property:

Li ⊆ L(µi(·), Xi,Λi − ε), i = 1, . . . , k,

where Λi − ε = {x : x = λ− ε · em for some λ ∈ Λi}.
Theorem 1. If ∪k

i=1Li = X then Ωk = P
(
∪k
i=1Λi

)
is an ε-Pareto set.
The goal of the covering method is to construct the

set Ωk and the collection of sets {Li} satisfying the
premises of Theorem 1. Below we outline the basic
form of this method. This method uses the Update
procedure that updates an archive containing the list
of non-dominated solutions with a new point:

procedure Update (A, x)
Parameters:
A — current archive;
x — new point;

1. For each point a in A do:

if f(a) ≤ f(x) then return;

else if f(x) ≤ f(a) then remove a from A;

2. Add x to A.

To save the computing time the objective values are
stored together with points and are not reevaluated at
each iteration in a loop.

Covering algorithm

1. Initialize a list S = {X} and an archive A = ∅.

2. Take a set Xi from S.

3. Take a point xi ∈ Xi and update the archive A:
Update(A, xi).

4. Compute αi = minx∈Xi µi(x).

5. If ω−ε·em ≤ αi for at least one point ω from f(A)
then exclude Xi from the list S and go to step 2,
otherwise partition Xi into two or more smaller
subsets and replace the set Xi in the list S by the
generated sequence.

6. If list S is empty then terminate the algorithm,
otherwise go to step 2.

By applying Theorem 1 one can easily show that
after termination the archive contains the ε-solution A
and the corresponding ε-Pareto set f(A).

The outlined version of the covering algorithm can be
efficiently implemented for a simple set X that allows
easy partitioning. Simplest examples of such sets are
boxes and polytopes.

4 Implementation

The covering algorithm for multiobjective optimization
has been implemented in the BNB-Solver framework
[4]. The BNB-Solver is a generic framework for imple-
menting optimization algorithms on serial and paral-
lel computers. Computational experiments for various
test problems demonstrated that this algorithm reli-
ably constructed the ε-Pareto set approximations in
a reasonable time. Obtained approximations provide
uniform covering of the Pareto-set. To illustrate our
approach we consider a simple bi-criteria problem:

f1(x) = (x1−1)x2
2+1, f2(x) = x2, x1 ∈ [0, 1], x2 ∈ [0, 1].

The following figure demonstrates the difference be-
tween the Pareto set approximation obtained by the
Monte-Carlo method (upper plot) and ε-Pareto set
with ε = 0.05 computed by the covering method (lower
plot). Both methods didn’t use local search. The cov-
ering method clearly produced a better approximation
with a less number of points (35 vs 67).
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Similar to the single objective case the multiobjec-
tive version of the covering method significantly ben-
efits from local search techniques. Numerical experi-
ments showed that the approximations obtained with
the help of the local search are more accurate and the
number of algorithm steps is much less with respect to
the pure covering approach. At the moment we use
a simple local search method that descends along the
feasible direction that minimises all objectives locally
(if possible). More elaborate techniques were proposed
in papers [6, 7].

We extended the proposed method to constrained
multiobjective problems. In [8] it was shown that a
non-uniform covering approach provides an opportu-
nity to solve non-linear optimization problems where
some (or all) variables are discrete. This property can
be exploited for multiobjective optimization as well.
Due to the space limitations we do not describe the
multiobjective optimization with functional and inte-
grality constraints here.
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