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Problem statement

At a fixed time interval [t0, t1] the dynamic
analogue of finite two-person game with a Nash
equilibrium is considered. The game is determined
by the linear controlled differential systems with
free left (x10, x20) and right (x11, x21) ends.

The initial condition at the left end is
defined as the solution of the problem of convex
programming. If controls u1(t), u2(t) "run"on the
sets U1, U2, then the left and right endpoints of the
controlled trajectories x1(t), x2(t) describe their
sets of attainability X1(t0), X2(t0), X1(t1), X2(t1).

On attainability sets the parametric convex
programming problems are formulated, each of
which describes the behavior of the first and
second players. On the direct (Cartesian) product
of attainability sets (on the left and right ends of
the interval), these problems generate a finite two-
person game with a Nash equilibrium.

The dynamic two-person game is formulated
as follows: to find controls u∗1(t), u∗2(t) and
the corresponding trajectories x∗1(t), x∗2(t), left
(x∗10, x

∗
20) and right (x∗11, x

∗
21) ends of which are a

Nash equilibrium two-person games, i.e., solutions
of finite two-person games on the left and right
ends of the interval [t0, t1].

A formal statement of the problem has the form:

the first player

x∗10 ∈ Argmin{f1(x10, x
∗
20)+ϕ1(x10), C10x10 = c10,

x10 ≥ 0, x10 ∈ X1(t0)}, (1)

d

dt
x1(t) = D1(t)x1(t) +B1(t)u1(t), x∗10 ∈ X1(t0),

(2)
U1 = {u1(t) ∈ Lr

2[t0, t1]| u1(t) ∈ [u−1 , u
+
1 ]},

t0 ≤ t ≤ t1, (3)

x∗11 ∈ Argmin{f1(x11, x
∗
21)+ϕ1(x11), C11x11 = c11,

x11 ≥ 0, x11 ∈ X1(t1)}, (4)

the second player

x∗20 ∈ Argmin{f2(x∗10, x20)+ϕ2(x20), C20x20 = c20,

x20 ≥ 0, x20 ∈ X2(t0)}, (5)

d

dt
x2(t) = D2(t)x2(t)+B2(t)u2(t), x∗20 ∈ X2(t0),

(6)
U2 = {u2(t) ∈ Lr

2[t0, t1]| u2(t) ∈ [u−2 , u
+
2 ]},

t0 ≤ t ≤ t1, (7)

x∗21 ∈ Argmin{f2(x∗11, x21)+ϕ2(x21), C21x21 = c21,

x21 ≥ 0, x21 ∈ X2(t1)}, (8)

where X1(t0), X1(t1) ⊂ Rn, X2(t0), X2(t1) ⊂ Rn.
Here the pair of parametric convex programming
problems (1),(5) together represent the initial
two-person game with a Nash equilibrium. The
solution to this game, the pair x∗10, x

∗
20 (Nash

solution), is the initial condition for a pair of
differential equations (2),(6). The main purpose
of the game subsystem (1),(5) is to define the
initial conditions for another game subsystem
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(2)-(4), (6)-(8). Both game subsystems are
relatively independent: the first provides the initial
conditions for the second one.

Note that here the payoff functions describe the
overall interest of each player: ϕ1(x10), ϕ1(x11),
ϕ2(x20), ϕ2(x21) are interests on which the
players are not going to make concessions;
f1(x10, x20), f1(x11, x21), f2(x10, x20), f2(x11, x21)
- interests on which players make concessions to
find a compromise.

The second subsystem (2)-(4) and (6)-(8)
includes the controlled dynamics for the first and
second players, and the terminal two-person game
with a Nash equilibrium (4), (8). In this subsystem
a pair of controls u1(t), u2(t) ∈ U1 × U2 by means
of differential equations (2),(6) generates a pair
of trajectories x1(t), x2(t) ∈ X1(t) ×X2(t). Right
ends of the trajectories describe the attainability
sets X1(t1) ∈ Rn and X2(t1) ∈ Rn. On the direct
product of these sets a pair of payoff functions
f1(x11, x21) + ϕ1(x11), f2(x11, x21) + ϕ2(x21) is
defined, and for each variable its own constraints
polytope is given.

The whole subsystem (2)-(4),(6)-(8) defines in
functional space a two-person game with a Nash
equilibrium, more precisely, its generalization to
functional infinite-dimensional spaces. Indeed, if
in the system dynamics is absent, then the
pair (4),(8) is a classic two-person game with a
Nash equilibrium in finite-dimensional space (this
game is an exact analog of (1),(5). If functions
fi(x1i, x2i), i = 1, 2, are not available in the
original system, then the system becomes a pair
of unrelated problems of optimal control. In this
case, the interests of a pair of players are connected
only by payoff functions and are not associated
by dynamics. It is assumed that the solution
x∗i (t), u∗i (t) of game system under consideration
exists.

1 Reduction to the problem of
computing the fixed point of an
extremal mapping

System (1)-(8), in general, is rather cumbersome
structure. In order not to deal with each problem
separately, we introduce new macro-variables and
make the system scalar. First, let’s do this for the
subsystem (1),(5), after then for the subsystem
(2)-(4), (6)-(8).

First note that the objective functions of
problems (1),(5) for fixed values of the parameters
x20 = x∗20, x10 = x∗10 are defined with respect to
different variables. These variables describe the
sets in different spaces. If we take the Cartesian
(direct) product of these sets and consider on this
square sum of the two objective functions, we
can see that the problem of minimizing the sum
of functions on the square will be equivalent to
minimizing each function separately in its variable.

Denote

w∗(t)|t=t0 = v∗(t)|t=0 = v∗(t0) = v∗0,

w∗(t)|t=t1 = v∗(t)|t=1 = v∗(t1) = v∗1,

v0 =
(
x1(t0)
x2(t0)

)
=
(
x10

x20

)
,

v1 =
(
x1(t1)
x2(t1)

)
=
(
x11

x21

)
, ci =

(
c1i

c2i

)
,

D(t) =
(
D1(t) 0

0 D2(t)

)
,

B(t) =
(
B1(t) 0

0 B2(t)

)
,

C0 =
(
C10 0
0 C20

)
, C1 =

(
C11 0
0 C21

)
.

This assumes that all dimensions of the matrices
and vectors are compatible. We write the system
(1)-(4) and (5)-(8) compactly, then come to the
problem of computing the fixed point (v∗0, v

∗
1) ∈

W0 ×W1 of extremal mapping.
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v∗0 ∈ Argmin{Φ0(v∗0, w0) + ϕ0(w0)|

C0w0 = c0, w0 ≥ 0, w0 ∈W0 ⊂ R2n}, (9)

d

dt
w(t) = D(t)w(t) +B(t)u(t),

w(t0) = v∗0, u(t) ∈ U, (10)

v∗1 ∈ Argmin{Φ1(v∗1, w1) + ϕ1(w1)|

C1w1 = c1, w1 ≥ 0, w1 ∈W1 ⊂ R2n}, (11)

where t0 ≤ t ≤ t1.
System (9)-(11) is the problem of computing the

fixed points of extremal mappings on the set of
initial conditions and the set of attainability. For
fixed value of v0 = v∗0 the pair of tasks (9) and
(10),(11) becomes a pair of convex programming
problems in finite and infinite dimensional spaces.

2 The method of modified
Lagrangian

It is assumed that the problems (9),(11) are
sufficiently regular, and for finite-dimensional
problem together with its infinite-dimensional
analogue the Kuhn-Tucker theorem is holds. The
latter means that there are vectors of Lagrange
multipliers (dual solution) p∗0, p∗1 ∈ R2n, ψ∗(t) ∈
Čn
∗ [t0, t1], such that the pairs of vectors (p∗0, w0),

(p∗1, w1), ψ∗(t), w∗(t), u∗(t) are saddle points of the
Lagrangian

L0(v∗0, p0, w0) = Φ0(v∗0, w0)+ϕ0(w0)+〈p0, C0w0−c0〉
(12)

for problems (9),
and for the Lagrangian

L1(v∗1, p1, w1, ψ(t), w(t)) =

= Φ1(v∗1, w1) + ϕ1(w1) + 〈p1, C1w1 − c1〉+

+
∫ t1

t0

〈ψ(t), D(t)w(t)+B(t)u(t)− d

dt
w(t)〉dt (13)

of problem (10),(11) for all w1 ≥ 0, p1 ∈
R2n, ψ(t) ∈ Čn

∗ [t0, t1], w(t) ∈ Čn[t0, t1], u(t) ∈
U,w(t0) = v∗0, where p0, p1 и ψ(t) are dual
variables generated by the constraints of problems

(9)-(11), where v∗0, v
∗
1, w

∗(t), u∗(t) are primal
solutions of system (9)-(11).

Along with the Lagrangians (12) and (13) we
introduce the modified Lagrangians

M0(v∗0, p0, w0) = Φ0(v∗0, w0) + ϕ0(w0)+

+
1
2k
|p0 + k(C0w0 − c0)|2 − 1

2k
|p0|2 (14)

for all w0 ≥ 0, p0 ∈ R2n of problem (9)
and

M(v∗1, p1, w1, ψ(t), w(t)) =

= Φ1(v∗1, w1) + ϕ1(w1)+

+
1
2k
|p1 + k(C1w1 − c1)|2 − 1

2k
|p1|2+

+
1
2k

∫ t1

t0

|ψ(t) + k(D(t)w(t) +B(t)u(t)−

− d

dt
w(t)|2dt− 1

2k

∫ t1

t0

|ψ(t)|2dt (15)

for all w1 ≥ 0, p1 ∈ R2n, ψ(t) ∈ Čn
∗ [t0, t1], w(t) ∈

Čn[t0, t1], u(t) ∈ U,w(t0) = v∗0 of problem
(10),(11), where p0, p1 and ψ(t) are dual variables
generated by the constraints of problems (10),(11).

Saddle point of the modified Lagrangian (15) is
also a saddle point of Lagrangian (13) and is the
solution of the original problem (10),(11) (see [1]).
Similarly, it is true for (12),(14). Saddle condition
for our function M(v1, p1, w1, ψ(t), w(t)) we write
in the form

v∗1, v
∗(t), u∗(t) ∈

Argmin{Φ1(v∗1, w1) + ϕ1(w1)+

+
1
2k
|p∗1 + k(C1w1 − c1)|2 − 1

2k
|p∗1|2+

+
1
2k

∫ t1

t0

|ψ∗(t) + k(D(t)w(t) +B(t)u(t)−

− d

dt
w(t)|2dt− 1

2k

∫ t1

t0

|ψ∗(t)|2dt | w1, w(t), u(t)},

(16)
p∗1 = p∗1 + k(C1v

∗
1 − c1), (17)

ψ∗(t) = ψ∗(t) +k(D(t)v∗(t) +B(t)u∗(t)− d

dt
v∗(t).

(18)
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Using the system (16)-(18) by analogy with
finite-dimensional case we write down the
method of modified Lagrangian. In our infinite-
dimensional case, it has the form [2]

vn+1
1 , vn+1(t), un+1(t) ∈ Argmin{Φ1(vn

1 , w1)+

+ϕ1(w1) +
1
2k
|pn

1 + k(C1w1 − c1)|2 − 1
2k
|p∗1|2+

+
1
2k

∫ t1

t0

|ψn(t) + k(D(t)w(t) +B(t)u(t)−

− d

dt
w(t)|2dt− 1

2k

∫ t1

t0

|ψn(t)|2dt | w1, w(t), u(t)},

(19)

pn+1
1 = pn

1 + k(C1v
n+1
1 − c1), (20)

ψn+1(t) = ψn(t)+

+k(D(t)vn+1(t) +B(t)un+1(t)− d

dt
vn+1(t). (21)

Process (19)-(21) converges monotonically in
norm on direct product of variables (controls,
trajectories and variables of terminal problems )
to a solution of the original problem.

Theorem 1. If the set of solutions (9)-(11) is
not empty and belongs to the subspace Čn[0, T ] ⊂
Ln

2 [0, T ], the functions Φi(v∗i , wi) + ϕi(wi), i =
1, 2, are positive semidefinite, and convex in the
variables wi, differentiable with respect to these
variables, whose gradients satisfy the Lipschitz
conditions, then the sequence of approximations
generated by the process of (19)-(21) with the
choice of the parameter α from the condition
0 < α < α0, decreases monotonically in the
norm on direct product of variables (controls,
trajectories and variables of terminal problems). At
the same time, any weakly converging subsequence
of controls uni(t) weakly converges to the optimal
control u∗(t), and a corresponding subsequence of
trajectories vni(t) converges to optimal trajectory
v∗(t) in the uniform norm Cn[0, T ].
If the sequence of controls un(t) has a strong

limit point in the norm of Ln
2 , then the process

(vn(t), un(t)) converges to a solution (v∗(t), u∗(t))
monotonically in norm of spaces Ln

2 × Lr
2.

In the process of realization of the method (19)-
(21) the vector of initial conditions v∗0 is used,
which is first necessary to calculate by solving the
equilibrium problem (9). The equilibrium problem
can be solved by the same method (19)-(21), which
in relation to the problem (9) has the form

vn+1
0 ∈ Argmin{Φ0(v∗0, w0) + ϕ0(w0)+

+
1
2k
|pn

0+k(C0w0−c0)|2− 1
2k
|pn

0 |2 | w0 ≥ 0, w0 ∈W0}

pn+1
0 = pn

0 + k(C0v
n+1
0 − c0)).

This process is a special case of (19)-(21), and its
convergence to the solution follows from the above
theorem.
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