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1. Introduction
Feedback control problems have been investi-

gated by a lot of authors. The interest to this class
of problems has increased for the last years due
to the development of technical, computational,
and measuring facilities of monitoring and of con-
trolling technical and technological objects. They
generally considered linear systems, and in case of
non-linear systems corresponding linearized sys-
tems were used [1-3].

In the work, we investigate a class of feedback
control problems for dynamic, in the general case,
non-linear objects with lumped parameters. Nec-
essary optimality conditions obtained and formu-
lae for the gradient of the target functional on the
optimized parameters allow to build algorithms of
numerical solution to the feedback control prob-
lems. These algorithms are based on first order
optimization methods. In the work, results of nu-
merical experiments obtained when solving some
test problems are given.

2. Problem statement
Let the controlled process be described by the

following non-linear system of differential equa-
tions:

ẋ (t) = f (x (t) , u (t) , y) , t ∈ (0, T ], (1)

x (0) = x0 ∈ X0 ⊂ Rn, y ∈ Y ⊂ Rm, (2)

where x (t) is n-dimensional vector-function defin-
ing the current state of the process; u (t) ∈ U r-
dimensional vector-function of control; U ⊂ Rr

the closed set of admissible values of the control
actions; y m-dimensional vector of constant pa-
rameters of the process, the values of which are
uncertain, but we have the admissible set of their
values and density (weighting) function ρY (y) ≥ 0
defined on Y ; X0 the set of possible values of
initial states of the process with given density
(weighting) function ρX0

(
x0

) ≥ 0.
The problem consists in determining the control

actions minimizing the following functional

J (u) =
∫

X0

∫

Y

I
(
u; x0, y

)
ρX0

(
x0

)
ρY (y) dY dX0,

(3)

I
(
u; x0, y

)
=

T∫

0

g (x (t) , u (t)) dt + Φ (x (T )),

(4)
where x (t) = x

(
t; x0, y, u

)
is the solution to sys-

tem (1) under admissible control u (t), initial con-
dition x0, and values of the parameters of the pro-
cess y. Functional (3), (4) defines the quality of
the control optimal on the average on x0 ∈ X0

y ∈ Y. Control problems under uncertain infor-
mation on the initial state and on parameters of
the process, as well as some problems of control
of cluster of trajectories are reduced to problem
(1)-(4) [4].

Control of process (1) is realized taking into ac-
count the presence of feedback under which the
state vector x (t) is measured in full or in part.
The measurements can be taken at given discrete
points of time or continuously.
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In the work, to control the process in the pres-
ence of feedback, we propose to choose the values
of the control actions according to which given
subset (zone) of the phase space the phase state
belongs to.

Denote by X ⊂ Rn the set of all possible states
of the process under different admissible initial
states x0 ∈ X0 and the values of parameters y ∈ Y
, and of controls u (t) ∈ U when t ∈ [0, T ].

Let the set X be partitioned into given number
L of open subsets (zones) Xi such that

L
U

i=1
X

i = X, Xj ∩Xi = ∅,

i 6= j, i, j = 1, 2, ..., L,

where X
i is the closure of set Xi.

Problem A1. We have points of time τj ∈
[0, T ] , j = 0, 1, ..., N ,τ0 = 0, at which it is possible
to observe the current state of the process x (τj) ∈
X. The frequency of the observations is such that
when the state of the process is in some zone, it is
observed at least once.

The values of control u (t) when t ∈ [τj , τj+1)
are assigned according to the value of the last ob-
served current state of the process, namely, ac-
cording to the set of the phase space which the
measured (observed) current state belongs to:

u (t) = vi = const, x (τj) ∈ Xi, t ∈ [τj , τj+1) ,
(5)

vi ∈ U ⊂ Rr, i = 1, 2, ...L, j = 0, 1, ...N − 1,

assuming that τN = T . It is required to determine
the values vi, i = 1, 2, ...L, optimizing functional
(3).

Problem A2. The control actions are deter-
mined according to the results of observations at
given discrete points of time τi ∈ [0, T ] , i =
0, 1, ..., N in the form of linear functions of the
measured values of the parameters of the process:

u (t) = Ki
1 · x (τj) + Ki

2, x (τj) ∈ Xi, (6)

t ∈ [τj , τj+1) , i = 1, 2, ..., N, j = 0, 1, ..., N − 1,

Here Ki
1 is the matrix of dimension r × n; Ki

2

r-dimensional vector; Ki
1, Ki

2 are constant when
t ∈ [τi−1, τi) and depend on the zone number i. It
is required to determine the values Ki

1, Ki
2, i =

1, 2, ..., L, optimizing functional (3).
Problem A3. Observation over the state of

the process is carried out continuously. Accord-
ing to the results of the observation, the control
actions take on the values of zonal controls:

u (t) = wi = const, x (t) ∈ Xi, t ∈ [0, T ] ,

wi ∈ U ⊂ Rr, i = 1, 2, ..., L. (7)

It is required to determine the values of zonal
control actions wi, i = 1, 2, ...L, optimizing func-
tional (3).

Note that the problems 1, 2, 3 on the one hand,
can be related to parametrical optimal control
problems. On the other hand, they can be con-
sidered as special problems of finite-dimensional
optimization with specifically given target func-
tional.

3. Numerical solution to problem
To solve the posed optimization problems

numerically and determine the control actions
u (t) , t ∈ [0, T ], we propose to use first order
optimization methods. As is known, to organize
iterative procedure of the first order optimization
methods, it is necessary to obtain formulae for the
gradient of the target functional [5].

Using the technique of the increment of the tar-
get functional obtained at the expense of the in-
crement of one of the optimized arguments, we can
prove the following theorems.

Theorem 1. The components of the gradient
of the target functional in problem A1 are deter-
mined by the following formulae:

∂J (u)
∂vl

=
∫

X0

∫

Y

∂I
(
u; x0, y

)

∂vl
ρX0

(
x0

)
ρY (y) dY dX0,
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∂ I(u;x0,y)
∂vl =

∫
Πl(x0,y,v)

[−ψ
(
t; x0, y, v

)

·∂f(x(t;x0,y,v),v,y)
∂v +

∂g(x(t;x0,y,v),v)
∂v

]
dt,

(8)

where Πl

(
x0, y, v

)
=

⋃
j: x(τj ;x0,y,v)∈Xl

[τj , τj+1), l =

1, 2, ..., L; ψ
(
t;x0, y, v

)
the solution to the follow-

ing conjugate Cauchy problem:

ψ
(
T ; x0, y, v

)
= −Φx

(
x

(
T ;x0, y, v

))
,

ψ̇
(
t; x0, y, v

)
= −ψT

(
t; x0, y, v

)
·

·
∂f

(
x

(
t; x0, y, v

)
, vl, y

)

∂x
−

∂g
(
x

(
t; x0, y, v

)
, vl

)

∂x
,

(9)

t ∈ Πl

(
x0, y, v

)
, l ∈ {1, 2, ..., L}

under meeting condition (5).
Theorem 2. The components of the gradient

of the target functional in problem A2 are deter-
mined by the following formulae:

∂J(u)
∂Ks

1
=

∫
X0

∫
Y

∫
Πs (x0,y,K)

[
−ψT

(
t;x0, y,K

) ·

·∂f(x(t;x0,y,K),K,y)
∂K +

∂g(x(t;x0,y,K),K)
∂K

]
dt·

·xT
(
τi; x0, y, K

) · ρY (y) · ρX0 (x0) dY dX0,
(10)

∂J(u)
∂Ks

2
=

∫
X0

∫
Y

∫
Πs (x0,y,K)

[
−ψT

(
t; x0, y, K

) ·

·∂f(x(t;x0,y,K),K,y)
∂K +

∂g(x(t;x0,y,K),K)
∂K

]
dt·

·ρY (y) · ρX0 (x0) dY dX0,

(11)

where Πs
(
x0, y, K

)
=

⋃
j: x(τj ;x0,y,v)∈Xl

[τj , τj+1),

s = 1, 2, ..., L; where ψ
(
t; x0, y,K

)
the solution

to the following conjugate Cauchy problem:

ψ
(
T ; x0, y, K

)
= −Φx

(
x

(
T ;x0, y,K

))
,

ψ̇
(
t;x0, y,K

)
= −ψT

(
t;x0, y, K

)
·

∂f
(
x

(
t; x0, y,K

)
,K, y

)

∂x
+

∂g
(
x

(
t; x0, y, K

)
,K

)

∂x
(12)

+
N−1∑
s=1

Ks
1 · δ (t− τs) ·

τs+1∫
τs

[
∂g(x(τ ;x0,y,K),K)

∂K −

ψT
(
τ ;x0, y,K

) ∂f(x(τ ;x0,y,K),K,y)
∂u

]
dτ,

t ∈ [0, T )

under meeting condition (6).
Theorem 3. The components of the gradient

of the target functional in problem A3 are deter-
mined by the following formulae:

∂J (u)
∂wk

=
∫

X0

∫

Y

∂I
(
u; x0, y

)

∂wk
ρX0

(
x0

)
ρY (y) dY dX0,

∂ I(u;x0,y)
∂wk =

∫
Πk(x0,y,w)

[−ψ
(
t;x0, y, w

) ·

·∂f(x(t;x0,y,w),w,y)
∂w +

∂g(x(t;x0,y,w),w)
∂w

]
dt,

(13)

where Πk

(
x0, y, w

)
=

{t ∈ [0, T ] : x
(
t; x0, y, w

) ∈ Xk
}

, k ∈
{1, 2, ..., L}; ψ

(
t;x0, y, w

)
the solution to the

following conjugate system:

ψ
(
T ; x0, y, w

)
= −Φx

(
x

(
T ; x0, y, w

))
,

ψ̇
(
t;x0, y, w

)
= −ψT

(
t;x0, y, w

)
·

·
∂f

(
x

(
t; x0, y, w

)
, wk, y

)

∂x
−

∂g
(
x

(
t; x0, y, w

)
, wk

)

∂x
,

(14)

t ∈ Πk

(
x0, y, w

)
, k ∈ {1, 2, ..., L} ,

satisfying the following jump condition taking
place at the boundary of the zones:
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ψ
(
t
l,m
− 0;x0, y, w

)
= ψ

(
t
l,m

+ 0;x0, y, w
)
−

∂

∂x
h

l,m

(
x

(
t
l,m

;x0, y, w
))
· ν

l,m
, (15)

ν
l,m

=
ψ
(
t
l,m

+0;x0,y,w
)

∂h
l,m(x(t

l,m
;x0,y,w))

∂x
·f

(
x
(
t
l,m

;x0,y,w
)
,wl,y

) ·

·
[
f

(
x

(
t
l,m

; x0, y, w
)

, wl, y
)
−

f
(
x

(
t
l,m

; x0, y, w
)

, wm, y
)]

.

Here t
l,m

, l, m ∈ {1, 2, ..., L} is the point of time
when the trajectory of system (1) hits the bound-
ary of the zones X l and Xm. The boundary is
defined by equation h

l,m
(x) = h

m,l
(x) = 0 with

corresponding given functions h
l,m

(x).
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