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In this talk we describe a methodology for defin-
ing stopping rules in a general class of global random
search algorithms that are based on the use of statisti-
cal procedures. To build these stopping rules we reach
a compromise between the expected increase in pre-
cision of the statistical procedures and the expected
waiting time for this increase in precision to occur.

Consider a general minimization problem
f(x) → minx∈A with objective function f(·) and
feasible region A. We assume that A ⊆ Rd and
0 < vol(A) < ∞. Let x∗ be the global minimizer; that
is, x∗ is a point in A such that f(x∗) = m where
m = minx∈Af(x). In this talk, we restrict ourselves
with stochastic methods and consider the following
general class of global random search algorithms (see
Algorithm 2.2 in [1]).

Algorithm 1.

1. Choose a probability distribution P1 on A; set the
step number to j = 1.

2. Obtain Nj points x
(j)
1 , . . . , x

(j)
Nj

in A by indepen-
dent sampling from distribution Pj .

3. Using the points xi
l(i) (l(i) = 1, . . . Ni; i = 1, . . . j)

and the objective function values at these points,
construct a distribution Pj+1 on A.

4. Substitute j + 1 for j and return to 2.

There are several stopping criteria involved in this
algorithm. There is a global stopping rule which de-
fines how many steps j (j = 1, 2, . . .) should be run.
There are also stopping rules at each step j; these are
defined in Algorithm 1 as numbers Nj (j = 1, 2, . . .).
In this talk, we shall be concerned with the problem of
choosing the stopping rules Nj (j = 1, 2, . . .).

We assume that at step j we only use the results of
the current step j; the results of previous j − 1 steps
are only used to construct the distribution Pj . We thus
drop the index j and formulate the problem as follows.

Assume we have x1, x2, . . ., a sequence of indepen-
dent identically distributed points in A with distribu-
tion P, and the corresponding sequence of values of the

objective function at these points: y1 = f(x1), y2 =
f(x2), . . . After computing n values y1, . . . , yn we con-
struct a confidence interval for m = vrai inf y (here y
is the random variable with the same distribution as
y1, y2, . . .). We need to make a decision for choosing
between the following two alternatives: (a) carry on
computing values yn+1, yn+2, . . . until the next update
of the confidence interval, and (b) stop the computa-
tions completely and either terminate the algorithm or
move to the next step of Algorithm 1 (by updating the
distribution P = Pj).

Random variables yi = f(xi), xi ∼ P, have the c.d.f.
F (t) =

∫
f(x)≤t

P(dx) . If the distribution P is such that

P (Bε(z∗)) > 0 for any ε > 0

where Bε(z∗) = {z ∈ A : ‖z − z∗‖ ≤ ε}, then
lower end-point of the distribution with c.d.f. F (t),
m = vrai inf y, is at the same time m = minx∈Af(x).
Otherwise, if this condition is not met, m = infBf(x)
may be larger than minx∈Af(x); here B is the support
of the distribution P.

Let y1,n ≤ . . . ≤ yk,n be order statistics correspond-
ing to the sample {y1, . . . , yn}. The statistical inference
in global random search algorithms are often based
only on the smallest k order statistics y1,n, . . . , yk,n

rather than on the whole sample {y1, . . . , yn}, see [1].
We shall always follow this rule of using the smallest k
order statistics for choosing values Nj in Algorithm 1.

Of course if the sample size n increases then the
length of the confidence interval for m decreases. How-
ever, the decrease of this length slows down as n in-
creases and, as we will see later, one needs to wait
longer and longer for the next change of the length of
the confidence interval. Reaching a compromise be-
tween these two contradictory criteria (keeping n rea-
sonably small and reaching short confidence interval)
is the main point of discussions in this talk.
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