Stopping Rules in Global Random Search Algorithms

A. Zhigljavsky

Cardiff University, U.K., ZhigljavskyAA@cf.ac.uk

In this talk we describe a methodology for defining stopping rules in a general class of global random search algorithms that are based on the use of statistical procedures. To build these stopping rules we reach a compromise between the expected increase in precision of the statistical procedures and the expected waiting time for this increase in precision to occur.

Consider a general minimization problem $f(x) \to \min_{x \in A}$ with objective function $f(\cdot)$ and feasible region A. We assume that $A \subseteq \mathbb{R}^d$ and $0 < \operatorname{vol}(A) < \infty$. Let x^* be the global minimizer; that is, x^* is a point in A such that $f(x^*) = m$ where $m = \min_{x \in A} f(x)$. In this talk, we restrict ourselves with stochastic methods and consider the following general class of global random search algorithms (see Algorithm 2.2 in [1]).

Algorithm 1.

- 1. Choose a probability distribution \mathbb{P}_1 on A; set the step number to j = 1.
- 2. Obtain N_j points $x_1^{(j)}, \ldots, x_{N_j}^{(j)}$ in A by independent sampling from distribution \mathbb{P}_j .
- 3. Using the points $x_{l(i)}^i$ $(l(i) = 1, ..., N_i; i = 1, ..., j)$ and the objective function values at these points, construct a distribution \mathbb{P}_{j+1} on A.
- 4. Substitute j + 1 for j and return to 2.

There are several stopping criteria involved in this algorithm. There is a global stopping rule which defines how many steps j (j = 1, 2, ...) should be run. There are also stopping rules at each step j; these are defined in Algorithm 1 as numbers N_j (j = 1, 2, ...). In this talk, we shall be concerned with the problem of choosing the stopping rules N_j (j = 1, 2, ...).

We assume that at step j we only use the results of the current step j; the results of previous j - 1 steps are only used to construct the distribution \mathbb{P}_j . We thus drop the index j and formulate the problem as follows.

Assume we have x_1, x_2, \ldots , a sequence of independent identically distributed points in A with distribution \mathbb{P} , and the corresponding sequence of values of the

objective function at these points: $y_1 = f(x_1), y_2 = f(x_2), \ldots$ After computing *n* values y_1, \ldots, y_n we construct a confidence interval for m = vrai inf *y* (here *y* is the random variable with the same distribution as y_1, y_2, \ldots). We need to make a decision for choosing between the following two alternatives: (a) carry on computing values y_{n+1}, y_{n+2}, \ldots until the next update of the confidence interval, and (b) stop the computations completely and either terminate the algorithm or move to the next step of Algorithm 1 (by updating the distribution $\mathbb{P} = \mathbb{P}_i$).

Random variables $y_i = f(x_i), x_i \sim \mathbb{P}$, have the c.d.f. $F(t) = \int_{f(x) \leq t} \mathbb{P}(dx)$. If the distribution \mathbb{P} is such that

 $\mathbb{P}(B_{\varepsilon}(z^*)) > 0 \text{ for any } \varepsilon > 0$

where $B_{\varepsilon}(z^*) = \{z \in A : ||z - z^*|| \leq \varepsilon\}$, then lower end-point of the distribution with c.d.f. F(t), m = vrai inf y, is at the same time $m = \min_{x \in A} f(x)$. Otherwise, if this condition is not met, $m = \inf_B f(x)$ may be larger than $\min_{x \in A} f(x)$; here B is the support of the distribution \mathbb{P} .

Let $y_{1,n} \leq \ldots \leq y_{k,n}$ be order statistics corresponding to the sample $\{y_1, \ldots, y_n\}$. The statistical inference in global random search algorithms are often based only on the smallest k order statistics $y_{1,n}, \ldots, y_{k,n}$ rather than on the whole sample $\{y_1, \ldots, y_n\}$, see [1]. We shall always follow this rule of using the smallest k order statistics for choosing values N_j in Algorithm 1.

Of course if the sample size n increases then the length of the confidence interval for m decreases. However, the decrease of this length slows down as n increases and, as we will see later, one needs to wait longer and longer for the next change of the length of the confidence interval. Reaching a compromise between these two contradictory criteria (keeping n reasonably small and reaching short confidence interval) is the main point of discussions in this talk.

References

 A. Zhiglajvsky and A. Zilinskas, Stochastic Global Optimization. Springer-Verlag, 2008.