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Let Sn denote the space of real symmetric matrices
of order n, and let Sn

+ (Sn
++) denote the set of positively

semidefinite (positively definite) matrices from Sn. We
write also A º 0 (A Â 0) to mean that A ∈ Sn

+ (A ∈
Sn

++).
Consider the linear semidefinite programming prob-

lem (SDP)

min C •X,
Ai •X = bi, i = 1, . . . ,m,

X º 0,
(1)

where all the matrices C ∈ Sn and Ai ∈ Sn, 1 ≤ i ≤ m,
are given, and X ∈ Sn is a variable. A •B denotes the
inner product between two matrices A and B of the
same size defined by trace BT A.

We also consider the problem dual to (1) in the form

max bT u,∑m
i=1 uiAi + V = C,

V º 0,
(2)

where b = (b1, . . . , bm)T ∈ Rm, V ∈ Sn.
In what follows we assume that the matrices Ai, 1 ≤

i ≤ m, are linear independent. We suppose also that
the Slater constraint qualification is fulfilled for both
problems (1) and (2), i.e. there are feasible matrices
X and V such that X Â 0, V Â 0. In this case the
strong duality holds and both problems (1), (2) have
nonempty compact sets of solutions [1].

If X∗ and V∗ are optimal solutions of problems (1)
and (2), respectively, then X∗ • V∗ = 0 and the matri-
ces X∗ and V∗ must commute. Hence, there exists an
orthogonal matrix Q such that

X∗ = QDiag(η∗)QT , V∗ = QDiag(θ∗)QT ,

where η∗ = [η1
∗, . . . , η

n
∗ ] and θ∗ = [θ1

∗, . . . , θ
n
∗ ] are the

eigenvalues of X∗ and V∗ respectively. The eigenval-
ues ηi

∗ and θi
∗ satisfy the complementarity conditions

ηi
∗θ

i
∗ = 0, 1 ≤ i ≤ n. The strict complementarity con-

dition means that, for each 1 ≤ i ≤ n, one of the values
ηi
∗ or θi

∗ is strictly positive.

Denote by X ∗V the symmetrized product of square
matrices X and V defined by the formula X ∗ V =
(XV + V T XT )/2. Let X0 Â 0. Consider the primal
iterative method for solving the problem (1)

Xk+1 = Xk − αkXk ∗ Vk, Vk = C −
m∑

i=1

ui
kAi, (3)

and uk is found from the condition

Ai • (Xk ∗ Vk) = τ
(
Ai •Xk − bi

)
, 1 ≤ i ≤ m, (4)

where τ > 0.
Define Γ(X) = A• (X ∗AT ), where A is the mn×n

matrix composed of the matrices Ai, 1 ≤ i ≤ m. The
(i, j) entry of Γ(X) is given by Ai • (X ∗ Aj). Solving
the system(4) of linear algebraic equations, we obtain

uk = Γ−1(Xk) [A • (Xk ∗ C) + τ (b−A •Xk)] . (5)

It can be shown that in the case of nondegenerate point
Xk the matrix Γ(Xk) is nonsingular.

The method (5) can be regarded as a primal inte-
rior point method. This method is an extension for
(1) of the barrier-projection method, which was pre-
viously proposed for solving linear and nonlinear pro-
gramming problems [2], [3]. For constrained optimiza-
tion problems depending on vector variables and in-
volving simply structured constraints (for instance, the
nonnegativity conditions for the variables), the barrier-
projection method makes a transition to other spaces
in which such conditions disappear. Then, one can use
various constrained optimization methods that work in
the entire space. In particular, the gradient projection
method can be used for solving the optimization prob-
lems with equality constraints. After returning to the
original space, the right-hand sides contain additional
matrices that play the role of multiplicative barriers
and do not allow trajectories to leave the simply struc-
tured sets.

For semidefinite programming problems where the
variables are matrices, the transition to a new space
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is replaced by the decomposition of the variable into
the product of a nonsingular matrix and its transpose.
This decomposition makes it possible to drop the re-
quirement of positive definiteness of matrices. It is
important that, similarly to problems with vector vari-
ables, one can return to the original matrix variables.
The following result is proved in [4].

Theorem 1 Assume that the strong duality holds for
SPP problems (1) and (2) and let their solutions X∗
and V∗ are strictly complementary. Moreover, let X∗ be
a nondegenerate vertex of the feasible set in the problem
(1). Then for αk sufficiently small the iterative process
(5) locally converges to X∗ at a linear rate.

Using the congruent reduction of two symmetric
matrices of which one is positive definite, we obtain
PT XkP = In, PT (Xk∗Vk)P = Diag(ωk) for some non-
singular matrix P . Here, the vector ωk = [ω1

k, . . . , ωn
k ]

is formed by the eigenvalues of the matrix Zk =
X−1

k Yk. Therefore

Xk+1 =
(
P−1

)T
[Ik − αkDiag(ωk] P−1.

It immediately follows that the matrix Xk+1 is positive
definite if αk < 1/ωmax

k , where ωmax
k is the maximal

positive eigenvalue.
Now let us consider the variant of the multiplica-

tively barrier method for solving the dual problem (2).
Denote by vecAi the direct sum of the columns of Ai.
Denote also by Avec the m× n2 matrix with vecAi as
its ith row. Applying the decomposition of the ma-
trix V into the product of a nonsingular matrix and its
transpose, we obtain the following iterative process

uk+1 = uk + αk(b−A •Xk),
Vk+1 = Vk − αkVk ∗Xk,

(6)

where V0 Â 0 and Xk is the symmetric matrix such
that

vecXk = Γ−1(Vk)
[AT

vecb + τ(vec(Vk − C) +AT
vecuk)

]
,

Γ(V ) = AT
vecAvec +Nn(Vk ⊗ In)Nn.

The matrix Nn is defined by the formula Nn = (In2 +
Kn)/2, where Kn is n2 × n2 permutation matrix. For
every square matrix M of order n, Kn effects the per-
mutation KnvecM = vecMT .

Denote V (u) = C −∑m
i=1 uiAi. Denote also by VU

the set of V (u) such that V (u) º 0.

Theorem 2 Assume that the strong duality holds for
SPP problems (1) and (2) and let their solutions X∗
and V∗ are strictly complementary. Moreover, let V∗ =
V (u∗) be a nondegenerate vertex of the set VU . Then
for αk sufficiently small the iterative process (5) locally
converges to u∗ and V∗ at a linear rate.

The other variants of multiplicatively barriers meth-
ods for solving primal and dual SDP problems are also
considered, and the basic properties of proposed meth-
ods are discussed .
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