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Let W : Rn × Rr → R1, Φ : Rn × Rr → Rn be
twice continuously differentiable mappings. Suppose
that x ∈ Rn u ∈ Rr satisfy a system of n scalar
algebraic constraint equations

Φ(x, u) = 0n,

where 0n is a zero n-dimensional vector. It is assumed
that Φ>x (x, u) is nonsingular. Then, by the implicit
function theorem, there exists a function x = x(u) ∈
C2(u) such that Φ(x(u), u) = 0n in some vicinity of
(x, u). The variable x is called dependent and u is
called independent variable or control. Thus the com-
posite function Ω(u) = W (x(u), u) is twice differen-
tiable. The gradient dΩ(u)/du is given by the formula

dΩ(u)/du = Wu(x(u), u) + x>u Wx(x(u), u).

By the implicit function theorem the derivative xu is
determined from the equation

Φu + Φx xu = 0nr,

where 0nr is an (n×r) zero matrix. Thus to determine
the gradient of the function Ω(u) it is necessary to solve
rn linear equations.

According to methodology of fast automatic differ-
entiation (FAD-methodology) [1] the relations for de-
termining the gradient of the function Ω(u) are of the
form

Lx(x, u, p) = Wx(x, u) + Φ>x (x, u)p = 0n,

Lu(x, u, p) = dΩ/du = Wu(x, u) + Φ>u (x, u)p,

where L(x, u, p) = W (x, u) + p>Φ(x, u) is Lagrange
function and p ∈ Rn is a Lagrange multiplier. Thus,
the gradient of Ω(u) can be obtained by solving one
linear system of n equations.

In the report the FAD-methodology is extending to
the case of determining second order derivatives of the
function Ω(u). Derived formulas for determining sec-
ond order derivatives contain adjoint variables. These

variables can be obtained by solving an associated ma-
trix equation. The number of scalar equations in this
equation is a linear function of the dimension of inde-
pendent variable. The formulas are adapted to multi-
step processes resulting from discrete approximation of
two optimal control problems. The first one is a prob-
lem of optimal control of a process governed by sys-
tem of ordinary differential equations (in general form).
The second one is a problem of optimal control of solu-
tions for the one-dimensional unsteady Burgers equa-
tion by means of boundary conditions. The first prob-
lem was approximated with the use of Runge–Kutta
method of arbitrary order. The structure of arising
linear systems with adjoint variables is investigated. It
appears that this structure is rather simple. Therefore
the solution of these systems doesn’t cause difficulties.
Taking into account special features of the summands
in the formula for determining second order derivatives
one can build efficient algorithm of these derivatives
calculation. This algorithm enables to decrease com-
puting costs and the required memory. This approach
was applied to numerical solution of some discrete opti-
mization problems: problems obtained by approximat-
ing a concrete optimal control problem with the use of
Runge–Kutta method of various orders and a discrete
analogue of optimal control problem for the Burgers
equation with concrete values of parameters. All prob-
lems were solved by Newton and gradient methods.
The step in the chosen direction was determined by
minimizing a function which interpolated the objective
function along this direction by cubic splines. Near the
solution Newton method was switched to the standard
Newton method. The results of numeric experiments
are discussed and analyzed.
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