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1. Introduction

A huge of optimization problems arising from differ-
ent application areas turn out to be really nonconvex
[1]-[6]. The most of such problems deals with (d.c.)
functions which can be represented as a difference of
two convex functions. Besides this class (DC) possesses
several remarkable properties which make it the most
attracting object in modern optimization [2, 4].

a) DC(IRn) is generated by mostly investigated
class — the cone of convex functions — and turns out
to be the vector space.

b) DC(IRn) contains the spaces C2(IRn) and power
and trigonometrical polynoms and so on.

c) Any continuous function over a compact on IRn

can be approximated by some d.c. function with an
arbitrary accuracy, so that any nonlinear (continuous)
optimization problem on a compact can be viewed as
a d.c. optimization problem with some accuracy.

The situation in Nonconvex (Global) Optimization
may be viewed, at present, as dominated by B&B ap-
proach [2, 5, 6]. On the other side the classical methods
of convex optimization have been thrown aside because
of its inefficiency [1, 2, 7]. As well-known the conspicu-
ous limitation of convex optimization methods applied
to nonconvex problems is their ability of being trapped
at a local extremum or even a critical point depending
on a starting point [1, 2]. So, the classical approach
shows itself inoperative for new problems arising from
practice. In such a situation we advanced another ap-
proach [2, 3] the core of which is composed by Global
Optimality Conditions (GOC) for principal classes of
d.c. programming problems.

2. Local Search Methods (LCM)

In difference of well-known B&B, cuts and similar
methods throwing away classical methods of convex
optimization, we insist on certain, but nondirect, ap-
plication of these algorithms in Global Optimization.
For example, in d.c. minimization problem

(P) : f(x) = g(x)− h(x) ↓ min
x
, x ∈ D, (1)

where g, h, D are convex, the following (partially) lin-
earized problem is the basic element (a ”brick”)

(PLs) : f(x) = g(x)−〈∇h(xs), x〉 ↓ min
x
, x ∈ D, (2)

where xs is a current iterate. It means that the choice
of a solving method for (PLs) has a considerable im-
pact on Global Search. Local Search procedure for (P)
may consists in consecutive solving the (PLs): know-
ing xs ∈ D, we find xs+1 ∈ D as an approximate solu-
tion of (PLs)–(2). Unexpectedly, the process tends to
a solution x∗ of the linearized problem

(PL∗) : f(x) = g(x)−〈∇h(x∗), x〉 ↓ min
x
, x ∈ D. (3)

So, the point x∗ ∈ D turns out to be critical.

3. Global Search procedures

The general procedure of Global Search consists of
two stages:

a) Local Search;
b) Procedure of escape from a critical point based

upon GOC.
The meaning of this combination consists in the al-

gorithmic (constructive) property of GOC providing a
better feasible point when GOC are broken down. Ac-
tually, for (P)–(1) GOC are, as follows,

z ∈ Sol(P)⇒ ∀(y, β) ∈ IRn × IR :

h(y) = β − ξ, ξ := g(z)− h(z)
4
= f(z)

g(x)− β ≥ 〈∇h(y), x− y〉 ∀x ∈ D.

}
(4)

If some (ŷ, β̂) in (4) and x̂ ∈ D are such that g(x̂) <
β + 〈∇h(ŷ), x̂ − ŷ〉, then due to convexity of h(·) we
have

f(x̂) = g(x̂)− h(x̂) < h(ŷ) + ξ − h(ŷ) = f(z)
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so that f(x̂) < f(z), and x̂ is better than z.
By varying the parameter (y, β) ∈ IRn × IR in (4),

and by solving the corresponding linearized problems
(sf(4))

g(x)− 〈∇h(y), x〉 ↓ min
x
, x ∈ D, (5)

(y is not obligatory feasible!) we get a family of starting
points x(y, β) for LSM. Besides, no needs to consider
all (y, β), it is sufficient to violate the inequality in (4)
for one pair (ŷ, β̂) only.

The large field of computational experiments con-
firmed the effectiveness of the approach for high dimen-
sional problems even in the case of programm imple-
mentation performed by students and post-graduation
students [8]-[13].

4. Application Problems

4.1. Bimatrix games (BMG). A new method
of finding the Nash equilibrium in BMG has been de-
veloped [3]. This one is based on reducing BMG to a
bilinear maximization problem and a following applica-
tion of Global Search Strategy. The testing on widely
generated BMG of high dimension (up to 1000× 1000)
showed the comparable effectiveness of the method.

4.2. Bilevel problems can reviewed as extremal
problems having a special constraint in the form of
another optimization problem (follower problem). Be-
sides, the usual constraints are depending on the vari-
ables of the follower. A special complex of programmes
for solving these problems was developed and success-
fully tested on a large number stochastically generated
examples of different complexity and dimension (up to
150× 150).

4.3. Linear complimentarity problem was
solved by variational approach stating it as d.c. mini-
mization problem of dimension up to 400 [13].

4.4. Problems of financial and medical di-
agnostic can be formulated in the form of nonlinear
(polyhedral) separability. The generalization of Global
Search Theory for nonsmooth case allows to develop
a programming complex for solving such problems of
rather high dimension with demonstrated its effective-
ness during computational simulations.

4.5. Well-known problems of Discrete program-
ming [8] and nonconvex problems of Optimal con-
trol [11, 12] have been also considered.
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