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The use of discrete optimization (DO) models and
algorithms makes it possible to solve many practical
problems in scheduling theory, network optimization,
routing in communication networks, facility location,
optimization in enterprise resource planning, and lo-
gistics.

Usually, discrete optimization problems (DOPs)
from applications have a special structure, and the
matrices of constraints for large-scale problems have
a lot of zero elements (sparse matrices). Graph-based
structural decomposition techniques, e.g., nonserial dy-
namic programming (NSDP) (Bertele, Brioschi [1],
Shcherbina [3]), its modifications, and tree decom-
position combined with dynamic programming [4] are
promising decomposition approaches that allow ex-
ploiting the structure of discrete problems.

It is important that aforementioned methods use just
the local information (i.e., information about elements
of given element’s neighborhood) in a process of solving
discrete problems [6]. A class of local elimination algo-
rithms is proposed in [5] as a general framework that
allows to calculate some global information about a
solution of the entire problem using local computa-
tions.

The structure of discrete optimization problems is
described by the so called structural graph. The
structural graph can be the interaction graph of the
original elements (for example, between the variables
of the problem) or the quotient graph. The quotient
graph can be obtained by merging a set of original
elements (for example, a subgraph) into a condensed
element. The original subset (subgraph) that formed
the condensed element is called the detailed graph of
this element.
A LEA [5] eliminates local elements of the problem’s
structure defined by the structural graph by computing
and storing local information about these elements in
the form of new dependencies added to the problem.
Thus, the local elimination procedure consists of two
parts:

A. The forward part eliminates elements, computes

and stores local solutions, and finally computes the
value of the objective function;

B. The backward part finds the global solution of
the whole problem using the tables of local solu-
tions; the global solution gives the optimal value
of the objective function found while performing
the forward part of the procedure.

The LEA analyzes a neighborhood Nb(x) of the cur-
rent element x in the structural graph of the problem,
applies an elimination operator (which depends on
the particular problem) to that element, calculates the
function h(Nb(x)) that contains local information
about x, and finds the local solution x∗(Nb(x)). Next,
the element x is eliminated, and a clique is created from
the elements of Nb(x). The elimination of elements and
the creation of cliques changes the structural graph and
the neighborhoods of elements. The backward part of
the local elimination algorithm reconstructs the solu-
tion of the whole problem based on the local solutions
x∗(Nb(x)).

The algorithmic scheme of the LEA is a DAG in
which the vertices correspond to the local subproblems
and the edges reflect the informational dependence of
the subproblems on each other.

Consider a sparse DOP in the following form

F (x1, x2, . . . , xn) =
∑

k∈K

fk(Xk) → max (1)

subject to

gi(XSi) Ri 0, i ∈ M = {1, 2, . . . , m}, (2)

xj ∈ Dj , j ∈ N = {1, . . . , n}, (3)

where X = {x1, . . . , xn} is a set of discrete vari-
ables, Xk ⊆ {x1, x2, . . . , xn}, k ∈ K = {1, 2, . . . , t} ,
t – number of components in the objective function,
Si ⊆ {1, 2, . . . , n}, Ri ∈ {≤,=,≥}, i ∈ M ; Dj is a fi-
nite set of admissible values of variable xj , j ∈ N .
Functions fk(Xk), k ∈ K are called components of
the objective function and can be defined in tabular
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form. We use here the notation: if S = {j1, . . . , jq}
then XS = {xj1 , . . . , xjq

}.
Introduce a graph representation of the DOP. The

structural graph of the DOP defines which variables
are in which constraints. Structure of a DOP can be
defined either by interaction graph of initial elements
(variables in the DOP) or by various derived structures,
e.g., block structures, block-tree structures defined by
the quotient graph.

Concrete choice of a structural graph of the DOP
defines different local elimination schemes: nonserial
dynamic programming, block decomposition, tree de-
composition etc.

Variables x ∈ X and y ∈ X interact in the DOP
with constraints if they both appear either in the same
component of objective function, or in the same con-
straint (in other words, if variables are both either in
a set Xk, or in a set XSi

). An interaction graph
[1] represents a structure of the DOP in a natural way.
Interaction graph of the DOP is an undirected graph
G = (X, E), such that 1) vertices X of G correspond to
variables of the DOP; 2) two vertices of G are adjacent
iff corresponding variables interact.

Set of variables interacting with a variable x ∈ X is
denoted by Nb(x) and called the neighborhood of the
variable x. For corresponding vertices a neighborhood
of a vertex x is a set of vertices of interaction graph
that are linked by edges with x. Denote the latter
neighborhood as NbG(x).

If the DOP is divided into blocks corresponding to
subsets of variables (meta-variables) or to subsets of
constraints (meta-constraints), then block structure
can be described by a structural quotient (con-
densed) graph, whose meta-nodes correspond to sub-
sets of the variables of blocks and meta-edges corre-
spond to adjacent blocks.

Consider a sparse discrete optimization problem (1)
– (3) whose structure is described by an undirected in-
teraction graph G = (X,E). Solve this problem with a
local elimination algorithm (LEA). LEA uses an order-
ing α of X: Given a graph G = (X, E) an ordering α
of X is a bijection α : X ↔ {1, 2, . . . , n} where n = |X|.
Gα and Xα are correspondingly an ordered graph and
an ordered vertex set.

In Gα, a monotone neighborhood Nb
α

G(xi) of
xi ∈ X is a set of vertices monotonely adjacent
to a vertex xi, i.e. Nb

α

G(xi) = {xj ∈ NbG(xi)|j > i}.
The graph Gx obtained from G = (X, E) (i) adding
edges so that all vertices in NbG(x) are pairwise adja-
cent, and (ii) deleting x and its incident edges is the
x–elimination graph of G. This process is called the
elimination of the vertex x.

Let us introduce the notion for the elimination tree

(etree) [2]. Given a graph G = (X,E) and an ordering
α, the elimination tree is a directed tree −→T α that has
the same vertices X as G and its edges are determined
by a parent relation defined as follows: the parent x
is the first vertex (according to the ordering α) of
the monotone neighborhood Nb

α

G+
α
(x) of x in the filled

graph G+
α .

Using the parent relation introduced above we can de-
fine a directed filled graph −→G+

α .
The underlying DAG of a local variable elimination
scheme can be constructed in the following way. At
step i, we represent the computation of the function
hxi

(NbGxi−1
(xi)) as a node of the DAG (corresponding

to the vertex xi). Then, this node containing variables
(xi, Nb

(i−1)
Gxi−1

(xi)) is linked with a first xj (accordingly
to the ordering α) which is in Nb

G
(i−1)
xi−1

(xi).

It is easy to see that the elimination tree is the DAG
of the computational procedure of the LEA. Using the
elimination tree it is possible to build a corresponding
tree decomposition.
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