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Global optimization problems, derived from high
complexity industrial applications (see, e.g., [1, 2, 17,
19, 21, 22]), are often “black box” and determined by
multiextremal objective functions. Solving efficiently
this type of problems is a great challenge, since they
present a high number of local minima, often with ex-
tremely different function values, and do not present a
simple mathematical description of the global optima.

One of the natural and powerful (from both the
theoretical and the applied points of view) assump-
tions on these problems is that the objective func-
tion has bounded slopes. In this case, the methods of
the Lipschitz global optimization can be applied (see,
e.g., [2, 5, 10, 17, 22, 23]).

This kind of global optimization problems is very
frequent in practice. Let us refer only to the follow-
ing examples: general (Lipschitz) nonlinear approxi-
mation; solution of nonlinear equations and inequali-
ties; calibration of complex nonlinear system models;
black-box systems optimization; optimization of com-
plex hierarchical systems (related, for example, to fa-
cility location, mass-service systems); etc. (see, e.g.,
[2, 4, 5, 8, 15, 17, 22] and the references given therein).

As well known, the usage of the only global infor-
mation about behavior of the objective function dur-
ing its optimization can lead to a slow convergence of
algorithms to global optimum points. Therefore, par-
ticular attention should be paid to the usage of a local
information in global optimization methods, as well.

One of the traditional ways in this context (see, e.g.,
[5, 9, 10]) recommends stopping the global procedure
and switching to a local optimization method in order
to improve the solution and to accelerate the search
during its final phase. Applying this technique can
lead to some problems related to the combination of

global and local phases, the main problem being that
of determining when to stop the global procedure and
start the local one. A premature arrest can provoke
the loss of the global solution whereas a late one can
slow down the search.

In this talk, another fruitful approaches will be dis-
cussed. The first one (the so-called local tuning ap-
proach, see [12,13,17,18,20,22]) allows global optimiza-
tion algorithms to tune their behavior to the shape of
the objective function at different subintervals of the
admissible domain by estimating the local Lipschitz
constants. The second one regards a continual local
improvement of the current best solution incorporated
in a global search procedure (see [16,17]). These tech-
niques become even more efficient when information
about the objective function derivatives is available
(see [3, 11, 14]). Several Lipschitz global optimization
methods illustrating the above-mentioned concepts will
be considered and compared numerically with some
known algorithms (see [6, 7, 11, 16, 17]).
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