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During the recent decades, problems with hierarchi-
cal (in particular, bilevel) structure seem to be the
most attractive field for many experts. In course of
investigation of bilevel programming problems the diffi-
culty arises already at the stage of defining a concept of
solution. The optimistic and pessimistic (guaranteed)
concepts of solution are the most popular. [1]–[4].

During the three decades of intensive investigation of
bilevel programming problems there were many meth-
ods of finding the optimistic solutions proposed by dif-
ferent authors (see the surveys [3], [4]). Nevertheless,
as far as we can conclude on the basis of available liter-
ature, there are only a few published results containing
numerical solutions of even test bilevel high-dimension
problems (e.g. problems with the dimension up to 200).
So, development of new numerical methods for non-
linear bilevel problems, while implying verification of
their efficiency by numerical testing, is one of the most
important problems of operations research.

This work is devoted to elaboration of new tech-
niques for finding optimistic solutions of bilevel prob-
lems, where the upper level goal function is d.c. (rep-
resented by difference of two convex functions), and
the lower level goal function is quadratic. So that the
problem is formulated as follows:
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where the functions g(·), f(·), hl(·), l = 1, ..., p are
convex on IRm+n, d ∈ IRn, b ∈ IRq, A,B, C, Q are ma-
trices of appropriate dimension, and C = CT is non-
negatively defined.

Also we investigate a particular case of problem (P)
with quadratic goal function on the upper and lower

levels:
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where c ∈ IRm; d, d1 ∈ IRn; b ∈ IRp; b1 ∈ IRq;
A, B, C, D, Q, A1, B1, D1, Q1 — are matrices of
appropriate dimension, C = CT ≥ 0, D = DT ≥ 0,
D1 = DT

1 ≥ 0.
Such bilevel problems may be reduced to one or sev-

eral single-level nonconvex (d.c.) problems via, for in-
stance, the KKT-rule (see, for example, [1], [2]):

g(x, y)− f(x, y) + µ〈v, b−Ax−By〉 ↓ min
x,y,v

,

(x, y, v) ∈ D
4
= {(x, y, v) | (x, y) ∈ X, v ≥ 0,

Cy + d + xQ + vB = 0, Ax + By ≤ b};


(DC)
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+µ〈v, b1 −A1x−B1y〉 ↓ min
x,y,v

,

(x, y, v) ∈ D
4
= {(x, y, v) | Ax + By ≤ b, v ≥ 0,

A1x + B1y ≤ b1, D1y + d1 + xQ1 + vB1 = 0},


(DC1)

where µ > 0 is a penalty parameter,
It is known, that nonconvex problems may have a

large number of local solutions, which are far – even
from the viewpoint of the goal function’s value – from
a global one [5], [6].

Direct application of standard convex optimization
methods [5] turns out to be inefficient from the view
point of global search. So, there appears the need to
construct new global search methods, allowing to es-
cape from a stationary (critical) point.

For the purpose of solving the problems formulated
above, we intend to construct the algorithms based on
the Global Search Theory (GST) in d.c. programming
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problems developed in [6]–[11]. Global Search Algo-
rithms based on GST consist of two principal stages:
1) a special local search methods, which takes into
account the structure of the problem under scrutiny;
2) the procedures, based on Global Optimality Con-
ditions, which allow to improve the point provided by
the Local Search Method [6]–[11].

In particular, a Local Search in problem (DC) con-
sists in the consecutive (approximate) solving the con-
vex linearized problems of the form ((xs, ys, vs) ∈ D)

g(x, y) +
µ

4
(4〈v, b〉+ ‖v −Ax‖2 + ‖v −By‖2)−

−〈∇xyf(xs, ys)(x, y)〉 − µ

2
(〈vs + Axs, v〉+

+〈(vs + Axs)A, x〉+ 〈vs + Bys, v〉+
+〈(vs + Bys)B, y〉) ↓ min

x,y,v
, (x, y, v) ∈ D.


(PL)

Linearization in the problem (PL) is performed for
the basic (generic) nonconvexity of a problem (DC),
and problem (PL) can be solved by standard software
packages.

To the end of a local search for Problem (DC1) we
apply the idea of consecutive solving partial problems
with respect to two groups of variables (see [8]–[11]). In
order to do it, we separate the pair (x, y) and the vari-
able v. For a fixed value of variable v problem (DC1)
becomes a convex quadratic optimization problem, and
for a fixed pair (x, y) we obtain a problem of linear pro-
gramming with respect to v ((xs, ys, vs) ∈ D):
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〈x, Cx〉+ 〈c, x〉+
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2
〈y, Dy〉+ 〈d, y〉−

−µ(〈vsA1, x〉+ 〈vsB1, y〉) ↓ min
x,y

,

Ax + By ≤ b, A1x + B1y ≤ b1,
D1y + d1 + xQ1 + vsB1 = 0,

 (QP)

〈b1 −A1x
s −B1y

s, v〉 ↓ min
v

,

v ≥ 0, D1y
s + d1 + xsQ1 + vB1 = 0.

}
(LP)

These auxiliary problems can be solved with the help
of standard software packages also.

The procedures of Global Search for problems (DC)
and (DC1) based on the corresponding strategy of
global search for problems of d.c. minimization [6]–[11]
because the goal function in problems of such kind may
be represented as a difference of two convex functions.
In combination with directed selection, in the process
of increasing the the value of parameters µ > 0, the
procedures of global search forms a methods for solving
problems (P) and (P1). The crucial moment of Global
Search procedures consists in constructing an approx-
imation of the level surface of the convex function,
which generates the basic nonconvexity in the problem

under consideration. For the purpose of constructing
such an approximation we have to take account of the
information related to the problems statements.

Computational testing of the elaborated methods
has shown the efficiency of the proposed approach.
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