Solving strongly monotone variational and quasi-variational inequalities

Yu. Nesterov; L. Scrimali[†]

*CORE, Université Catholique de Louvain, Yurii.Nesterov@uclouvain.be [†]University of Catania, Scrimali@dmi.unict.it

Let $Q \subseteq E$ be a closed convex set. Consider a continuous operator g(x): $Q \to E^*$, which is strongly monotone with constant $\mu > 0$. The variational inequality problem (VI) consists in finding $x^*(Q) \in Q$:

$$\langle g(x^*(Q)), y - x^*(Q) \rangle \ge 0 \quad \forall y \in Q.$$
 (1)

In order to describe the quality of approximate solutions to (1), we introduce the following *merit function*:

$$f(x) = \sup_{y \in Q} \left\{ \langle g(y), x - y \rangle + \frac{1}{2} \mu \| y - x \|^2 \right\}.$$
 (2)

where the norm $\|\cdot\|$ is Euclidean.

Theorem 1 Merit function f(x) is well defined and strongly convex on Q with convexity parameter μ . Moreover, it is non-negative on Q and vanishes only at the unique solution of variational inequality (1).

For $\beta > 0$, denote

$$\begin{split} \psi_y^\beta(x) &= \langle g(y), y - x \rangle - \frac{1}{2}\beta \|x - y\|^2, \\ \Psi_k(x) &= \sum_{i=0}^k \lambda_i \psi_{y_i}^\mu(x). \end{split}$$

Let g be Lipschitz continuous on Q with constant L, and $\bar{x} \in Q$. Denote $\gamma = \frac{L}{\mu} \ge 1$. Consider the method

Theorem 2 For any $k \ge 0$, we have

$$\frac{\mu}{2} \cdot \|\tilde{y}_k - x^*\|^2 \leq f(\tilde{y}_k) \leq f(\bar{x}) \cdot \gamma^2 \cdot e^{-k/(\gamma+1)}.$$

Note that the this process is much faster than the gradient method which converges as $O(e^{-k/\gamma^2})$.

Consider now quasi-variational inequalities [1]. Let $\mathcal{Q}: E \to 2^E$ be a multifunction with nonempty closed and convex values. We are interested in the following problem (QVI): find $x_* \in \mathcal{Q}(x_*)$ such that

$$\langle g(x_*), y - x_* \rangle \ge 0, \quad \forall y \in \mathcal{Q}(x_*).$$
 (4)

In order to prove the existence of its solution, we need to assume that the set Q(x) is not changing too quickly.

Let us introduce the relaxation operator $T(x) = x^*(\mathcal{Q}(x))$ defined by the following relations:

$$\begin{array}{rccc} T(x) & \in & \mathcal{Q}(x), \\ \langle g(T(x)), y - T(x) \rangle & \geq & 0 & \forall y \in \mathcal{Q}(x). \end{array}$$
(5)

Clearly, the solution to (4) is a fixed point of T(x).

Theorem 3 Assume that there exists some $\alpha \ge 0$ such that for all $x, y, z \in E$ we have

$$\|proj_{\mathcal{Q}(x)}(z) - proj_{\mathcal{Q}(y)}(z)\| \leq \alpha \|x - y\|.$$

Then T(x) is Lipschitz continuous with constant $\alpha\gamma$.

Corollary 1 If $\alpha < \gamma^{-1}$, then there exists a unique solution to problem (4).

It appears that the most efficient way for solving QVI is an *approximate tracing* of the fixed-point iterates $x_{k+1} \approx T(x_k)$ by the method (3). It is much faster then the gradient-type technique [2].

References

- A. Bensoussan, M. Goursat, J.-L- Lions. Contrôle impulsionnel et inéquations quasi-variationnelle. *Compte rendu de l'Académie des Sciences Paris*, Série A 276, 1279–1284 (1973).
- [2] M. Kocvara M., J.V. Outrata. On a class of quasivariational inequalities. *Optimization Methods and Software*, 5, 275-295 (1995).