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We introduce a special class for a “Fixed charge minimal network flow problems ( FMNP )h (sometimes,
called “Network Synthesis Problems” in Wynants [3]) . FMNP have so many applications in telecommunica-
tion and transportation literature.

A formulation of FMNP is as follows.
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FMNF is proved to be NP-hard in Garey [1]. Bacically, for complete graphs. And Mohri [2] showed that
they can be solved for a kind of “series-parallel graph” in a strong polynomial time .

In this presentation, we show that they can be solved for more generalized graphs in a strong polynomial
time. If we found a partition on a graph G(N,A) i.e (Gi(Ni, Ai))i where Gi is a sub-graph which has a property
like “series-parallel graph” and generate a graph G∗(N∗, A∗) which is a forest by regarding each Ni as one node
of N∗, they would be solved in a strong polynomial time.

Also, if we have time, we would like to talk about a hub (facility location) problem combined with FMNP
for some tractable cases.
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