Continuous school timetable with duration of 4 and 5

A. M. Magomedov^{*}, T. A. Magomedov[†]

*Daghestan state university, magomedtagir1@yandex.ru †Daghestan state university, magomedtagir@mail.ru

1. Introduction. Let $L = \{1, \ldots, l\}$ be a set of teachers, and let $T = \{1, \ldots, t\}$ be a set of academic hours, acceptable for a school timetable, $N = \{1, \ldots, n\}$ — a set of classes (n < l); for each $i \in L$ such multiset ω_i , $|\omega_i| \leq t$, with elements from N is given that for each $j \in N$

$$\sum_{i=1}^{l} k_{i,j} = t,$$

where $k_{i,j}$ — the number of occurrences j in ω_i .

It is supposed that $(l \times m)$ -matrix r (timetable) with elements from the set $\{0, \ldots, n\}$ was build and it satisfy to the following requirements: (1) multiset of nonzero elements in the *i*th row is equal to $\omega_i, \forall i \in L$; (2) each column contain a set N and l - n elements that are equal to zero.

It is considered the problem of the $(l \times m)$ -matrix R (continuous timetable) existence that satisfy to the following requirements: (1) multiset of the elements in each line (row/column) of the matrix R is the same as in the corresponding line of the matrix r; (2) nonzero elements in each row of the matrix R are allocated continuously in the sense that all cells that are located between any pair of nonzero elements also contain nonzero elements.

Further by τ_p a family $\{\omega_i : |\omega_i| = p\}$ is denoted.

2. Timetable with duration of 4. In current section we use the same terminology as in [1].

Let t = 4. Create flow network S with nodes S_1 (source), $X = \{x_j : j \in N\}$, $Y = \{y_i : i \in L\}$ and S_2 (sink). We use notations lo(e) hi(e) for upper and lower bounds of the flow for the edge e correspondingly.

From S_1 to each node $x_j \in X$ create oriented edge $e_j, lo(e_j) = hi(e_j) = 2;$

from $x_j \in X$ to $y_i \in Y$ create $k_{i,j}$ parallel oriented edges $e_{i,j}$ and for each of them suppose $lo(e_{i,j}) = 0$, $hi(e_{i,j}) = 1$;

at last, from each node $y_i \in Y$ to node S_2 create oriented edge e_i , and suppose $lo(e_i) = 0$, $hi(e_i) = 1$, when a $|\omega_i| = 1$; $lo(e_i) = 1$, $hi(e_i) = 2$, when a $|\omega_i| = 2$; $lo(e_i) = hi(e_i) = 2$, when a $|\omega_i| \in \{3, 4\}$.

Theorem 1 When t = 4 continuous timetable exists if and only if feasible flow exists in the flow network S.

3. Timetable with duration of 5.

Theorem 2 When t = 5 and a family τ_1 is empty, than for continuous timetable existence necessary and sufficient fulfillment of the following conditions: (1) family τ_4 is empty; (2) for a family $\tau_3 \cup \tau_5$ exists a set of distinct representatives.

References

 L. Ford and D. Fulkerson. Flows in Networks. Princeton University Press: New Jersey, 1962.