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1 Introduction

In this paper, we propose an approach for obtaining
metrics for a variety of scheduling problems.

We consider a scheduling problem A, that is identi-
fied with the following:

e a set of numerical parameters
Q= {w17w27 s 7wm}7

e a set of constraints for feasible values of parame-
ters;

e a set of feasible solutions (schedules);
e a cost function that has to be minimized.

Any instance of problem A is identified by its size m
and values of parameters from Q. Let w* be the value
of parameter w € ) for instance A. The cost value of
a schedule 7 for instance A is denoted as F4 ().

An instance A of problem A is considered as a
point in the m-dimentional space with coordinates
(wit,ws', ..., wA). Our approach allows to obtain an
upper bound for the optimal cost value (absolute er-
ror) that is computed based on two instances of the
problem.

This upper bound is expressed as a function of 2m
parameters (the first m parameters refer to the first
instance, and the last m parameters — to the last one),
and this function can be considered as a metrics in the
m-~dimensional space. Based on this metrics, we are
able to define a distance between these instances as a
natural difference of cost values.

2 Metrics
Let consider function f : RxR... x R — R, where
—_——

2m
the first m parameters determine instance A, and the

*The work is part of the project supported by the program
of Presidium of Russian Academy of Sciences N 29 ”The math-
ematical theory of control”.

last m parameters — instance B, i.e.,
_ A A A B B B
f=fwi wg, . . Wi, wi Wy, wh).

To simplify notation, we write f = f(A4, B).
Now, let there exist a function f(A, B) such that for
any schedule 7 and any instances A and B, we have

FA(r) - FB(r) < (A, B).
Then, the following theorem holds:

Theorem 1 For any instances A and B we have
0< FA(WB) - FA(WA) < p(A7B),

where ™ and ©8 are optimal schedules for respective

instances, and p(A, B) = f(A, B) + f(B, A).

Theorem 1 has the following practical application.
Suppose we cannot solve an instance A due to some
reasons (high complexity, for example). Consider an
instance B that we can solve (B is from a polynomi-
ally solvable area). Using Theorem 1 we can estimate
the optimal value of the cost function for A based on
the solution of B. Moreover, for some problems we
can find (in polynomial time) such instance B from a
polynomially solvable area that minimizes the absolute
€error.

Function p(A, B) from Theorem 1 has the following
properties:

1. p(A, B) = p(B, A);
2. p(A, A) =0 if and only if f(A, A) = 0;

3. If for any instances A, B, and C we have f(A4,C) <
F(A,B) + f(B,C), than p(A,C) < p(A,B) +
p(B,C).

If Property 3 holds then we consider function p(A, B)
as a metric in m-dimensional space.

For some scheduling problems we can strengthen
Theorem 1.



Let us consider some partition of set € into sub-
sets 1, Q... U, ien, N =0 and U], Qi = Q.
Suppose for each ; there exists such a function fo\q,,
that for any schedule 7 and any instances A ~q\q, B,
we have

FA () — FB(r) < fa\a, (A, B).
Then the following theorem holds (to simplify notation
we write f; = fo\a,)-
Theorem 2 For any instances A and B we have

0< FAxP) = FA(r) < pi(A, B) + ...+ pi(A, B),

where 7 and 78 are optimal schedules for respective

instances and p;(A, B) = fi(A, B) + fi(B, A).

Theorem 2 helps us to construct a metric for the
problem in the case when we cannot obtain func-
tion f(A, B) from Theorem 1 for any instances A and
B. Based on Theorem 2 we can construct functions
fi(A, B) for instances A and B that differ only in some
subset parameters §2;.

3 Applications for some schedul-
ing problems

The approach listed above allows us to easily obtain
metrics and optimal cost value estimations for a variety
of scheduling problems. In this section we give metrics
for two classical scheduling problems: minimization of
mazimum lateness (1 | r; | Lmax) and minimization of
total tardiness (1 || ) Tj) on a single machine.

For both problems we have n jobs that have to be
processed on a single machine without preemption and
idle time of the machine. Each job has a processing
time p; > 0 and a due date d;. In the 1 | 7j | Limax
problem, release dates r; are given for jobs, before this
time the execution of a job cannot be started.

A schedule 7 for these problems is represented as
a permutation of set {1,2,...,n}. The order of jobs
in a schedule 7w allows us to compute the value of the
completion time C; of job j. The objective is to find
an optimal schedule that minimizes:

o mazimum lateness Lmax(m) = max;{C; — d;};

e total tardiness T'(m) = 3, max{0,C; — d; };

Maximum lateness on a single machine.

FA(ﬂ'B)

FA(r?) <

(max{rf - rf} - min{rf - rf}) +
(max{p;' —p7’} — min{p}' — pj'}) +
(max{d}-4 - df} - min{d}-4 - df}).

Total tardiness on a single machine

FARP) = FA(rA) <3 |d = dP[+n " |pf = pP.
j=1 j=1

Based on the above estimations, we can minimize
these estimations by choosing of appropriate instance
B from a polynomially solvable area.

For example, consider the polynomial solvable case
for the 1 || > T problem when due dates of all jobs are
constant d. In this case the SPT (Shortest Processing
Time first) schedule is optimal. To minimize the esti-
mation we need to find such a value d* that minimizes
the value Y7, [df' — d*|.
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