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1 Introduction

In this paper, we propose an approach for obtaining
metrics for a variety of scheduling problems.

We consider a scheduling problem A, that is identi-
fied with the following:

• a set of numerical parameters
Ω = {ω1, ω2, . . . , ωm};

• a set of constraints for feasible values of parame-
ters;

• a set of feasible solutions (schedules);

• a cost function that has to be minimized.

Any instance of problem A is identified by its size m
and values of parameters from Ω. Let ωA be the value
of parameter ω ∈ Ω for instance A. The cost value of
a schedule π for instance A is denoted as FA(π).

An instance A of problem A is considered as a
point in the m-dimentional space with coordinates
(ωA

1 , ω
A
2 , . . . , ω

A
m). Our approach allows to obtain an

upper bound for the optimal cost value (absolute er-
ror) that is computed based on two instances of the
problem.

This upper bound is expressed as a function of 2m
parameters (the first m parameters refer to the first
instance, and the last m parameters – to the last one),
and this function can be considered as a metrics in the
m-dimensional space. Based on this metrics, we are
able to define a distance between these instances as a
natural difference of cost values.

2 Metrics

Let consider function f : R× R . . .× R︸ ︷︷ ︸
2m

→ R, where

the first m parameters determine instance A, and the
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last m parameters – instance B, i.e.,

f = f(ωA
1 , ω

A
2 , . . . , ω

A
m, ω

B
1 , ω

B
1 , . . . , ω

B
m).

To simplify notation, we write f = f(A,B).
Now, let there exist a function f(A,B) such that for

any schedule π and any instances A and B, we have

FA(π)− FB(π) ≤ f(A,B).

Then, the following theorem holds:

Theorem 1 For any instances A and B we have

0 ≤ FA(πB)− FA(πA) ≤ ρ(A,B),

where πA and πB are optimal schedules for respective
instances, and ρ(A,B) = f(A,B) + f(B,A).

Theorem 1 has the following practical application.
Suppose we cannot solve an instance A due to some
reasons (high complexity, for example). Consider an
instance B that we can solve (B is from a polynomi-
ally solvable area). Using Theorem 1 we can estimate
the optimal value of the cost function for A based on
the solution of B. Moreover, for some problems we
can find (in polynomial time) such instance B from a
polynomially solvable area that minimizes the absolute
error.

Function ρ(A,B) from Theorem 1 has the following
properties:

1. ρ(A,B) = ρ(B,A);

2. ρ(A,A) = 0 if and only if f(A,A) = 0;

3. If for any instancesA, B, and C we have f(A,C) ≤
f(A,B) + f(B,C), than ρ(A,C) ≤ ρ(A,B) +
ρ(B,C).

If Property 3 holds then we consider function ρ(A,B)
as a metric in m-dimensional space.

For some scheduling problems we can strengthen
Theorem 1.
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Let us consider some partition of set Ω into sub-
sets Ω1,Ω2 . . . ,Ωk, i.e., Ωi

⋂
Ωj = ∅ and

⋃k
i=1 Ωi = Ω.

Suppose for each Ωi there exists such a function fΩ\Ωi
,

that for any schedule π and any instances A yΩ\Ωi
B,

we have

FA(π)− FB(π) ≤ fΩ\Ωi
(A,B).

Then the following theorem holds (to simplify notation
we write fi = fΩ\Ωi

).

Theorem 2 For any instances A and B we have

0 ≤ FA(πB)− FA(πA) ≤ ρ1(A,B) + . . .+ ρk(A,B),

where πA and πB are optimal schedules for respective
instances and ρi(A,B) = fi(A,B) + fi(B,A).

Theorem 2 helps us to construct a metric for the
problem in the case when we cannot obtain func-
tion f(A,B) from Theorem 1 for any instances A and
B. Based on Theorem 2 we can construct functions
fi(A,B) for instances A and B that differ only in some
subset parameters Ωi.

3 Applications for some schedul-
ing problems

The approach listed above allows us to easily obtain
metrics and optimal cost value estimations for a variety
of scheduling problems. In this section we give metrics
for two classical scheduling problems: minimization of
maximum lateness (1 | rj | Lmax) and minimization of
total tardiness (1 | |

∑
Tj) on a single machine.

For both problems we have n jobs that have to be
processed on a single machine without preemption and
idle time of the machine. Each job has a processing
time pj > 0 and a due date dj . In the 1 | rj | Lmax

problem, release dates rj are given for jobs, before this
time the execution of a job cannot be started.

A schedule π for these problems is represented as
a permutation of set {1, 2, . . . , n}. The order of jobs
in a schedule π allows us to compute the value of the
completion time Cj of job j. The objective is to find
an optimal schedule that minimizes:

• maximum lateness Lmax(π) = maxj{Cj − dj};

• total tardiness T (π) =
∑

j max{0, Cj − dj};

Maximum lateness on a single machine.

FA(πB) − FA(πA) ≤
(max{rA

j − rB
j } −min{rA

j − rB
j }) +

(max{pA
j − pB

j } −min{pA
j − pB

j }) +

(max{dA
j − dB

j } −min{dA
j − dB

j }).

Total tardiness on a single machine

FA(πB)− FA(πA) ≤
n∑

j=1

|dA
j − dB

j |+ n

n∑
j=1

|pA
j − pB

j |.

Based on the above estimations, we can minimize
these estimations by choosing of appropriate instance
B from a polynomially solvable area.

For example, consider the polynomial solvable case
for the 1 | |

∑
Tj problem when due dates of all jobs are

constant d. In this case the SPT (Shortest Processing
Time first) schedule is optimal. To minimize the esti-
mation we need to find such a value d∗ that minimizes
the value

∑n
j=1 |dA

j − d∗|.
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