
Solving the Travelling Salesman Problem on Shared and

Distributed Memory Multiprocessor Systems

A.L. Ignatyev∗, M. A.Posypkin†, I. Kh. Sigal‡

∗Computing Center RAS, ignatyev.alexander@gmail.com
†Institute for System Analysis RAS, mposypkin@mail.ru

†Computing Center RAS, sigal@ccas.ru

Parallel computers can roughly be divided into two
families: systems with shared memory and systems
with distributed memory organization. Shared mem-
ory architecture uses a single address space. Systems
based on this concept allow processor communication
through variables stored in a common address space.
Another major architecture for parallel computers em-
ploys a scheme by which each processor has its own
memory module. Such a distributed-memory multi-
processor is constructed by connecting each component
with a high-speed communications network. Proces-
sors communicate to each other over the network.

In this paper we consider the famous Traveling Sales-
man Problem (TSP) [1], formulated as follows: given a
set of cities along with the cost of travel between each
pair of them, the problem is to find the cheapest way
of visiting all the cities and returning to the starting
point. Due to the high computational complexity the
TSP is a frequent target for parallel and distributed
computing.

We selected the Branch-and-Bound approach to
solve the TSP problem. The Branch-and-Bound
(B&B) is a general name for methods to split an initial
problem into subproblems which are sooner or later
eliminated by bounding rules. Bounding rules deter-
mine whether a subproblem can yield a solution bet-
ter than the best solution found so far. The latter
is called incumbent solution. Bounding is often done
by comparing lower and upper bounds: a subproblem
can be pruned if the lower bound for its objective is
larger or equal to the current upper bound, i.e. in-
cumbent solution. Thus the quality upper bound sig-
nificantly reduces the search space and in some cases
leads to dramatic performance improvements. Fortu-
nately Branch-and-Bound is highly suitable for parallel
and distributed computing: after splitting the parts of
the solution space can be processed simultaneously.

The B&B scheme for TSP was implemented within

the BNB-Solver [2] framework. The BNB-Solver is
a library for solving discrete and global optimiza-
tion problems on serial machines, shared memory
and distributed memory parallel computers. BNB-
Solver follows the standard approach taken in soft-
ware frameworks for discrete and global optimization:
the problem-specific and problem-independent (core)
parts are separated and implemented independently.
Coupling of problem-specific and problem-independent
parts is done via C++ template mechanism. Problem-
specific branching operations, bounding rules and type
definitions for subproblems and feasible points are en-
capsulated by a problem factory class. This class is
substituted as a template argument within specializa-
tions of core classes.

Table 1: Time (sec) for different problem instances and
different lower bound procedures obtained on 64 cores.

Problem ftv33 ftv38 ftv47 ftv55
Matrix
reduction 0.12 0.21 3.61 108.02

Assignment
problem 0.11 0.08 1.64 5.03

Experiments were run on a MVS100K [3] computa-
tional cluster consisting of 990 SMP nodes with two
4-core Intel Xeon processors in each. The first series of
experiments was aimed at choosing best lower bound
procedure. We implemented two procedures for cal-
culating lower bound. The first one is based on ma-
trix reduction. The second uses an assignement prob-
lem. The bound based on a assignment problem is
tighter but requires more computational efforts. We
compared both approaches on several assymetric TSP
instances from TSPLIB [4]. The results presented in
Table 1 suggest that for asymmetric TSP the lower

1



Table 2: Time (sec) of distributed memory implemen-
tation of ftv90 instance

1 2 4 8 16 32 64
636.8 96.77 35.25 41.33 26.63 19.36 8.17

Table 3: Time (sec) of shared memory implementation
for ftv47 instance

1 2 3 4
7.07 3.98 2.67 2.23

bound based on assignement problem is favorable. We
selected this approach for further experiments. Table 2
demonstrates running time for 90-cities problem from
the collection [4]. The number of processors varies from
1 to 64. The obtained results confirm good scalability
for distributed memory implementation: the running
time decreases from 636.8 to 8.17 seconds. The table
also demonstrates the well known phenomena — so
called search anomalies: the ratio of number of proces-
sors and running time is not constant. It is explained
by different number of expanded subproblems that de-
pends on an order of search tree traversal.

Running time of shared memory implementation for
ftv47 problem obtained on Intel Core 2 Quad Q9650 3.0
GHz is presented in the Table 3. Number of threads
varies from 1 to 4. Distributed memory implementa-
tion scales better w.r.t. shared memory one. This fact
indicates problems with threads contention for shared
resources.

Table 4 lists running time obtained with distributed
memory implementation on 64 computational cores.
Eight instances from [4] were taken with the number
of cities ranging from 44 to 443.

In future we plan to improve the shared memory
implementation by applying more intellectual mem-
ory management scheme and implementing tree-based
storage for subproblems. BNB-Solver library supports

Table 4: Running time (sec) for different TSP instances

Ftv 44 Ftv90 Ftv100 Ftv110
0.09 4.1 104 888
rbg323 rbg358 rbg403 rbg443
277 553 1259 2523

hybrid approaches combining exact (B&B) and heuris-
tic methods. Hybrid approaches showed very good per-
formance for knapsack problem [5]. We are going to try
hybrid approaches for TSP problem as well.

Acknowledgements. This work was supported by
RFBR grant 08-07-00072-a.

References

[1] E. L. Lawler , J. K. Lenstra, A. H. G. Rinnooy Kan,
D. B. Shmoys, eds. 1985. The travelling salesman
problem. John Willey & Sons, Chichester, UK.

[2] Y. Evtushenko, M. Posypkin, I. Sigal, A frame-
work for parallel large-scale global optimization //
Computer Science - Research and Development (in
print)

[3] Joint Supercomputer Center. http://www.jscc.ru

[4] G. Reinelt, TSPLIB - A Traveling Salesman Prob-
lem Library // ORSA Journal on Computing. 1991.
N. 3. P. 376-384.

[5] M. Posypkin, I. Sigal, A combined parallel algo-
rithm for solving the knapsack problem, Journal of
Computer and Systems Sciences International, Vol.
47, N. 4, p.543–551.

2


