On Monotonicity of a Mapping Related to the Non-Cooperative Many-Player Game

E.G. Golshtein*

*Central Economics and Mathematics Institute RAS, golshtn@cemi.rssi.ru

Let X_i and X_i^0 be non-empty subsets of a Euclidean space E_i with $X_i \subset X_i^0$, and let \hat{X}_i be direct products of X_j where $1 \leq j \leq k, \ j \neq i$. Next, define X = $X_i \times \widehat{X}_i$, and let f_i be a real-valued function defined over X, $1 \leq i \leq k$; finally, let $k \geq 2$ be an integer number. We introduce a non-cooperative game Γ with k players by specifying, for each player i, her strategy set X_i and payoff function f_i . Denote by $X^*_{\Gamma} \subset X$ the set of Nash equilibrium points of the game Γ . We say that a game Γ satisfies condition Q_1 if X is a convex compact set, the function f_i is continuous on X and concave by $x_i \in X_i$ for each (fixed) $\hat{x}_i \in X_i$. Condition Q_1 guarantees that the set X^*_{Γ} is non-empty. Now in addition to condition Q_1 , we demand that the set X_i^0 be open and convex, the function f_i be defined on the set $X_i^0 \times X_i$ and concave (for each fixed $\hat{x}_i \in X_i$) with respect to $x_i \in X_i^0$, $1 \le i \le k$. All these restrictions will be referred to as condition Q_2 . When condition Q_2 holds for a game Γ we can define a point-to-set mapping T_{Γ} , which associates points of X with nonempty convex compact subsets of the Euclidean space $E = E_1 \times \cdots \times E_k$. The mapping T_{Γ} is determined by the relationship $T_{\Gamma}(x) = \{t = (t_1, \ldots, t_k): -t_i \in$ $\partial_{x_i} f_i(x), 1 \leq i \leq k$, $x \in X$, where $\partial_{x_i} f(x)$ is the subdifferential of f_i at the point x with respect to x_i .

Any point-to-set mapping T associating points of a set $X \subset E$ with non-empty subsets of E, generates a variational inequality problem $t \in T(x)$, $\langle t, x' - x \rangle \geq$ $0 \quad \forall x' \in X$. Denote by $X^*(T)$ the set of all solutions to the variational inequality problem generated by the mapping T. Taking into account that $X_{\Gamma}^* = X^*(T_{\Gamma})$, one can find Nash equilibrium points of the non-cooperative game Γ by solving the variational inequality problem induced by the mapping T_{Γ} .

Now assume that a mapping T satisfies the following two requirements:

(A) the sets X and T(x) for any $x \in X$ are convex and compact, the mapping T is upper semi-continuous on X;

(B) the mapping T is monotone.

In [1], we describe a quite efficient numerical method

solving variational inequality problems, which is based upon an extension of the well-known method of levels. Under assumptions A and B, we also establishe that a sequence of points generated by this algorithm converges to the set $X^*(T)$. Now if requirement Q_2 holds for a game Γ , then mapping T_{Γ} satisfies condition A.

Consider a finite non-cooperative k-person game, in which each player *i* has n_i strategies, and her payoff function is determined by a k-dimesional table $A_i = (a_{s_1...s_k}^{(i)})$, where $a_{s_1...s_k}^{(i)}$ is the *i*-th player's payoff when player α chooses strategy s_{α} , $1 \leq \alpha \leq k$. If we extend the strategy set and introduce mixed strategies, we come to a k-person game Γ , in which

$$X_{i} = \left\{ x_{i} = (x_{i1}, \dots, x_{in_{i}}) : \\ \sum_{j=1}^{n_{i}} x_{ij} = 1, \quad x_{ij} \ge 0, \ 0 \le j \le n_{i} \right\}, \quad (1)$$
$$f_{i}(x) = \sum_{s_{1},\dots,s_{k}} a_{s_{1}\dots s_{k}}^{(i)} x_{1s_{1}} \cdots x_{ks_{k}}, \ 1 \le i \le k,$$

where $x = (x_1, \ldots, x_k) \in X$.

Theorem 1 Let Γ be a game determined by relationships (1). The mapping T_{Γ} is monotone if, and only if it is possible to represent the tables A_i as follows: $A_i = \sum_{j=1}^k A_{ij}, 1 \leq i \leq k$, where entries of a kdimesional table A_{ij} depend only upon indices s_i and s_j when $i \neq j$, and do not depend on the index s_i whenever i = j. Besides, for any $i \neq j$, all entries of tables $A_{ij} + A_{ji}$ must equal zero.

This work was supported by the Russian Foundation for Basic Research, project no. 09–01–00156.

References

 E. G. Gol'stein. A Method to Solve Variational Inequalities Defined by Monotone Mappings. Journal of Comp. Math. and Mathem. Physics, 2002, Vol. 42, No. 7. (In Russian).