Functional Approach for Hamiltonian Circuit and Graph Isomorphism Problems

R. T. Faizullin, Omsk State Technical University, r.t.faizullin@mail.ru

The aim of this work is to establish relation between well-known basic problems of cryptanalysis [1],[2] as Hamiltonian Circuit and Subgraph Isomorphism problems and global optimization problem for classes of functionals constructed as sums of low dimensional polynomials. Let's consider for arbitrary graph wellknown Hamiltonian Circuit problem (way via circle vortex by vortex where vortexes is not equal). We can numerate the graph vortexes via prime numbers r_j where $r_1 = 3$ and $r_{j+1} = 2r_j + s_j$. We have the sum: $R = \sum_{j=1}^n r_j$ from which we can recognize r_i without order. Let's Υ_i is a set of contacted vortexes with vortex *i* where *i* is one of the numbers r_j .

Then we have next result:

Theorem 0.1 If there are s Hamiltonian circuits with path numbers $t_1^r, ..., t_n^r, 1 \le r \le s$ then for every $m \ge 2$ from natural numbers global minimum which equal to zero of every functionals:

$$\begin{split} S_m(x_1,.,x_n) &= \sum_{v=1}^n \prod_{j=1}^n \prod_{l,p \in \Upsilon_{i,i=r_v}}^n ((i+l+p) \\ &-x_{j-1} - x_j - x_{j+1})^2 \\ &+ (mi+l+p-x_{j-1} - mx_j - x_{j+1})^2 + \Theta \end{split}$$

$$D_m(x_1, ., x_n) = \sum_{v=1}^n \prod_{j=1}^n \prod_{l, p \in \Upsilon_{i, i=r_v}}^n ((i/lp - x_j/x_{j-1}x_{j+1})^2 + (i^2/lp - x_j^2/x_{j+1}x_{j-1})^2) + \Theta$$

where
$$\Theta = (R - \sum_{v=1}^n x_w)^2$$

give to us natural numbers $x_1 = t_1^r, ..., x_n = t_n^r$ for one of the r. Moreover, if there exist constant $\varepsilon \simeq 1$ and there value of S_m or D_m equal to ε there are at list one Hamiltonian circuit.

Let's consider $D_m(x_1, ..., x_n) = 0$ where every part of sum is equal to zero or on the other words for every unique number i/lp exist equal value $x_j/x_{j-1}x_{j+1}$. Hence, we can write $\alpha x_j/\beta x_{j-1}\gamma x_{j+1} = i/lp$. Then $\alpha = \beta \gamma$ but if we consider $(i/lp - x_j/x_{j-1}x_{j+1})^2$ and $(i^2/lp - x_j^2/x_{j+1}x_{j-1})^2)$ we can write $\alpha = 1$ and $x_j = i$ so every part of sum which equal to zero related with only one number j. Also, number of same parts is equal to n. We can write $lp = x_{j-1}x_{j+1}$ and factors of product are natural numbers related with other clauses then $x_{j-1} = l$ and $x_{j+1} = p$.

We can say x_{j-1}, x_j, x_{j+1} are vortexes l, i, p part of Hamiltonian Circuit. If it's not then there are three other natural numbers $x_{j_1-1}, x_{j_1}, x_{j_1+1}$ marked other part of the circle $x_1, x_2, ..., x_n$. Then x_{j_1} is equal to ibut x_{j_1-1} is not equal to l. Hence there are not enough numbers of the 'thirds' for every i.

For S proof is same so sums are similar for products of D.

How we can solve problem numerically? We can consider stationary point conditions:

$$\frac{\partial S}{\partial x_j} = 0 \ j = 1, ..n$$

as the system of nonlinear equations where unknowns are x_j . It's more effective approach then consideration of ∇D . We can solve it with help of some kinds of well known low relaxation methods.

Note, our problem is NP-complete and problem of global extremum NP-complete too. But if we find exact global minimum which equal to ε we can tested problem for some large m and it can give to as part of the answer for co - NP problem - Hamiltonian Graph.

Let us consider prime numbers r_i . Then we can write.

Theorem 0.2 Let us consider two graphs G_1 G_2 . Numbers of the vertexes G_1 are r_i . Numbers of the vertexes of G_2 are natural numbers j = 1, 2, ...n and for every j related unknown weight x_j .

If there exist vector $x_1, ..., x_n$ where $I_m(x_1, ..., x_n) = 0$ and function with $m \ge 2$

$$I_m(x_1,..,x_n) = \sum_{v=1}^n \prod_{j=1}^n ((i/\prod_{p \in \Upsilon_{i,i=r_v}} p - x_j/\prod_{s \in \Upsilon_j} x_s)^2$$

$$+(i^m/\prod_{p\in\Upsilon_{i,i=r_v}}p-x_j^m/\prod_{s\in\Upsilon_j}x_s)^2)$$

then graphs G_k are isomorphic and isomorphism can be described as $\phi : i \to j$, where $i = x_j$.

Modified form of I_m :

$$\begin{aligned} SubI_m(x_1,.,x_n) &= \sum_{w=1,i=r_w}^n \prod_{j=1}^n \prod_{|\Omega_i| = \left|\Upsilon_{x_j}\right|} \left((i/\prod_{l_z \in \Omega_i} l_z) - x_j / \prod_{x_v \in \Upsilon_{x_j}} x_v \right)^2 + (i^m / \prod_{l_z \in \Omega_i} l_z - x_j^m / \prod_{x_v \in \Upsilon_{x_j}} x_v)^2 \\ \Omega_i \subseteq \Upsilon_i \end{aligned}$$

can give to us functional associated with SUBGRAPH ISOMORPHISM PROBLEM with same result.

References

- M. Blum, How to prove a Theorem So No One Else Can Claim It Proceedings of the International Congress of Mathematicians, Berkeley, CA, 1986, pp. 1444-1451.
- [2] O. Coldreich, Proof that yield nothing but their validity or all languages in NP have zero-knowledge proof systems //J.ACM. V.38, No 3, 1991. P. 691-729.