Homogeneous algorithms of global optimization
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Algorithms solving a problem (1) are considered

(1)

f(z) — mip,
where f(z): R™ — R - objective function, X C R™ -
feasible set. It is supposed that algorithms of solving
the problem (1) can be presented in the form of the
following principal algorithm:

Algorithm 1.

Step 1. To choose the points 1, ..., zps, to calculate
values of objective function f(z1),..., f(zar). To put
k=M.

Step 2. To calculate

Tp41 = argabsmax P (957 {xiyf(xi)}f:1) ;o (2
reX

to calculate f(xgy1).
Step 3. If some condition of stop ¢ is satisfied, then
stop, otherwise put £ = k 4+ 1 and go to Step 2.

Definition 1 The algorithm is homogeneous if for ob-
jective functions f(z) and f(x)+c sequences {xy} con-
structed by Algorithm 1 will coincide.

Henceforth only homogeneous algorithms will be con-
sidered. It is supposed that the information about
the points in which objective function is calculated is
represented in the form of two functions mg(x) and
si(z) which satisfy the following requirements: Al.
mi(z;) = f(z:), i = L,k A2. sp(x;) =0, ¢ = 1,k
A3. sp(x) >0, z £ x;, i =1,k Ad. mi(x) and sg(x)
satisfy Lipchitz condition with constants L,, and L,
accordingly. It allows to present (2) in the form of

3)

Zp+1 = argabsmax P (si(z), mg(x)) .
reX
Functions my(z) and si(x) map multidimensional
feasible set X on a plane. We will consider that the
image of set X on this plane is some set SM =
{(s,m) € R?*| s = s(x),m = my(z), z € X }.

Theorem 1 If the
bly  continuously  differentiable,

function P (s, m) is dou-
for any point

(sx,mx) € RZ% there emists the set SM, such
that (sx,mx) = argabsmaxP (s,m) and for
(s,m)eSM
functions my(x) and sk(x) the following condi-

m(x,ml, ...S(}k7f(-'151) +

con, f21), . flxg)) ¢

tions are satisfied: ASJ.
ey ... flzg)+c¢) =m(z, 1,

A6, s(r,z1, ..o.xk, f(x1) + oo f(Te) + ) =
s(z,x1, ...z, f(x1),... f(zr)), then for any ho-
mogeneous  algorithm  criterion P (sg(x), my(z))

can be presented in a form P (si(x), mp(x)) =
C - my(x) + p(sg(x)), where C = const and p(-) -
doubly continuously differentiable function.

Theorem 1 allows formulating the condition of conver-
gence for homogeneous algorithms. Convergence here
is understood as coincidence of a set of limiting points
of sequence {xj} and set of global minima of objective
function.

Theorem 2 In order that the set of limiting points
generated by homogeneous algorithm with criterion
P(si(x), mg(x))coincides with the set of global min-
ima of Lipchitz function f(x) with Lipchitz con-
stant L on compact X it is sufficient that func-
tion p(-) is Lipchitz and —max (P(sg(x),mi(x))) <
min max (f(x;) — K ||l — x;||) , where K = const and
zeX =1k

K> L.

Theorem 3 If for function si(x) the condition

(4)

sk(r) > min ||z — x|,
i=1,
is satisfied, then the set of limiting points gener-
ated by algorithm with criterion P (si(z), mg(z)) =
2K sp(x) — my(z), where K > L + L, will coincide
with the set of global minima of Lipchitz function f(x)
with Lipchitz constant L.

Theorem 4 If
min |2; — Zp41]]
i=T,k

of a stop, then the homogeneous algorithm will provide
the solution of the problem (1) with accuracy by value

o ‘ Ly+Lm,
of objective function not worse than L=f—F"¢.

the condition of kind
< ¢ 1is chosen as the criterion



These theorems allow to reduce the construction of
algorithm of global optimization to a problem of choos-
ing functions my (x) and sk (x) satisfying the conditions
A1)-A6), (4). Thus it is required to consider the ne-
cessity of solving the problem (2) on each iteration of
algorithm. Formally, the problem (2) is also a problem
of global optimization, however, it represents a simpler
problem of global optimization rather than (1) because
objective function is calculated much faster. Besides
algorithms of its solving can use the additional infor-
mation about the structure of P(s(z), mg(x)), for ex-
ample, all points of local minima can be easily found,
the information on P(sg(z), mg(z)), obtained on the
previous steps can be effectively used, the function can
be constructed as differentiable, etc.

The analysis of existing algorithms of global opti-
mization shows that the most effective algorithms (by
quantity of calculations of objective function) demand
the use of functions my(z) and sg(x), for which solv-
ing of the problem (2) takes a lot of time. Thus, for
fast calculated objective functions it is appropriate to
choose algorithms which demand a greater number of
calculations of objective function in order to minimize
optimization time [2, 5, 6, 9], but having little time to
solve the problem (2), and for problems with objective
functions which time of calculation is very essential,
it is necessary to choose algorithms with a minimum
quantity of references to objective function [1, 3, 4, 7,
8].

As an example it is offered to consider functions

k d
mg(z) = Zlcl||ac7"l||3 + Z:lbzxz + by and sg(z) =
1= 1=
z@%r}c ||lzz;||, and as a method of solving the problem
(2) to choose the method offered in [5].
test functions of the kind:

For testing

2 0.5

M~
e

Ajjaij(x) + Bijbij(z) | +

@
Il
-

j=1

]~
e

Cijaij(z) + Dijbij ()

3 1

Il

—
~

Il

were used where a;;(x) = sin(imz) sin(jrzs), bij(z) =
COS(i?TIl) COS(jTl'QZ‘Q)7 Ai]‘, Bi]‘, Cij; Dij - are uniformly
distributed variables on [—1;1]. The comparison was
made on the sample of a hundred functions. The min-
imum coefficient was being selected wherein the algo-
rithm in all cases found a minimum. Then the aver-
age quantity of the iterations spent on finding a global
minimum with the obtained coefficient was calculated.
Accuracy set in € = 0.01. To solve the problem (2) the

algorithm on the basis of adaptive-diagonal curves [5]
with constant coefficient K=500 was used. On aver-
age, to solve the problem the algorithm needed 154
references to objective function. Application has de-
manded on the average 418 calculations of objective
function under the same conditions of algorithm on the
basis of adaptive diagonal curves. The suggested algo-
rithm demands in 2.7 times less references to objective
function when solving test problems.
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