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The use of the mathematical theory of optimal
processes in economic investigations is hindered by its
lack of suitability for the solution of large multidimen-
sional problems and of problems which include con-
straints on the phase coordinates. In this paper we de-
scribe a certain form of the optimality conditions with
the aim of bringing it up to such a degree of formal-
ism that it would be convenient enough for machine
analysis and for solving the multidimensional dynami-
cal problems of mathematical economics. To prove the
necessity of these conditions in the course of the de-
velopment of a generalized calculus of variations there
was worked out a special tool called the generalized
Lagrange method which with great completeness per-
mits us to write out the whole collection of optimal-
ity conditions, This tool, applied to the proof of the
existence of the system of adjoint functions for some
sufficiently general problem in the theory of optimal
processes, allowed us, firstly, to note new peculiarities
of these functions, and secondly, to formulate a form
of the principle of optimality which by its own conve-
nience can be useful for machine realization because it
is written only in terms of inequality relations.

The sufficiency of the principle of optimality for the
problems posed in the theory of optimal processes is
proved by a method which, in spite of definite limi-
tations, is suitable for nonlocalized problems and can
be applied without special regard for unconditional
boundaries arising at the expense of phase constraints
and also without the restrictive consideration of time
as a phase coordinate.

I. Problem A. In a space Z of type B we define an
element z ensuring the condition

max{f(z) : r(z) = 0, p(z) ≥ 0},
in which f(z) is a functional, r(z) and p(z) are abstract
functions belonging to the classes (z → R) and (z → Z),
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where R and Z are spaces of type B. The space Z
is semiordered with the aid of a certain convex cone
C ⊂ Z. The notation p′ ≥ p′′ is used for any p′, p′′ ∈ Z
satisfying the condition p′ − p′′ ∈ C.

Variations. The difference z − z0 = z̄, where z,
z0 ∈ Z and z0 is an admissible element of the problem,
is called a variation of the element z0. For the variation
z̄ of the element z0 we delineate the following sets: a)
the set L of variations admissible under equality con-
straints if r(z0 + εz̄) = o(ε), where ε is small; b) the set
C of variations admissible under inequality constraints
if p(z + ε(ẑ + z)) > 0 is valid for all sufficiently small
ẑ ∈ Z and for small ε > 0.

Assumptions. A1. The solution of Problem A ex-
ists.

A2. Gâteaux derivatives, being linear operators of
the variations of the arguments exist in the abstract
functions f(z), c(z) and p(z) on Z.

A3. The set L is a subspace of the space Z, while C
is a convex cone. Here, the intersection L ∩ C is not
empty.

Note that the subspace L is defined by the equality
∂c(z0)z̄/∂z = 0, while sufficiently small variations z̄,
satisfying the inequality ∂p(z0)z̄/∂z + p(z0) > 0 belong
to the cone C.

An arbitrary z ∈ Z, representable in the form z =
z0 + z̄, where z̄ ∈ L∩C, is called an admissible modified
value of the element z0.

Lemma 1 A necessary condition for f(z) to have a
maximum at an element z0 among the admissible el-
ements belonging to a neighborhood of z0 is that f(z)
have a maximum at the element z0 among its admissi-
ble modified values in any sufficiently small neighbor-
hood.

Incompatibility. We use the notation p′ > p′′ if
p′ ≥ p′′ and p′ − p′′ does not coincide with the vertex
of C. In the product σ = E1 ×R ×B, where E1 is a
real one-dimensional space, we consider the following
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convex sets for an admissible element z0 and for some
neighborhood Z∗ of the origin of Z:

σ̄ = {s0, s1, s2 : s0 > 0, s1 = 0, s2 > 0},

σ∗(z0,Z∗) =
{

s0, s1, s2 : s0 ≤ ∂

∂z
f(z0)z̄, s1 =

∂

∂z
c(z0)z̄,

s2 ≤ ∂

∂z
p(z0)z̄ + p(z0), z̄ ∈ Z∗

}
.

Lemma 2 A necessary condition for f(z) to have a
maximum at an element z0 among the admissible ele-
ments of the problem is the condition of incompatibility
of the sets σ̄ and σ∗(z0, Z∗), i.e., σ̄∩σ∗(z0, Z∗) = ∅ for
some Z∗ ⊂ Z.

Lemma 3 There exists a functional λ(e), defined on
σ, which is strictly positive on a and positive on
σ∗(z0, Z∗). Sets of type B of linear continuous func-
tional ρ = 〈ρ, c〉 and π = 〈π, p〉. defined, respectively,
on R and B, are denoted by R and Π.

The functional π will be called nonnegative if it is
nonnegative on C, and strictly positive if it is positive
on the cone C excepting its vertex.

Theorem 1 For Problem A a necessary condition for
the optimality of an element z0 in some neighborhood
is the existence of linear continuous functionals ρ ∈ R
and π ∈ Π, of which π is strictly positive, such that
〈π, p(z0)〉 = 0 is valid and

∂

∂z
= F(z0, ρ, π)z̄ = 0,

where

f(z, ρ, π) = f(z) + 〈ρ, r(z)〉+ 〈π, p(z)〉

is fulfilled for any z.

II. Let us consider a problem in the theory of opti-
mal processes to which are reduced: the problem with
parameters, by an augmentation of the phase coordi-
nate vector, and the problem with moving end-points,
by the substitution t = t1 + τ(t2 − t1).

Problem B. On the segment [t1, t2] there are de-
fined the vector functions x(t) and u(t) which ensure
max{G : dx/dt = f, g = 0, h ≥ 0}, where G is func-
tional of x(t1), x(t2); f , g, h are vector functions of
x(t), u(t), t, x(t1), x(t2). We shall treat (he regu-
lar case. It is characterized by the fact that the set
{u : g = 0, h ≥ 0} is bounded for any finite x(t), t, ξ,
η.

We shall seek solutions of Problem B in the class
of absolutely continuous x(t) and bounded measur-
able u(t).

We make the assumptions:
B1. The optimal solution x0(t), u0(t) of Problem B

exists.
B2. The functional G(ξ, η) is continuously differen-

tiable in the neighborhood of ξ0 = x0(t1), η0 = x0(t2).
B3. The functions f , g, h, considered as functions

of x, u, t, ξ, η for any absolutely continuous x(t), for
a bounded measurable u(t) and for any ξ, and η taken,
respectively, from the neighborhoods of x0(t), u0(t),
x0(t), x0(t2), are summable with respect to t on [t1, t2]
together with their first order derivatives with respect
to x, u, ξ, η.

B4. The conditions g = 0 and h ≥ 0 ensure a non-
empty set of admissible solutions in the neighborhood
of the optimal solution.

Theorem 2 Under assumptions B1–B4 for Problem B
there exist vector functions ψ(t), ω(t) and ε(t), defined
on [t1, t2] (of which ψ(t)) is absolutely continuous while
ω(t) and ε(t) are measurable and bounded almost every-
where), satisfying at the optimal values of x(t), u(t) the
conditions

dψ

dt
+ ψf ′x + ωg′x + εh′x = 0; (1)

ψf ′u + ωg′u + εh′u = 0; (2)

F ′ξ + ψ(t1) +
∫ t2

t1

(ψf ′ξ + ωg′ξ + εh′ξ)dt = 0; (3)

G′n − ψ(t2) +
∫ t2

t1

(ψf ′η + ωg′ηεh′η)dt = 0; (4)

ε(t)h = 0; (5)

ε(t) ≥ 0, (6)

in which the expressions (1), (2), (5) and (6) are ful-
filled almost everywhere on [t1, t2]; ξ = x(t1), η =
x(t2). The vector quantities x, u, t, g, h are written as
columns while ψ(t), ω(t), ε(t), as rows. The rule for
the differentation of a vector with respect to a vector is
the usual one.
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