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We consider an hierarchical optimization problem in
two levels; decision making at the upper level is gov-
erned by constraints that are defined in part by a sec-
ond parametric optimization problem. Let this second
problem be defined as follows:

min
x

{f(x, y) | g(x, y) ≤ 0, h(x, y) = 0} , (1)

where f : Rn × Rm → R, g : Rn × Rm → Rp and h :
Rn ×Rm → Rq with g(x, y) = (g1(x, y), · · · , gp(x, y))

T

and h(x, y) = (h1(x, y), · · · , hq(x, y))
T . This problem

is called the lower level, or the follower’s problem. Let
ψ(y) denote the solution set of problem (1) for a fixed
parameter y ∈ Rm.

Now one we can formulate the bilevel problem as:

min
x,y

{F (x, y) | y ∈ Y, x ∈ ψ(y)} , (2)

where F : Rn × Rm → R, and Y is a closed subset
of Rm. The bilevel programming problem is called the
upper level, or the leader’s problem.

In order to assure that the bilevel programming
problem is well-defined, we assume the following:

1) The set M = {(x, y) |g(x, y) ≤ 0, h(x, y) = 0} is
nonempty.
2) Both F (x, y) and f(x, y) are bounded from below
on M .
3) Both F (x, y) and f(x, y) are linear functions.

Definition 1 A pair (x, y) is said to be feasible to the
linear bilevel programming problem if x ∈ ψ(y).

Definition 2 A feasible pair (x′, y′) is called an opti-
mal solution to the linear bilevel programming problem
if F (x′, y′) ≤ F (x, y) for all the feasible solutions.

The mixed-integer bi-level linear programming prob-
lem with a parameter in the righthand side at the lower
level is formulated as follows:

min
x,y

{

〈a, x〉 + 〈b, y〉 | Gy = d, x ∈ ψ(y), y ∈ Zm
+

}

, (3)

which represents the upper level where a, x ∈ Rn, b, y ∈
Rm, G is an r×m matrix, d ∈ Rr. Here ψ(y) is defined
as follows:

ψ(y) = Argmin
x

{〈c, x〉 | Ax = y, x ≥ 0} , (4)

which describes the feasible region of the lower level
decision maker (the set of rational reactions). Here
c, x ∈ Rn , A is an m× n matrix with m ≤ n.

Let us rewrite the lower level problem as follows:

ϕ(y) = min
x

{〈c, x〉 | Ax = y, x ≥ 0} . (5)

We will also call ϕ(y) the lower level optimal value. We
suppose that the feasible set (4) is non-empty.

In this paper, we consider a reformulation of (3)–
(5) as a classical optimization problem, based upon an
approach reported in the literature (see [1], [5]). If we
take into account the lower level optimal value function
(5), then problem (3)–(5) can be replaced by:

min
x,y

{〈a, x〉 + 〈b, y〉 | Gy = d, 〈c, x〉 ≤ ϕ(y),

Ax = y, x ≥ 0, y ∈ Zm
+

}

(6)

Our work is concentrated on the lower level objective
value function (5). For this reason, we show some im-
portant characteristics (see [4] or [2]) that will be help-
ful for solving problem (6).

Consider the parametric linear programming prob-
lem (5)

ϕ(y) = min
x

{〈c, x〉 | Ax = y, x ≥ 0} .

In order to solve this problem, we use the dual simplex
algorithm, like in [2]. For that, let B be a correspond-
ing basic matrix, i.e. a quadratic submatrix of A hav-
ing the same rank as A, and such that x∗ = (x∗B , x

∗

N )T ,
with x∗B = B−1y and x∗N = 0. Moreover, let us fix
y = y∗. Then we can say that x∗(y∗) = B−1y∗ is an
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optimal basis solution of problem (5) for a fixed pa-
rameter y∗. And if the following inequality holds:

B−1y ≥ 0,

then x∗(y) = B−1y is also optimal for the parameter
vector y.

It is possible to perturb y∗ so that B remains a basic
optimal matrix [4]. We denote by ℜ(B) a set that we
call the stability region of B, which is defined as

ℜ(B) =
{

y | B−1y ≥ 0
}

.

This region is nonempty because y∗ ∈ ℜ(B). Fur-
thermore, it is closed, but not necessarily bounded.
If ℜ(B) and ℜ(B′) are two different stability regions
with B 6= B′, then only one of the following cases is
possible:

1. ℜ(B) ∩ ℜ(B′) = {0};
2. ℜ(B)∩ℜ(B′) contains the common border of the

regions ℜ(B) and ℜ(B′);
3. ℜ(B) = ℜ(B′).

Moreover, ℜ(B) is a convex polyhedral set, on which
the lower level optimal value function is a finite and lin-
ear function. Let y1, · · · , yq represent all the extreme
points of the feasible set of problem (3). We denote
by B1, · · · , Bq, resp., the corresponding basic optimal
matrices. It can be shown that ϕ is a finite piecewise
linear and convex function defined over the set:

ℜ(B1) ∪ · · · ∪ ℜ(Bq),

by

ϕ(y) = min
{〈

c, x∗(y1)
〉

,
〈

c, x∗(y2)
〉

, . . . , 〈c, x∗(yq)〉
}

.

As we can see in Figure 1, the stability regions are
represented by the segments on the y-axis. The func-
tion ϕ is nonsmooth, which makes this kind of problems

hard to solve. Consulting the literature [5] we find that
this function is also partially calm, which yields a new
reformulation of our problem (6).

Theorem 1 Let (x∗, y∗) solve problem (3)–(5), then
(6) is partially calm at (x∗, y∗).

The difficulty in the work with the objective value
function (5) is due to the simple fact that we do not
have it in an explicit form. Also (5) is not differen-
tiable: cf. [3], [5] working with subdifferential calculus
based upon the non-smooth Mangasarian-Fromovitz
condition.

The tools that we use in this paper are mainly based
on the fact that (5) is piecewise-linear and convex.
As the objective and constraint functions are linear at
both levels, the proposed algorithm is based upon an
approximation of the optimal value function using the
branch-and-bound method. Therefore, in every node
of this structure, we apply a new branch-and-bound
technique to process the integrality condition.
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