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In this paper, we formulate a closed-form mathe-
matical problem describing the search of possible crys-
tal structures conforming to a given chemical formula.
First, we define the concept of stability of a crystal
substance in the general case.

Let the chemical formula of a compound for example,
AiAj = AB, i, j = 1, n (for example, NaCl, be given).
Using the algorithms described in ([1], [2]) all possible
symmetry groups corresponding to this formula can be
found.

Consider the well-known rigid sphere (ion atomic
radii) model. In this model, the stability criterion of a
crystal structure with a given crystal-chemical formula
requires that the spheres (atoms) in the structure be
closely packed (the packing closeness ρ must be within
the range 0.56 ≤ ρ ≤ 0.74 and the crystal structure
must correspond to a minimum of the potential energy
(see [1], [3], [4]).

In the three-dimensional space, denote by
(Xi

A, Y i
A, Zi

A) the coordinates of the center of the
sphere Ai.

Denote by A = {(Xi
A, Y i

A, Zi
A)} and B =

{(Xi
B , Y i

B , Zi
B)} the classes of indistinguishable atoms

(spheres), i = 1, n.

Definition 1 The atoms (spheres) Ai(Bj) (i = 1, k,
k ≤ n) belong to the class of indistinguishable atoms
(spheres) A(B) if all of them are at the equivalent
Wyckoff positions and denote the same chemical ele-
ment, that is, the radius of the i-th sphere rAi(rBi) =
const for every i-th sphere, where i = 1, k, k ≤ n.

For every pair of spheres i, j (independently of
whether or not they belong to the same equivalence
class) with the corresponding radii r(i) and r(j), the
condition

R(i, j) ≥ r(i) + r(j) (1)

must be satisfied, where R(i, j) is the distance between
the centers of the spheres i and j.

Due to the symmetry of the crystal, in order to find
an optimal structure (in terms of the packing closeness

[2]), it is sufficient to consider a finite set of all the
pairs of spheres {(i, j)} such that i runs over the set
of nonequivalent positions (spheres) within the same
elementary cell and j is the set of spheres’ positions in
this and in the adjacent cells.

Consider the cubic symmetry. Let the coordinates of
the center of the sphere A be given by a radius vector
beginning at the origin:

rA = xAa + yAb + zAc (2)

here, a, b, and c are the constants of the lattice,

ρ(rAi, rBj) =
√

(XAi −XBj)2 − (YAi − YBj)2 − (ZAi − ZBj)2 (3)

distance between possible pairs of sphere (Ai, Bj) be-
longing to different equivalence classes A and B.

Let
ρ(A, B) = min

Ai∈A, Bj∈B
ρ(rAi, rBj). (4)

If A ≡ B, then i 6= j
It is clear that

ρ(A,B) ≥ r(A) + r(B) (5)

where r(A) and r(B) are the radii of any of the spheres
belonging to the classes A and B, respectively.

Define

ξ = max
A,B

{(r(A) + r(B))/ρ(A, B)}, 0 ≤ ξ ≤ 1. (6)

For the lattice constants a, b, and c, we have

a = a′ξ, b = b
′
ξ, c = c′ξ.

Volume of an elementary cell

V = (a, b, c) = ξ3|a′ b′ c′|. (7)

Therefore, the optimization problem is formulated as
follows: find all the local minima V 0 in the minimax
problem ([1]):

V 0 = min
{(XA,YA,ZA)∈W}

{
(
max
A,B

[r(A)+r(B)]/ρ(A, B)
)3×

1



×
∣∣∣∣∣∣

a′x a′y a′z
b′x b′y b′z
c′x c′y c′z

∣∣∣∣∣∣

}
, (8)

where

W = {{(Xi, Y i, Zi)}/Xi = K1
i a, Yi = K2

i b,

Zi = K3
i c, 0 ≤ K1

i ≤ 1, 0 ≤ K2
i ≤ 1, 0 ≤ K3

i ≤ 1}.
(9)

This is a minimax problem subject to coupled con-
straints. The difficulty is that simultaneously three
minimax problems subject to coupled constraints must
be solved in the general case.

From the local minima of the volume of the Bravais
parallelepiped V 0, we calculate the packing closeness
for the given chemical-crystal formula as

ρ =
4
3
π

∑
Ai

υ(Ai)r3(Ai)

V 0
. (10)

Here, the sum is taken over the classes of nonequiv-
alent atoms, and υ(Ai) is the number of atoms in the
class Ai per an elementary cell.

Note that the values of V 0 depend on the system
of radii (ionic or atomic) in which the calculations are
performed.

The packing closeness determined for each local min-
imum of the objective function (which is generally
found by formula (10)) is the parameter used to re-
ject the structures that cannot exist. For example, it
is known that the value of ρ for crystal solids is within
the range

0.56 ≤ ρ ≤ 0.74. (11)

In the organization of the computation process in the
general case, all the possible configurations (sets of co-
ordinates of the spheres’ centers) that locally minimize
a given objective function for the prescribed parameter
P ∈ [0.5, 0, 74] are sought (in the general case, min V
is sought (see (10)).

A special approach based on the well-known simula-
tion annealing method was developed for solving this
problem. The idea of this approach is to discretely
move the spheres according to one of the two algo-
rithms (or their combinations), so as to minimize the
given objective function (8) for the given parameter
P ∈ [0.5, 0.74] with allowance for conditions (6) and
(9).
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