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Abstract

A rectangular set of strategy profiles may be called an unfocussed Nash equilib-
rium if it contains no Nash equilibrium, but no profitable individual deviation from
a point in the set produces a point outside it. As David Kreps (A Course in Microe-
conomic Theory. Princeton University Press, 1990, pp. 416-417) has noticed, it may
happen that all the players would prefer an unfocussed equilibrium to any of singleton
ones. This paper shows that such an unpleasant occurrence is impossible under the
most widely used sufficient conditions for the existence of Nash equilibrium, although
just a step aside brings us into a dangerous area. Journal of Economic Literature
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1 Introduction

A view seems commonly accepted that the concept of Nash equilibrium gives an adequate
formal expression to the idea of a self-policing agreement between the participants of a
strategic game. We start with an observation that for an agreement to be self-policing
and to make sense for the players, it need not be comprehensive, i.e., include a complete
specification of all actions of the players. Sometimes an agreement not to choose certain
strategies is the best thing the players can reasonably hope for. Let us consider an example
essentially due to Kreps (1990, pp. 416-417).

Example 1.1. Two players choose a natural number each. Utility levels associated with
the strategy profiles fill the following “matrix:”

(1, 1) (0, 0) (0, 0) (0, 0) (0, 0) . . .
(0, 0) (2, 2) (3, 4) (3, 4) (3, 4) . . .
(0, 0) (4, 3) (2, 2) (3, 4) (3, 4) . . .
(0, 0) (4, 3) (4, 3) (2, 2) (3, 4) . . .
(0, 0) (4, 3) (4, 3) (4, 3) (2, 2) . . .

. . . . . . . . . . . . . . .
. . .

There is a unique Nash equilibrium in the game with utility levels (1, 1). Meanwhile, if
both players do not choose their unique equilibrium strategies, their utility levels are strictly
greater than that, (2, 2) at least. Besides, the consequences of a coordination failure are the
same in both cases. It seems hardly reasonable to expect (to say nothing of recommending)
the unique equilibrium to be chosen.

Let us formulate the behavioral assumptions implicit in our analysis of the example.
First, each player has an ordinal utility function describing his preferences over possible
outcomes, i.e., strategy profiles; the description of preferences with utility functions inflicts
some loss of generality, but the simplicity of presentation is more important for us here.
The players need not be able to compare lotteries on outcomes, or even understand what a
probability is; nonetheless, cardinal utilities are easily incorporated if we consider profiles
of mixed strategies as outcomes (concepts devoid of straightforward ordinal analogues, such
as correlated equilibrium, for instance, will not appear in the paper).

Second, we make an assumption about each player’s attitude towards situations where
his choice does not determine a unique outcome of the game: if every outcome possible in
one situation (after taking into account all information available or assumed at the moment
of decision) is better than every outcome possible in another, then the player prefers the first
situation to the second — a “sure-thing principle”. If two situations involving uncertainty
do not satisfy the condition, the player may have any preferences, or be unable to compare
them at all.

Very formally speaking, one does not have to accept the sure-thing principle: ordinal
preferences ensure the ability to compare outcomes and not necessarily anything else. Still,
the principle is intuitively appealing and is regarded as a must in other branches of decision
theory. It holds, in particular, if the players evaluate situations involving uncertainty with
the worst possible outcome or with expectations under a subjective probability distribution.
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Throughout the paper we assume that ordinal preferences imply the sure-thing principle
too.

Now it is easy to see that an agreement not to choose the unique equilibrium strategies
in Example 1.1 is self-policing in the same sense as an agreement to choose the equilibrium:
if I expect my partner to honour the agreement, I will prefer any strategy permitted to
me by the agreement to any (in this case, the only one) prohibited strategy. Besides, both
players strictly prefer the first, incomplete, agreement to the second.

To clarify the logic of our analysis further, let us replace the matrix in Example 1.1
with the following one:

(1, 1) (0, 0) (0, 0)
(0, 0) (3, 2) (2, 3)

(0, 0) (2, 3) (3, 2)

Again, both players would prefer an agreement not to choose their (unique) equilibrium
strategies to an agreement to choose the equilibrium, but this time it seems possible to ar-
gue that the former agreement is indistinguishable from an equilibrium where each player
chooses the mixed strategy 〈0, 1/2, 1/2〉 (no alternative mixed equilibrium existed in Ex-
ample 1.1). This argument is not accepted here: our players have ordinal preferences and
they do not have to be able to compare probability distributions on the set of outcomes, so
a mixed equilibrium, generally, makes no sense for them. Still, the above matrix admits a
subtler argument: if, say, player 1 uses his mixed equilibrium strategy, player 2 gets utility
level 3 with probability 1/2 and utility level 2 with probability 1/2 whichever of the last two
columns he chooses, so there is no need for cardinal utilities, i.e., for the ability to compare
arbitrary lotteries, to find that the two mixed strategies really form an equilibrium. The
argument need not be accepted: as has already been mentioned, our players do not have
to attach any meaning to the “probability 1/2;” besides, the symmetry generating that
“ordinal mixed equilibrium” can, and will, easily be avoided in the examples to follow.

Pareto dominance is not the only reason why the players might prefer an incomplete
agreement to a complete (Nash equilibrium) one.

Example 1.2. Consider the following bimatrix game:

(5, 5) (0, 2) (0, 2) (0, 1)
(2, 0) (5, 3) (3, 4) (2, 1)

(2, 0) (3, 5) (4, 3) (2, 1)

(1, 0) (1, 2) (1, 2) (3, 3)

There are two Nash equilibria with utility levels (5,5) and (3,3), respectively. One of them
is Pareto better, but the other is less risky. If the players believe that the latter property
outweighs the former, they may find an agreement not to choose either of the equilibrium
strategies even more attractive: the agreement is self-enforcing, promises each player the
utility level 3 at least, and is even less risky.

Example 1.3. Consider the following bimatrix game:

(1, 5) (0, 0) (0, 0) (0, 0)
(0, 0) (4, 2) (3, 4) (0, 0)

(0, 0) (2, 4) (4, 3) (0, 0)

(0, 0) (0, 0) (0, 0) (5, 1)
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There are two Nash equilibria here [with utility levels (1,5) and (5,1)], and both are Pareto
optimal; however, either of them treats the players so unequally that it may prove a rather
hard task for the players to reach a deal. On the other hand, an agreement for each player
not to choose either of equilibrium strategies is self-policing as well. From an egalitarian
viewpoint as expressed by the leximin criterion (assuming that both players use the same
ordinal scale), every outcome possible under the agreement is strictly preferred to either
equilibrium. It seems thus not unreasonable to assert that this non-equilibrium agreement
has good chances to be signed.

To summarize, Nash (or even strong) equilibria may exist but be rejected by the players,
who would prefer a way of behavior leaving the final outcome unpredictable. As long as
this happens in isolated examples, there is no need to worry: an arbitrary game need not
have an equilibrium in the first place. However, if all equilibria in a game covered by a
general existence theorem turn out to be irrelevant to the decision problem of the players,
one cannot help feeling some dissatisfaction with the theorem in question.

In this paper we look for conditions ensuring not only existence, but also impossibility
of this kind of irrelevance, of equilibria. Naturally, we address conditions already discovered
in the literature on equilibrium existence.

First of all, we have to formalize the problem. A rectangular set of strategy profiles is
called a generalized Nash equilibrium if no profitable individual deviation from a point in
the set produces a point outside it. An agreement to restrict the choices of all players to a
generalized Nash equilibrium is self-policing in the same sense as an agreement to choose a
Nash equilibrium. Singleton generalized Nash equilibria are exactly usual Nash equilibria
(so to speak, well focussed ones). The unpleasant feature of the above examples was the
presence of “unfocussed equilibria,” i.e., generalized Nash equilibria containing no singleton
Nash equilibria (which happened to be more attractive for the players).

A strategic game is said to possess enough Nash equilibria if every generalized Nash
equilibrium contains a Nash equilibrium. Theorem 3.1 below states that a strategic game
possesses enough Nash equilibria if every strategy profile is connected to a Nash equilibrium
with a finite improvement path (at each step of which the current profile of strategies is
replaced with the result of an individual profitable deviation). The latter property is
ensured, in particular, by Monderer and Shapley’s (1996) FIP or by Milchtaich’s (1996)
FBRP properties, but is much weaker.

An infinite (topological) game may possess enough Nash equilibria (e.g., this holds for
mixed extensions of finite games), but a weaker property appears more natural: A strategic
game possesses almost enough Nash equilibria if every closed generalized Nash equilibrium
contains a Nash equilibrium. Theorem 3.4 states that a strategic game has the property
if every strategy profile is connected to a Nash equilibrium with a transfinite improvement
path, combining individual profitable deviations with the picking of limit points. In this
paper, transfinite paths play a purely technical rôle; accordingly, there is no need to worry
about their interpretation.

Similar treatment can be given to other solution concepts for strategic games which
are defined as maximizers for appropriate binary relations; in this paper, strong Nash
equilibrium is considered (Example 1.3 shows that this concept may give rise to the same
problem).
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The paper is organized as follows. Section 2 contains basic formal definitions and
some preliminary results; in particular, it is shown that the conditions of Gurvich’s (1988)
existence result do not ensure that the game possesses enough Nash equilibria. In Section 3,
improvement paths are introduced and basic results involving them proven.

Section 4 considers convex-concave games; Theorem 4.2 states that such games possess
almost enough Nash equilibria; however, the mere fact that the Kakutani (or even Brouwer)
theorem applies to the best responses does not ensure the relevance of singleton equilibria.

Section 5 deals with games with strategic complementarities; Theorem 5.2 states that
such games possess almost enough Nash equilibria. It should be noted that the fact does
not follow from the results about best response dynamics in the literature (Topkis, 1979;
Vives, 1990; Milgrom and Roberts, 1990); actually, a strategy profile in a supermodular
game need not be connected to a Nash equilibrium with a best response improvement path.

2 Basic Notions

Let Γ be a strategic game defined by a finite set of players N , and strategy sets Xi and
ordinal utility functions ui on X =

∏
i∈N Xi for all i ∈ N . When considering infinite games,

we will assume that each Xi, hence X too, is a separable metric space.

Remark. It is sufficient to assume each Xi a Hausdorf topological space with a countable
base of open sets, but we again prefer the simplicity of presentation.

We introduce a number of binary relations on X (y, x ∈ X, i ∈ N , I ⊆ N , I 6= ∅):
y .i x ⇐⇒ [y−i = x−i & ui(y) > ui(x)];

y . x ⇐⇒ ∃i ∈ N [y .i x];

y .∗I x ⇐⇒ [y−I = x−I &∀i ∈ I (ui(y) > ui(x))];

y .∗ x ⇐⇒ ∃I ⊆ N [y .∗I x];

y .∗∗I x ⇐⇒ [y−I = x−I & ∀i ∈ I (ui(y) ≥ ui(x)) & ∃i ∈ I (ui(y) > ui(x))];

y .∗∗ x ⇐⇒ ∃I ⊆ N [y .∗∗I x].

A strategy profile x ∈ X is a Nash equilibrium if and only if x is a maximizer for .,
i.e., if y . x is impossible for any y ∈ X. Similarly, maximizers for the relation .∗ are called
strong equilibria, and for .∗∗, very strong equilibria. Actually, both relations are used in
the literature to define a strong equilibrium; for our purposes, however, the concept defined
with .∗ is much more convenient.

Equivalently, Nash equilibrium can be defined by conditions xi ∈ Ri(x−i) for all i ∈ N ,
where Ri(·) is the best response correspondence,

Ri(x−i) = {yi ∈ Xi| ∀zi ∈ Xi [ui(yi, x−i) ≥ ui(zi, x−i)]}.

A generalized Nash equilibrium is a rectangular subset of X, X ′ =
∏

i∈N X ′
i, such that,

for each i ∈ N , each x′ ∈ X ′, and each xi /∈ X ′
i,

ui(x
′) ≥ ui(x

′
−i, xi). (2.1)
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Remark. If X ′ is a singleton, we have the usual definition of a Nash equilibrium. Moreover,
x is a Nash equilibrium if and only if {x} is a generalized Nash equilibrium.

Theorem 2.1. A rectangular subset X ′ ⊆ X is a generalized Nash equilibrium if and only
if x ∈ X ′ and y . x imply y ∈ X ′.

Proof. Immediately follows from (2.1).

Remark. The concept of an undominated set in choice theory immediately comes to mind;
note, however, that in our context X ′ must be rectangular.

A rectangular subset X ′ ⊆ X is a generalized strong equilibrium if and only if x ∈ X ′

and y .∗ x imply y ∈ X ′.

A rectangular subset X ′ ⊆ X is a generalized very strong equilibrium if and only if
x ∈ X ′ and y .∗∗ x imply y ∈ X ′.

A strategic game possesses enough Nash equilibria if every generalized Nash equilibrium
contains a Nash equilibrium.

A strategic game possesses enough strong equilibria if every generalized strong equilib-
rium contains a strong equilibrium.

A strategic game possesses enough very strong equilibria if every generalized very strong
equilibrium contains a very strong equilibrium.

A strategic game possesses almost enough Nash equilibria if every generalized Nash
equilibrium which is closed as a subset of X contains a Nash equilibrium.

A strategic game possesses almost enough strong equilibria if every generalized strong
equilibrium which is closed as a subset of X contains a strong equilibrium.

Remark. Since X itself is always a generalized very strong equilibrium, a game possessing
(almost) enough Nash, or (very) strong, equilibria actually has an equilibrium.

Example 2.1. Let us consider a two person game with X1 = X2 = [0, 1], u1(x1, x2) =
min{l1(x1), l2(x1, x2)}, where l1(x1) = x1 and l2(x1, x2) = x1 · x2/2(x2 − 2) + (x2

2 −
4x2)/4(x2 − 2), and u2(x1, x2) = u1(x2, x1). It is easily checked that l1(x1) increases, and
l2(x1, x2) decreases, in x1 and that l1(x1) = l2(x1, x2) iff x1 = x2/2, which, therefore, is the
best response function for player 1; similarly, x2 = x1/2 is the best response function for
player 2. The unique Nash equilibrium is (0, 0), providing each player with a utility level 0.
Meanwhile, whenever x1 > 0 and x2 > 0, both players receive strictly positive utility levels;
therefore, the conditions define a generalized Nash (actually, even very strong) equilibrium,
Pareto dominating the unique singleton equilibrium. It is easy to see that there is no other
generalized Nash equilibrium (closed or not): If X ′

i contains a strategy x′i > 0, then the
unique optimal response, x′i/2, must be in the partner’s X ′

j, then x′i/4 ∈ X ′
i, etc.; against

a fixed strategy of the partner, say, x′i/2, small strategies x′i/4
k ∈ X ′

i produce infinitesimal
utility levels, hence every strictly positive strategy must be included in X ′

i. To summarize,
this game possesses almost enough Nash equilibria, but not enough.

It is worth noting that the singleton equilibrium in the example belongs to the closure
of the generalized one, so the ensured gain from switching to the latter is infinitesimal. The
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notion of “almost enough equilibria” deserves attention exactly because of this connection,
which holds under relatively mild topological assumptions.

Theorem 2.2. If each ui is upper semicontinuous in x and continuous in x−i, then the
closure of a generalized Nash equilibrium is a generalized Nash equilibrium.

The proof is a straightforward simplification of that of the next theorem.

Theorem 2.3. If each ui is upper semicontinuous in x and continuous in x−i, then the
closure of a generalized strong equilibrium is a generalized strong equilibrium.

Proof. We start with a technical lemma.

Lemma 2.3.1. If, under the same assumptions on ui’s, x∗ .∗I x0, then there exists an open
neighbourhood U 3 x0 such that (x∗I , x−I) .∗I x for all x ∈ U .

Proof. For each i ∈ I, denoting ui(x
∗) − ui(x

0) = 2εi > 0, we pick open neighbourhoods
V ′

i 3 x0 and V ′′
i 3 x0

−I such that ui(x
∗) > ui(x)+εi for all x ∈ V ′

i and ui(x
∗
I , x−I) > ui(x

∗)−
εi [= ui(x

∗
I , x

0
−I) − εi] for all x−I ∈ V ′′

i . Then we denote U =
⋂

i∈I [V
′
i ∩ (V ′′

i × XI)] ⊆ X.
Now ui(x

∗
I , x−I) > ui(x

∗)− εi > ui(x) for all i ∈ I and all x ∈ U .

Let X ′ be a generalized strong equilibrium. Suppose there exist x′ ∈ cl X ′, x∗ ∈ X\cl X ′,
and I ⊆ N such that x∗ .∗I x′; x∗ /∈ cl X ′ and x∗−I = x′−I imply x∗j /∈ X ′

j for some
j ∈ I. Lemma 2.3.1 (applied to x∗ and x′ = x0) implies the existence of an appropriate
neighbourhood U . Since x′ ∈ cl X ′, there exists x′′ ∈ U ∩ X ′. Now (x∗I , x

′′
−I) .∗I x′′, and

(x∗I , x
′′
−I) /∈ X ′ because x∗j /∈ X ′

j; this plainly contradicts our assumption that X ′ is a
generalized strong equilibrium.

An analogue of Theorem 2.3 for very strong equilibrium is wrong.

Example 2.2. Let N = {1, 2} and X1 = X2 = [0, 1] ∪ {2}; on [0, 1] × [0, 1], the utilities
are the same as in Example 2.1, u(2, 2) = 〈2,−1〉, u(2, x2) = 〈−1,−2〉 for 0 ≤ x2 ≤ 1,
and u(x1, 2) = 〈1, 0〉 for 0 ≤ x1 ≤ 1. Now X ′ =]0, 1[×]0, 1[ is a generalized very strong
equilibrium, but its closure, [0, 1]× [0, 1], is not: (0, 2) .∗∗ (0, 0).

We complete the section with an important negative example. Gurvich (1988) showed
that a two person game form possesses a Nash equilibrium for whatever preferences of the
players if and only if the form is dense. (The latter property means that, whenever one
player cannot ensure x ∈ A with a choice of his strategy, the partner can ensure x /∈ A,
where A is an arbitrary set of outcomes). The theorem is justly regarded as an important
equilibrium existence result.

Example 2.3. Let us consider the following two person game form (with three strategy
for either player and five outcomes):

a a a
a b c
a d e
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It is easy to see that the form is dense and, indeed, has a Nash equilibrium for what-
ever preferences of the players: if they choose the first row and first column, respec-
tively, then neither player can change the outcome, to say nothing of improving his util-
ity level. Suppose, however, that the utilities of the players satisfy these inequalities:
u1(b) > u1(e) > u1(d) > u1(c) > u1(a) and u2(c) > u2(d) > u2(b) > u2(e) > u2(a). Now
the game has a unique singleton equilibrium, but there is also a generalized Nash equilib-
rium, “do not choose your unique equilibrium strategy,” ensuring a strictly better result
for either player. It seems reasonable to expect that the players will ignore the unique
Nash equilibrium, preferring to play a (sub)game without an equilibrium but with higher
utility levels. In other words, the Gurvich theorem provides no grounds to believe that the
participants of a game generated from a dense game form will choose a Nash equilibrium
(which fact does not compromise its formal validity as an existence result).

Most likely, the Gurvich theorem shares this unpleasant feature with many other results
about game forms, although the question is not investigated here. Danilov and Sotskov
(2002) admit that equilibria constructed in the theory of mechanism design often look
unnatural. Note, however, that our current concern is not whether the players are able to
choose an equilibrium, but whether it is in their interests to do so.

3 Improvement Paths

A finite (individual) improvement path is a sequence {xk}k=0,1,...,m such that xk+1 . xk

whenever 0 ≤ k ≤ m− 1.

Theorem 3.1. A strategic game possesses enough Nash equilibria if every strategy profile
is connected to a Nash equilibrium with a finite improvement path.

Proof. Let X ′ be a generalized Nash equilibrium; pick x0 ∈ X ′. By our assumption, there
exists a finite improvement path connecting x0 to a Nash equilibrium xm. If xm ∈ X ′, we
are home; otherwise, we pick the minimal k for which xk /∈ X ′ (note that k > 0 ). Now we
have xk−1 ∈ X ′, xk /∈ X ′, and xk .i xk−1; but this obviously contradicts Theorem 2.1.

Remark. Young (1993) called a stronger version of the condition of the theorem (he only
considered best response improvement paths) “weak acyclicity.” Since the condition does
not prohibit any kind of improvement cycles (even though is implied by acyclicity), a term
like “weak von Neumann–Morgenstern stability” might be more appropriate.

A finite (weak) coalition improvement path is a sequence {xk}k=0,1,...,m such that xk+1 .∗

xk (xk+1 .∗∗ xk) whenever 0 ≤ k ≤ m− 1.

Theorem 3.2. A strategic game possesses enough strong equilibria if every strategy profile
is connected to a strong equilibrium with a finite coalition improvement path.

Theorem 3.3. A strategic game possesses enough very strong equilibria if every strategy
profile is connected to a very strong equilibrium with a finite weak coalition improvement
path.
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The proofs are virtually identical with that of Theorem 3.1.

When considering infinite games, it is often useful to consider improvement paths param-
eterized by countable ordinal numbers. The concept was developed in Kukushkin (2000);
the mathematical background can be found, e.g., in Natanson (1974, Chapter XIV). Here
I provide just a sketch of formal definitions.

A partially ordered set is well ordered if every subset contains a least point. Ordinal
numbers, or just ordinals, are types of well ordered sets. The set of all countable ordinals,
denoted K, is well ordered (but uncountable) itself. We denote 〈0, α〉 = {β ∈ K| β < α};
note that α /∈ 〈0, α〉 (actually, α is the type of 〈0, α〉). For each α ∈ K, its successor,
denoted α + 1, is uniquely defined. An ordinal α ∈ K \ {0} is called isolated if α = β + 1;
otherwise, α is called a limit ordinal number. The least limit ordinal is ω: the type of
the chain of all natural numbers. It is sometimes convenient to consider a partial function
α− 1 defined by the equality α = (α− 1) + 1 for isolated α and not defined at all for limit
ordinals. Every countable subset of K has a least upper bound in K (Theorem 2, Section 5,
Chapter XIV of Natanson). Every limit ordinal α ∈ K is the least upper bound of a strictly
increasing infinite sequence in K (Theorem 4, Section 5, Chapter XIV of Natanson).

A countable (individual) improvement path is a mapping π : 〈0, µ〉 → X, where µ ∈ K,
satisfying these two conditions:

1. π(α + 1) . π(α) whenever α + 1 ∈ 〈0, µ〉;
2. if α ∈ 〈0, µ〉 and α is a limit ordinal, there exists an infinite sequence {βk}k=0,1,... for

which βk+1 > βk for all k, α = supk βk, and π(α) = limk→∞ π(βk).

Remark. Obviously, a finite improvement path is a particular case of a countable improve-
ment path.

Theorem 3.4. A strategic game possesses almost enough Nash equilibria if every strategy
profile is connected to a Nash equilibrium with a countable improvement path.

Proof. Let X ′ be a generalized Nash equilibrium; pick x0 ∈ X ′. By our assumption, there
exists a countable improvement path π connecting x0 to a Nash equilibrium x∗. If x∗ ∈ X ′,
we are home; otherwise, we pick the first α ∈ K for which π(α) /∈ X ′ (α > 0). If α is a
limit ordinal, we have a contradiction with the closedness of X ′. If α = β + 1, we have a
contradiction with Theorem 2.1 exactly in the same way as in Theorem 3.1.

Remark. The game in Example 2.1 satisfies the conditions of the theorem, so the “almost”
in the formulation cannot be dropped.

A countable coalition improvement path is a mapping π : 〈0, µ〉 → X, where µ ∈ K,
satisfying these two conditions:

1. π(α + 1) .∗ π(α) whenever α + 1 ∈ 〈0, µ〉;
2. if α ∈ 〈0, µ〉 and α is a limit ordinal, there exists an infinite sequence {βk}k=0,1,... for

which βk+1 > βk for all k, α = supk βk, and π(α) = limk→∞ π(βk).
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Theorem 3.5. A strategic game possesses almost enough strong equilibria if every strategy
profile is connected to a strong equilibrium with a countable coalition improvement path.

The proof is virtually identical with that of the previous theorem.

Theorems 3.1–3.5 are almost tautological; still, they are applicable to a rather wide
variety of strategic game models. First, finite games with an acyclic relation . satisfy
the condition of Theorem 3.1: Rosenthal’s (1973) congestion games and other examples
of finite potential games (Monderer and Shapley, 1996) should be mentioned. The same
condition holds when . is not acyclic, but it is possible to describe a way of extending
improvement paths without cycling, as in the normal forms of games with perfect informa-
tion (Kukushkin, 2002), in finite games with additive aggregation and some monotonicity
conditions (Kukushkin, 2001), or in finite pseudosupermodular games (Theorem 5.2 below).

Theorem 3.2 applies to certain congestion games (Holzman and Law-Yone, 1997), to
games with partial rivalry (Milchtaich, 1996; Konishi et al., 1997), and to voting by veto
(Kukushkin, 1999b); Theorem 3.3, to finite “Germeier–Vatel” models (Kukushkin, 1999b).
Theorem 3.4 works for infinite potential games as defined in Kukushkin (1999a), examples
of which may be found in Monderer and Shapley (1996) and Kukushkin (1994); it is also
referred to in the proofs of Theorems 5.2 and 5.3 below. Theorem 3.5 applies to compact-
continuous “Germeier–Vatel” models (Kukushkin, 1999b).

4 Convex-Concave Games

Let u(·) be a real-valued function defined on a convex subset of a topological vector space;
we call u strictly quasiconcave if

u(λx + (1− λ)y) ≥ min{u(x), u(y)} (4.1)

with a strict inequality whenever λ ∈]0, 1[ and u(x) 6= u(y).

Lemma 4.1. Let u be a strictly quasiconcave function, λk ≥ 0 for k = 1, . . . ,m,
∑

k λk = 1,
and x1, . . . , xm belong to the domain of u; then

u(
∑

k

λkx
k) ≥ min

k
u(xk)

with a strict inequality whenever λk > 0 for all k and maxk u(xk) > mink u(xk).

The proof goes by a straightforward recursion using (4.1).

Theorem 4.2. A strategic game possesses almost enough Nash equilibria if each Xi is a
compact and convex subset of a topological vector space, and each ui is upper semicontinuous
in x, continuous in x−i, and strictly quasiconcave in xi.

Proof. Let X ′ be a generalized Nash equilibrium. For every i ∈ N and x′−i ∈ X ′
−i, Ri(x

′
−i) ⊆

Xi is closed and convex. We denote Y−i = {x′−i ∈ X ′
−i| Ri(x

′
−i) ⊆ X ′

i}, M = {i ∈
N | Y−i 6= ∅}. Let i ∈ N and x′−i ∈ X ′

−i; if there exists xi ∈ Ri(x
′
−i)\X ′

i, then ui(xi, x
′
−i) >
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ui(x
′
i, x

′
−i) for all x′i /∈ Ri(x

′
−i), hence (2.1) implies X ′

i ⊆ Ri(x
′
−i). Therefore, if Y−i = ∅,

the Nash condition for player i, ui(x
′) ≥ ui(xi, x

′
−i) for all xi ∈ Xi, holds at all x′ ∈ X ′,

so we may just forget about such i (more formally, we may fix x′i ∈ X ′
i for each i /∈ M

arbitrarily). Denote Yi = conv
⋃

x′−i∈Y−i
Ri(x

′
−i), Zi = cl Yi, and Z =

∏
i∈M Zi.

Let us show Yi ⊆ X ′
i for each i ∈ M ; suppose not: xi =

∑
k λkx

k
i /∈ X ′

i with all λk > 0,
while xk

i ∈ Ri(x
k
−i) and xk

−i ∈ Y−i, hence xk
i ∈ X ′

i, for all k. Now if xk
i ∈ Ri(x

1
−i) for

all k, then xi ∈ Ri(x
1
−i) ⊆ X ′

i; thus we have to assume xk
i /∈ Ri(x

1
−i) for some k, then

ui(xi, x
1
−i) > ui(x

k
i , x

1
−i) by Lemma 4.1, contradicting (2.1) (for xi /∈ X ′

i, xk
i ∈ X ′

i, and
x1
−i ∈ X ′

−i).

Thus, Yi ⊆ X ′
i, hence Zi ⊆ X ′

i because X ′
i is closed, hence Z ⊆ X ′

M . Now the existence
of a Nash equilibrium in Z (among the players i ∈ M) follows from the Kakutani theorem
in a standard way. Finally, (2.1) implies that an equilibrium in Z is an equilibrium in XM ;
as to the players i /∈ M , they have already been accounted for.

Remark. A shorter proof is possible, but the current proof can be used in the following
theorem as well.

Remark. Example 2.1 shows that “almost” cannot be dropped in the theorem.

Theorem 4.3. The mixed extension of a finite strategic game possesses enough Nash equi-
libria.

Proof. Obviously, the previous theorem applies. The only stage in its proof where the
closedness of X ′ was used at all is deriving Zi ⊆ X ′

i from Yi ⊆ X ′
i. Now each Ri(x

′
−i) is the

convex hull of a finite number of pure strategies; therefore, Yi is also the convex hull of a
finite number of pure strategies, hence is closed, hence Zi = Yi ⊆ X ′

i.

It remains unclear so far whether Theorem 4.2 could be proved with a reference to
Theorem 3.4. The conditions of Theorem 4.3 do not imply those of Theorem 3.1.

Example 4.1. Let us consider the mixed extension of the following (bi)matrix game:

(−1, 1) (1,−1)
(1,−1) (−1, 1)

There is a unique Nash equilibrium. Imagining a finite improvement path leading to the
equilibrium from any other strategy profile, we easily see that there must be a stage when
one of the players has ultimately chosen his equilibrium strategy, 〈1/2, 1/2〉, while the
partner still chooses another strategy. Now the first player does not change his strategy
because his choice is supposed to be final, while the second player cannot improve because
his both pure strategies bring the same result.

For mixed extensions of infinite (compact-continuous) games, we can only apply Theo-
rem 4.2, deriving the presence of almost enough Nash equilibria. Again, Example 2.1 (with
a cardinal interpretation of the utilities) shows that “almost” cannot be dropped: mixed
strategies assigning a positive probability to ]0, 1] form a generalized Nash equilibrium.
Restricting the choice of each player to xi > 0, we easily see that xi = 1/2 strictly dom-
inates any xi > 1/2 (for either i = 1, 2); iterating this argument, we see that no strategy
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xi > 0 survives iterated deletion of strictly dominated strategies, hence this generalized
Nash equilibrium contains no singleton (mixed) Nash equilibrium.

It is important to stress that the mere fact that the Kakutani (or even Brouwer) theorem
can be applied to the best responses by no means ensures that the game possesses almost
enough Nash equilibria.

Example 4.2. Let N = {1, 2}, X1 = X2 = {(ρ, ϕ)| 0 ≤ ρ ≤ 1} (regarded as a subset of
the plane with polar coordinates), u1((ρ1, ϕ1), (ρ2, ϕ2)) = V (ρ1, ρ2) + χ(ρ1, ρ2) · χ(ϕ1, ϕ2)
and u2((ρ1, ϕ1), (ρ2, ϕ2)) = u1((ρ2, ϕ2), (ρ1, ϕ1⊕ϕ0)), where V (ρ1, ρ2) = min{2ρ1, 3ρ2−ρ1},
χ(s1, s2) = 1 if s1 = s2 and χ(s1, s2) = 0 otherwise, ⊕ denotes addition modulo 2π,
and 0 < ϕ0 < 2π. The best responses are easy to find: R1(ρ2, ϕ2) = {(ρ2, ϕ2)} and
R2(ρ1, ϕ1) = {(ρ1, ϕ1 ⊕ ϕ0)}; both are continuous. Therefore, the existence of a Nash
equilibrium is ensured by the Brouwer theorem; indeed, the origin is a unique equilibrium,
providing the players with utility levels 〈1, 1〉. If the players agree to choose ρ1 = 1 and
ρ2 = 1, they receive the utility levels 〈2, 2〉, at least, and the agreement is self-policing.

Although the best responses in the example are well defined, the conditions of Theo-
rem 2.2 are not met (so the upper hemi-continuity of the best responses is “accidental”).
It seems worthwhile to produce a more complicated example with continuous utilities.

Example 4.3. Again, there are two players with the same discs as strategy sets, X1 =
X2 = {(ρ, ϕ)| 0 ≤ ρ ≤ 1}, and continuous utilities: u1((ρ1, ϕ1), (ρ2, ϕ2)) = V (ρ1, ρ2) + ρ2 ·
η′(ρ1, ρ2)·η′′(ϕ1, ϕ2) and u2((ρ1, ϕ1), (ρ2, ϕ2)) = u1((ρ2, ϕ2), (ρ1, ϕ1⊕ϕ0)), where V (ρ1, ρ2) =
min{ρ1, 4ρ2 − ρ1}, r(ρ) = min{2ρ, 1}, both η′ and η′′ are continuous, η′′(ϕ1, ϕ2) = 1 if
ϕ1 = ϕ2 and 0 ≤ η′′(ϕ1, ϕ2) < 1 otherwise, η′(ρ1, ρ2) = 1 if ρ1 = r(ρ2), 0 < η′(ρ1, ρ2) < 1
whenever 0 < |ρ1 − r(ρ2)| < 1/3 and η′(ρ1, ρ2) = 0 otherwise; finally, 0 < ϕ0 < 2π again.

The best responses are R1(ρ2, ϕ2) = {(r(ρ2), ϕ2)} and R2(ρ1, ϕ1) = {(r(ρ1), ϕ1 ⊕ ϕ0)};
again, the origin is a unique Nash equilibrium, providing the players with utility levels
〈0, 0〉. Meanwhile, if ρ1 ≥ 1/3, then u2((ρ1, ϕ1), (ρ2, ϕ2)) < 1/3 when ρ2 < 1/3, and
u2((ρ1, ϕ1), (ρ2, ϕ2)) ≥ 1/3 when ρ2 ≥ 1/3; a similar statement holds if the roles of the
players are reversed. Thus, the conditions ρi ≥ 1/3 for both i define a generalized Nash
equilibrium Pareto dominating the unique singleton equilibrium.

5 Games with Strategic Complementarities

In this section, we assume two structures on each Xi, topology and order, such that the
order is continuous in the topology, each Xi is a complete lattice and a compact space, and
each utility function ui is upper semicontinuous in own variable xi. Under the assumptions,
Ri(x−i) 6= ∅ for all i ∈ N and x−i ∈ X−i. The orders on each Xi induce an order (their
product) on each X−i and on X.

In the main theorem, we also assume that each utility function ui has the properties of
single crossing in (xi, x−i) (Milgrom and Shannon, 1994) and of pseudosupermodularity in
xi (Agliardi, 2000):

[yi ≥ xi & y−i ≥ x−i] ⇒ [sign(ui(y)− ui(xi, y−i)) ≥ sign(ui(yi, x−i)− ui(x))] (5.1)
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and

sign(max{ui(xi ∨ yi, z−i)− ui(xi, z−i), ui(xi ∨ yi, z−i)− ui(yi, z−i)}) ≥
sign(max{ui(xi, z−i)− ui(xi ∧ yi, z−i), ui(yi, z−i)− ui(xi ∧ yi, z−i)}), (5.2)

where i ∈ N , xi, yi ∈ Xi, x−i, y−i, z−i ∈ Xi, and sign(t) is -1 if t < 0, 0 if t = 0, and 1
if t > 0 (although subtraction is used in both definitions, the properties themselves are
purely ordinal).

Lemma 5.1. If a game satisfies (5.1) and (5.2), then, for each i ∈ N , xi, yi ∈ Xi, and
x−i, y−i ∈ Xi,

[y−i ≥ x−i & yi ∈ Ri(y−i) & xi ∈ Ri(x−i)] ⇒ [yi ∨ xi ∈ Ri(y−i) & yi ∧ xi ∈ Ri(x−i)].

The statement means that Ri(x−i) is a sublattice of Xi (pick y−i = x−i) and Ri(·) is
increasing w.r.t. the strong set order defined by Veinott (see Topkis, 1979).

Proof. Indeed, xi ∈ Ri(x−i) implies ui(x) ≥ ui(xi ∧ yi, x−i) and ui(x) ≥ ui(yi, x−i), hence,
by (5.2), ui(xi ∨ yi, x−i) ≥ ui(yi, x−i), hence, by (5.1), ui(xi ∨ yi, y−i) ≥ ui(y), hence
xi ∨ yi ∈ Ri(y−i). On the other hand, yi ∈ Ri(y−i) implies that ui(y) ≥ ui(xi ∨ yi, y−i),
hence, by (5.1), ui(yi, x−i) ≥ ui(xi ∨ yi, x−i), hence, by (5.2), ui(xi ∧ yi, x−i) ≥ ui(x), hence
xi ∧ yi ∈ Ri(x−i).

Remark. The lemma is obviously inspired by Proposition 3 of Agliardi (2000), but is for-
mally independent of it.

Theorem 5.2. If a game satisfies (5.1) and (5.2), then it possesses almost enough Nash
equilibria.

Proof. To produce an improvement path from an arbitrary strategy profile to an equi-
librium, we impose the following rules: (1) If, at a current profile, there exist profitable
deviations upwards, one of them must be chosen. (2) Otherwise, a most profitable (for the
deviating player) deviation downwards must be chosen. It turns out that a path abiding
by these rules cannot cycle and only stops at a Nash equilibrium.

Let us introduce some notation:

X+ = {x ∈ X| ∃y ∈ X[y > x & y . x]}, X− = X \X+,

R−
i (x) = {yi ∈ Xi| yi ≤ xi & ∀zi ∈ Xi [zi ≤ xi ⇒ ui(yi, x−i) ≥ ui(zi, x−i)]},

y ..i x ⇐⇒ y .i x & [yi > xi ∨ (x ∈ X− & yi ∈ R−
i (x))],

y .. x ⇐⇒ ∃i ∈ N [y ..i x],

y Â x ⇐⇒ [y ∈ X− & x ∈ X+] ∨ [x, y ∈ X+ & y > x] ∨ [x, y ∈ X− & y < x].

By definition, y .. x ⇒ y . x; it is easy to check that Â is irreflexive and transitive.

Lemma 5.2.1. If x ∈ X is a maximizer for .., then x is a Nash equilibrium (i.e., a
maximizer for .).
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Proof. Suppose the contrary: x ∈ X is a maximizer for .. (i.e., there is no profitable
deviation either upwards or downwards), but not a Nash equilibrium, i.e., there exist i ∈ N
and yi ∈ Xi such that ui(yi, x−i) > ui(x) (then yi must be incomparable with xi). We
have xi ∧ yi < xi, hence ui(xi ∧ yi, x−i) ≤ ui(x) < ui(yi, x−i); similarly, xi ∨ yi > xi, hence
ui(xi ∨ yi, x−i) ≤ ui(x) < ui(yi, x−i). Now we have a contradiction with (5.2).

Lemma 5.2.2. If y .. x, then y Â x.

Proof. The only point worth discussing is the incompatibility of y ..j x, y < x, and x ∈ X−

with y ∈ X+. Suppose the contrary: there are i ∈ N and zi > yi such that

ui(zi, y−i) > ui(y). (5.3)

Let us consider two alternatives.

If i = j (hence y−i = x−i), zi > xi contradicts x ∈ X− while zi < xi contradicts yi ∈
R−

i (x); therefore, we have to assume that zi and xi are incomparable, hence zi∨xi > xi. Now
yi ∈ R−

i (x) implies ui(y) ≥ ui(zi∧xi, x−i), hence, by (5.3) and (5.2), ui(zi∨xi, x−i) > ui(x),
contradicting x ∈ X−.

Thus, we are led to i 6= j, hence yi = xi and y−i < x−i. Now (5.3) and (5.1) imply
ui(zi, x−i) > ui(x), again contradicting x ∈ X−.

Lemma 5.2.3. If xk → xω and xk+1 Â xk for all k = 0, 1, . . . , then xω Â x0.

Proof. As in Lemma 5.2.2, we only have to show that xk ∈ X− and xk+1 < xk for all k
imply xω = limk→∞ xk ∈ X−. Suppose the contrary: there exist i ∈ N and yi ∈ Xi such
that yi > xω

i (hence yi > xk
i for all k large enough) and ui(yi, x

ω
−i) > ui(x

ω), hence

ui(yi, x
ω
−i) > ui(x

k
i , x

ω
−i) (5.4)

for all k large enough. Obviously, xω
−i ≤ xk

−i for any k; therefore, (5.4) and (5.1) imply
ui(yi, x

k
−i) > ui(x

k), hence xk ∈ X+ again.

Lemmas 5.2.2 and 5.2.3, and Theorem 2.2 of Kukushkin (2000) imply that every im-
provement path π satisfying π(α + 1) .. π(α) whenever π(α + 1) can be defined ends at
a maximizer for ... Lemma 5.2.1 implies that the maximizer is a Nash equilibrium. A
reference to Theorem 3.4 completes the proof.

Remark. For a finite game, both Lemma 5.2.3 and the reference to Kukushkin (2000) are
obviously redundant. Example 2.1 shows that “almost” in the formulation of Theorem 5.2
cannot be dropped: that game satisfies the conditions. If all strategies are scalar (i.e., each
Xi is a chain), then (5.2) is satisfied automatically and may be dropped.

Similarly to Section 4, the mere fact that Tarski’s theorem can be applied to the best
responses does not ensure that the game possesses almost enough Nash equilibria. However,
in this context it is possible to formulate conditions on the strategy sets and best responses
ensuring that the game has almost enough Nash equilibria.
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Example 5.1. Let us consider a two person game with X1 = X2 = {(0,0), (0,1), (1,0),
(1,1)} ⊆ IR2 (with the standard order) and utilities described by these “matrices” (where
player 1 chooses a 2× 2 “block,” and player 2 a position in the block; the axes are directed
upwards and to the right):

[
(9, 7) (5, 5)

(5, 5) (7, 9)

] [
(5, 5) (6, 6)
(0, 0) (5, 5)

]

[
(5, 5) (0, 0)
(6, 6) (5, 5)

] [
(8, 9) (5, 5)

(5, 5) (9, 8)

]

Although the statement of Lemma 5.1 holds for the game (there is even Topkis’s (1979),
cardinal increasing differences property), the condition (5.2) does not. Both best response
functions are increasing and, in accordance with Tarski’s theorem, there exist even two sin-
gleton equilibria: 〈(0, 0), (0, 0)〉 and 〈(1, 1), (1, 1)〉. However, there also exists a generalized
Nash equilibrium, {(0, 1), (1, 0)} × {(0, 1), (1, 0)}, ensuring a higher utility level (and less
risky) for either player.

Theorem 5.3. Let one of the strategy sets, say X1, be a partially ordered set, and all other
Xi’s be chains, still assuming that there is a topology on each Xi such that the order is
continuous in the topology, Xi is compact, and ui is upper semicontinuous in xi. Let each
best response correspondence be increasing in the sense that

[x′′−i ≥ x′−i & x′′i ∈ Ri(x
′′
−i) & x′i ∈ Ri(x

′
−i)] ⇒ x′′i ≥ x′i.

Then the game possesses almost enough Nash equilibria.

Proof. We will reason similarly to the proof of Theorem 5.2, considering improvement paths
abiding by the following rules: (1) If, at a current profile, every profitable best response
deviation leads downwards, one of them must be chosen. (2) Otherwise, if there exist
profitable best response deviations of player 1 not leading upwards, one of them must be
chosen. (3) Finally, if neither condition is satisfied, a profitable best response deviation
upwards must be chosen. Again, a path abiding by the rules cannot cycle and only stops
at a Nash equilibrium.

Let us introduce some notation:

X− = {x ∈ X| ∀i ∈ N [xi ∈ Ri(x−i) ∨ ∀x′i ∈ Ri(x−i)(xi > x′i)]},
X+ = {x ∈ X \X−| x1 ∈ R1(x−1) ∨ ∀x′1 ∈ R1(x−1)(x

′
1 > x1)},

y .. x ⇐⇒ ∃i ∈ N [y−i = x−i & xi /∈ Ri(x−i) 3 yi &

(x /∈ X− ∪X+ ⇒ i = 1) & (x ∈ X+ ⇒ yi > xi)],

y Â x ⇐⇒ [y ∈ X− & x /∈ X−] ∨ [y ∈ X+ & x /∈ X− ∪X+]∨
[x, y ∈ X+ & y > x] ∨ [x, y ∈ X− & y < x].

Obviously, y .. x implies y . x; it is easy to check that Â is irreflexive and transitive.
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Lemma 5.3.1. If x ∈ X is a maximizer for .., then x is a Nash equilibrium.

Proof. Suppose x ∈ X+; then there exists a player i ∈ N for which xi /∈ Ri(x−i) and x′i > xi

for some x′i ∈ Ri(x−i). Denoting y = 〈x′i, x−i〉, we obtain y .. x, which contradicts the
condition on x. Now let x /∈ X+ ∪X−; then x1 /∈ R1(x−1) and, picking x′1 ∈ R1(x−1) and
denoting y = 〈x′1, x−1〉, we again obtain y .. x. Therefore, x ∈ X−. Now if xi /∈ Ri(x−i)
for some i ∈ N , we may pick x′i ∈ Ri(x−i) and, denoting y = 〈x′i, x−i〉, obtain y .. x once
again.

Lemma 5.3.2. If y .. x, then y Â x.

Proof. If x /∈ X+ ∪ X−, then, by the definition of .., y1 ∈ R1(x−1) = R1(y−1), hence
y ∈ X+ ∪X−, hence y Â x. If x ∈ X−, then, for some i ∈ N , y−i = x−i and yi < xi, hence
y < x; now it is sufficient to show y ∈ X−. Suppose the contrary: there are j ∈ N and
y′j ∈ Rj(y−j) such that y′j > yj /∈ Rj(y−j); then j 6= i, hence yj = xj and y−j < x−j. Now
y′j > xj implies xj /∈ Rj(x−j), but then we have xj > x′j ≥ y′j for any x′j ∈ Rj(x−j). Finally,
if x ∈ X+, then, similarly, y−i = x−i and yi > xi for some i ∈ N , hence y > x. Now if
y ∈ X−, then y Â x by definition; otherwise, the conditions y1 /∈ R1(y−1) and y′1 > y1 for
some y′1 ∈ R1(y−1) would imply a contradiction in the same (or rather dual) way as above,
hence y ∈ X+, hence y Â x.

Lemma 5.3.3. If xk → xω and xk+1 Â xk for all k = 0, 1, . . . , then xω Â x0.

Proof. We only have to prove two implications: (i) if xk ∈ X− for all k (hence xk+1 < xk),
then xω ∈ X−; (ii) if xk ∈ X+ for all k (hence xk+1 > xk), then xω ∈ X− ∪ X+. Let us
consider the first one. Pick i ∈ N and consider two alternatives: either xω

−i < xk
−i for all k,

or xω
−i = xk

−i for all k (large enough). Assuming the first alternative, we pick x′i ∈ Ri(x
ω
−i);

by the monotonicity of Ri, we have x′i ≤ xk
i for every k, hence x′i ≤ xω

i . Under the second
alternative, we have either xk

i ∈ Ri(x
ω
−i) for all k, hence xω

i ∈ Ri(x
ω
−i), or xk

i /∈ Ri(x
ω
−i) for

arbitrarily large k, hence, for any x′i ∈ Ri(x
ω
−i)[= Ri(x

k
−i)], x′i < xk

i , hence x′i ≤ xω
i . Since

i ∈ N and x′i ∈ Ri(x
ω
−i) were arbitrary, xω ∈ X−. To prove the statement (ii), we apply a

dual reasoning to i = 1.

The end of the proof is exactly the same as in Theorem 5.2.
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