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1 Introduction

The recognition of the significance of monotonicity properties in economic models has been

steadily growing in recent decades (Tirole, 1988; Fudenberg and Tirole, 1991; Topkis,

1998). Bulow et al. (1985) coined the terms “strategic complements” and “strategic

substitutes.” From the viewpoint of economics, both properties are equally natural and

important; from the technical viewpoint, there is a big difference.

Under strategic complements, i.e., increasing best responses, the existence of Nash

equilibria can be derived, under reasonable assumptions, from the famous Tarski (1955)

fixed point theorem; the idea was introduced into game-theoretic literature by Topkis

(1979), see also Topkis (1998) and references therein. On the other hand, the straightfor-

ward analogue of Tarski’s theorem for decreasing mappings is just wrong, and examples

of games with strategic substitutes, but without equilibria, are easy to produce.

Nonetheless, Novshek (1985) showed that decreasing best responses ensure the exis-

tence of a Nash equilibrium provided the strategy sets are closed intervals on the real

line and the partners’ choices affect each player’s utility only through their sum. Doubts

seem legitimate as to whether the original text contains a “proof” in the true sense of

the word, but the mysterious beauty of the construction is above such trifles. Kukushkin

(1994) modified Novshek’s argument, obtaining a rigorous proof fit for discrete models as

well (actually, even better).

This paper concerns with conditions for more than the mere existence of a Nash

equilibrium, viz. for nice best response improvement dynamics. A systematic investigation

of games where the convergence of unilateral improvement dynamics is ensured was started

by Monderer and Shapely (1996). Milchtaich (1996) suggested similar treatment of best

response improvements (actually, Cournot himself was a pioneer here). Kukushkin (1999)

showed the usefulness of the language of binary relations in the studies.

In the context of games with strategic complements, certain convergence results con-

cerning best response improvements were established by Topkis (1979) and Vives (1990),

but those results lacked a universal character. Kandori and Rob (1995) proved the con-

vergence to a Nash equilibrium of all best response paths in every finite, symmetric, and

strictly supermodular game with scalar strategies. Kukushkin (2004) established the con-

vergence to equilibria of all best response improvement paths in every finite game with

strategic complements or strategic substitutes and with additive aggregation. Dubey et

al. (2006) suggested an alternative approach to the last situation, building on an idea de-

veloped first by Huang (2002) for somewhat different purposes. A very interesting feature

of the approach was a perfect symmetry between strategic complements and strategic

substitutes.

This paper has originated from a surprise at this unusual symmetry. The explanation

found is that there is just one general theorem rather than two. The key condition is

that each player’s best responses should increase in an aggregate of other players’ choices,

which is affine in every one of them. The slopes may be either upward or downward, but

there must be reciprocity in them. Every such game admits a “Cournot potential,” i.e.,

Nash equilibria exist and all best response improvement paths, in a sense, lead to them.

In particular, every best response improvement path in every finite game from the class
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reaches an equilibrium in a finite number of steps.

A striking feature of the result is that strategic substitutability and complementarity

may be both present in the same game; moreover, optimal response of player i to player

j’s strategy may be increasing, decreasing, or constant, depending on the choices of other

players. Hence the tentative term “strategic supplements” in the title of the paper. Games

with additive aggregation and strategic complements or substitutes (Kukushkin, 2004,

Theorems 1 and 2) are just two tiny islands in a vast sea of newly discovered (or rather,

tamed) models.

An essential role in the proof is played by the “pseudo-potential” function of Dubey et

al. (2006): a modification of it is now a part of the Cournot potential. In comparison with

that paper, much more general aggregates are allowed (see Examples 1 and 2 below); nice

behavior of all best response improvement paths, rather than some of them, is established;

all superfluous technical restrictions are dropped.

The next section contains definitions related to strategic games and best response

dynamics. Our basic model and the main result are formulated in Section 3 as well as ex-

amples of applications. A simpler version of the theorem, assuming upper hemicontinuous

best responses, is proven in Section 4. A proof for the general case is given in Section 5.

Several extensions of our basic model, broadening the scope of potential applications,

are presented in Sections 6 and 7. A discussion of several related questions in Section 8

concludes the paper.

2 Basic Notions

A strategic game Γ is defined by a finite set of players N (we denote n = #N), and

strategy sets Xi and utility functions ui on X =
∏

i∈N Xi for all i ∈ N . The best response

correspondence Ri : X−i → 2Xi for each i ∈ N is defined in the usual way:

Ri(x−i) = Argmax
xi∈Xi

ui(xi, x−i).

We always assume that each Xi, hence X too, is a compact metric space; we do

not assume the continuity of utilities, but require that Ri(x−i) 6= ∅ for all i ∈ N and

x−i ∈ X−i (the upper semicontinuity of ui in own strategy xi is sufficient though by no

means indispensable).

We introduce the Cournot relation . on X as in Kukushkin (2004) (y, x ∈ X, i ∈ N):

y .i x ⇐⇒ [y−i = x−i & xi /∈ Ri(x−i) 3 yi];

y . x ⇐⇒ ∃i ∈ N [y .i x].

A strategy profile x ∈ X is a Nash equilibrium if and only if x is a maximizer for ., i.e.,

if y . x does not hold for any y ∈ X; the assumed existence of the best replies is crucial

here.

For a finite game, the acyclicity of the Cournot relation obviously means that every best

response improvement path, if continued whenever possible, ends at a Nash equilibrium,
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the existence of which is thus implied. In an infinite game, the role of acyclicity can, to

some extent, be played by an order potential as defined in Kukushkin (1999, 2000).

A Cournot potential of a strategic game is an irreflexive and transitive binary relation

Â on X such that:

y . x ⇒ y Â x; (1)[
xω = lim

k→∞
xk & ∀k ∈ N[xk+1 Â xk]

] ⇒ xω Â x0. (2)

It is essential that (2) implies xω Â xk for all k = 0, 1, . . . as well. The property seems to

have been considered first by Gillies (1959). In Kukushkin (2003), it was called “ω-tran-

sitivity.”

The main theorem of Kukushkin (1999) implies that every game admitting a Cournot

potential possesses a Nash equilibrium (provided the strategy sets are compact and the

best responses exist everywhere). For a finite game, (2) holds by default, so the presence

of a Cournot potential is equivalent to the acyclicity of the Cournot relation. In the gen-

eral case, if we consider best response improvement paths parameterized with transfinite

numbers, where best response improvement steps are combined with taking limit points,

then the presence of a Cournot potential prevents us from ever coming back; it seems

intuitively plausible that, on a compact set X, we will reach an equilibrium eventually. A

formalization of the idea and a rigorous proof of “transfinite convergence” can be found

in Kukushkin (2003).

3 Main Theorem

Our first subject are games with reciprocal polylinear interactions (RPLI games). Such

games are characterized by the following properties: all strategies xi are scalar; the part-

ners’ choices affect each player’s utility only through their scalar aggregate, σi(x−i), which

is affine in every single partner’s choice xj; if the choices of all players but two are fixed,

then both functions expressing the dependence of one player’s aggregate on the other’s

strategy have the same slope.

To be more formal and exact, we impose these assumptions:

1. Xi ⊂ R for every i ∈ N ;

2. ui(x) = Ui(σi(x−i), xi) for all i ∈ N and x ∈ X, where

σi(x−i) =
n−1∑
m=1

∑

j1,...,jm∈N\{i}
jh 6=jh′ (h6=h′)

α
(m)
ij1...jm

× xj1 × · · · × xjm ; (3)

3. each α
(m)
i0i1...im

is invariant under all permutations of i0, i1, . . . , im (invariance under

all permutations of i1, . . . , im could be assumed without restricting generality).

Considering an RPLI game, we denote Si = σi(X−i) for each i ∈ N ; clearly, Si is

compact too. We redefine the best response correspondence:

Ri(si) = Argmax
xi∈Xi

Ui(si, xi);
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our assumption Ri(x−i) 6= ∅ implies Ri(si) 6= ∅ for each si ∈ Si.

We also assume that every player’s best responses are increasing in si:

[s′i > si & x′i ∈ Ri(s
′
i) & xi ∈ Ri(si)] ⇒ x′i ≥ xi (4)

for all i ∈ N and s′i, si ∈ Si. The standard argument (Milgrom and Shannon, 1994;

Topkis, 1998) shows that the following strict single crossing condition is sufficient for (4):

[x′i > xi & s′i > si & Ui(si, x
′
i) ≥ Ui(si, xi)] ⇒ Ui(s

′
i, x

′
i) > Ui(s

′
i, xi) (5)

for all i ∈ N , x′i, xi ∈ Xi, and s′i, si ∈ Si. The conditions (4) or (5) cannot be called

either strategic substitutes or strategic complements because si = σi(x−i) can be either

decreasing or increasing in each xj, depending on α’s and perhaps on the other players’

choices.

Theorem 1. Every RPLI game satisfying (4) admits a Cournot potential.

The proof is deferred to Sections 4 and 5.

If α
(m)
i0i1...im

= 0 for m > 1 and α
(1)
ij = 1, we obtain a game with strict strategic

complements and additive aggregation; for finite games from the class, the acyclicity of

best response improvements was established in Kukushkin (2004, Theorem 1), under even

weaker monotonicity conditions. If α
(m)
i0i1...im

= 0 for m > 1, while α
(1)
ij = −1, we obtain a

game with strict strategic substitutes and additive aggregation; for finite games from the

class, our Theorem 1 is equivalent to Theorem 2 from Kukushkin (2004).

Example 1. Each player owns a small commercial parking lot in an area. The decision

problem for each of them is how much lighting, xi, to provide at her lot at night. The

higher xi, the higher expenses; on the other hand, the more light, the lower insurance costs.

There is a positive externality effect: each player’s lamps add something to the light at

other lots. It seems reasonable to assume that insurance costs decrease in xi +
∑

j 6=i αijxj,

where 0 ≤ αij < 1. Each coefficient αij depending primarily on the distance between

i’s and j’s lots, the reciprocity condition, αij = αji, seems natural. If we assume the

insurance-cost-reduction effect of light to be subject to strictly diminishing returns, then

(5) becomes valid, for σi(x−i) = −∑
j 6=i αijxj, regardless of the production costs.

Theorem 1 implies that the game possesses a Nash equilibrium and the behaviour

of best response improvements is nice enough. In particular, if we assume that only a

finite number of xi’s are technologically feasible, then every best response improvement

path reaches an equilibrium in a finite number of steps. It is impossible to derive either

statement from the previous literature.

Example 2. The players are music fans living in the same apartment block. Each player

chooses the volume xi of his own music, the others providing a negative externality, noise,∑
j 6=i αijxj (0 ≤ αij < 1). It seems reasonable to assume αij = αji and that each player’s

optimal volume increases in the outside noise. The existence of an equilibrium, certainly,

follows from Tarski’s fixed point theorem, but the acyclicity of best response improvements

can only be derived from our Theorem 1.

This author is yet unprepared to produce specific models with more general aggregates

allowed by Theorem 1, but such aggregates do not seem redundant. For instance, α
(1)
ij of
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different signs could appear in a monopolistic competition model if xi describes the level

of advertising by firm i. It seems natural to expect strategic complementarity, α
(1)
ij > 0,

when the products of the two firms are substitutes, strategic substitutability, α
(1)
ij < 0,

when the products are complements, and “strategic indifference,” α
(1)
ij = 0, when they are

independent.

The possibility to include nonlinear terms increases the scope of potential applications.

4 Best Responses with Closed Graphs

Here we formulate and prove a less general statement, sufficient for many purposes. In

particular, it is equivalent to Theorem 1 for finite games.

Proposition 4.1. Every RPLI game satisfying (4) admits a Cournot potential if the best

response correspondences have closed graphs.

Proof. For every i ∈ N , we denote s−i = min Si and s+
i = max Si. For each si ∈ Si, we

define r−i (si) = min Ri(si) and r+
i (si) = max Ri(si); by (4), s′i > si ⇒ r−i (s′i) ≥ r+

i (si)

and r+
i (si) = r−i (si) for all si ∈ Si except for a countable subset. Then we extend

r+
i to the whole [s−i , s+

i ] with the following construction. For every si ∈ [s−i , s+
i ] we

define ξ+
i (si) = min{ξi ∈ Si| ξi ≥ si} and ξ−i (si) = max{ξi ∈ Si| ξi ≤ si}. Obviously,

ξ+
i (si) = ξ−i (si) = si if and only if si ∈ Si; otherwise, ξ−i (si) < si < ξ+

i (si). Now for

every si ∈ [s−i , s+
i ] \ Si we define r+

i (si) = r+
i (ξ−i (si)) if si − ξ−i (si) ≤ ξ+

i (si) − si, and

r+
i (si) = r−i (ξ+

i (si)) otherwise.

We define X0
i =

⋃
si∈Si

Ri(si); the compactness of Si and upper hemicontinuity of Ri

imply that X0
i is closed in Xi, hence compact too. For each xi ∈ Xi, we define a function

Fi(xi) =

∫ s+
i

s−i

min{xi, r
+
i (si)} dsi.

For each x ∈ X, we define a set N0(x) = {i ∈ N | xi ∈ X0
i } and a function

P (x) =
n−1∑
m=1

[ ∑
i0,i1,...,im∈N
ih 6=ih′ (h6=h′)

1

m + 1
α

(m)
i0i1...im

× xi0 × xi1 × · · · × xim

]
+

∑
i∈N

[
Fi(xi)− s+

i · xi

]
. (6)

Finally, we define a binary relation on X (the potential):

y Â x ⇐⇒ [
N0(y) ⊃ N0(x) or [N0(y) = N0(x) & P (y) > P (x)]

]
.

Obviously, Â is irreflexive and transitive. Checking (2) is straightforward: the situation

N0(xk+1) ⊃ N0(xk) can only happen for a finite number of k; without restricting gen-

erality, N0(xk+1) = N0(xk) for all k, hence P (xk+1) > P (xk); since each X0
i is closed,

N0(xω) ⊇ N0(x0); since P is continuous, P (xω) > P (x0).
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Let us check (1); let y .i x. Denoting s̄i = σi(x−i), we have yi ∈ Ri(s̄i) by definition,

hence yi ∈ X0
i ; therefore, N0(y) ⊇ N0(x). If the inclusion is strict, we are home. Let

xi ∈ Ri(s
∗
i ) for s∗i ∈ S∗i ; then s∗i 6= s̄i because xi /∈ Ri(s̄i). We have to show P (y) > P (x).

Combining the terms containing xi (respectively, yi), we obtain:

P (x) = −xi · (s+
i − s̄i) + Fi(xi) + C;

P (y) = −yi · (s+
i − s̄i) + Fi(yi) + C;

where C only depends on xj = yj for j 6= i.

Now yi ∈ Ri(s̄i) implies r+
i (si) ≥ yi for all si ≥ s̄i and r+

i (si) ≤ yi for all si < s̄i, hence

Fi(yi) =
∫ s̄i

s−i
min{yi, r

+
i (si)} dsi +

∫ s+
i

s̄i
min{yi, r

+
i (si)} dsi =

∫ s̄i

s−i
r+
i (si) dsi + yi · (s+

i − s̄i),

hence P (y) =
∫ s̄i

s−i
r+
i (si) dsi + C.

We have assumed xi ∈ Ri(s
∗
i ); arguing exactly as in the previous paragraph, we see

that Fi(xi) =
∫ s∗i

s−i
r+
i (si) dsi + xi·(s+

i −s∗i ). Therefore, P (x) = xi·(s̄i−s∗i )+
∫ s̄i

s−i
r+
i (si) dsi +

∫ s∗i
s̄i

r+
i (si) dsi + C, hence

P (y)− P (x) =

∫ s∗i

s̄i

[xi − r+
i (si)] dsi. (7)

If s∗i > s̄i, then the integrand is nonnegative on the whole interval and strictly positive

in an open neighbourhood of s̄i, because xi /∈ Ri(s̄i) and the graph of Ri is closed. If

s∗i < s̄i, then the integrand is nonpositive on the whole interval and strictly negative in

an open neighbourhood of s̄i, but dsi < 0 (the lower limit is greater than the upper one).

In either case, P (y) > P (x), hence y Â x.

5 General Proof

It is worthwhile to ponder on exactly what makes the above proof unfit for the general

situation. If we try to apply it “as is,” our proof of (2) will fail because now X0
i need not

be closed. This obstacle can be overcome by replacing X0
i in the definition of N0(x) with

its closure (which coincides with the projection to Xi of the closure of the graph of Ri);

however, we shall be unable to assert that the integral in (7) is strictly positive.

Example 3. Let N = {1, 2}, X1 = X2 = [0, 1], and the utilities be

ui(xi, xj) = min{xi + β1
i (xj),−xi + β2

i (xj)},
where β1

1(x2) ≡ 0, β2
2(x1) ≡ 1,

β2
1(x2) =





2, x2 = 0,

2− 1/2k−1, 1/2k+1 < x2 ≤ 1/2k (k = 1, 2, . . . ),

1− 1/2k, 1/2 + 1/2k+1 < x2 ≤ 1/2 + 1/2k (k = 1, 2, . . . ),

and

β1
2(x1) =





−1/2k−1, 1/2− 1/2k ≤ x1 < 1/2− 1/2k+1 (k = 1, 2, . . . ),

1− 1/2k, 1− 1/2k ≤ x1 < 1− 1/2k+1 (k = 1, 2, . . . ),

1, x1 = 1.
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Figure 1: Best responses in Example 3

Assuming σi(xj) = −xj, we easily check (5), hence (4); therefore, Theorem 1 applies.

Actually, the existence of a Cournot potential in the game follows from Theorem 5.3 of

Kukushkin (2000) since n = 2. The existence of an equilibrium even follows straight from

Tarski’s theorem as Vives (1990, p. 310) has noted.

The best response correspondences are these (see Fig. 1):

R1(x2) =





{1}, x2 = 0,

{1− 1/2k}, 1/2k+1 < x2 ≤ 1/2k (k = 1, 2, . . . ),

{1/2− 1/2k+1}, 1/2 + 1/2k+1 < x2 ≤ 1/2 + 1/2k (k = 1, 2, . . . );

R2(x1) =





{1/2 + 1/2k}, 1/2− 1/2k ≤ x1 < 1/2− 1/2k+1 (k = 1, 2, . . . ),

{1/2k+1}, 1− 1/2k ≤ x1 < 1− 1/2k+1 (k = 1, 2, . . . ),

{0}, x1 = 1.

Since they are singletons, we denote them by ri in the following rather than Ri.

The convergence to the unique equilibrium, (1, 0), may require taking a limit twice:

Suppose the players start at x0 = (0, 1); then they switch to (r1(1) = 1/4, 1); then to

(1/4, r2(1/4) = 3/4); ... to (1/2−1/2k+1, 1/2+1/2k); then to (1/2−1/2k+1, 1/2+1/2k+1);

... in the limit, to (1/2, 1/2); then to (1/2, r2(1/2) = 1/4); then to (r1(1/4) = 3/4, 1/4);

... to (1 − 1/2k, 1/2k); then to (1 − 1/2k, 1/2k+1); ... in the limit, to (1, 0). On the first

step of the process, we have N0(x0) = {2} ⊂ N = N0(x1). Later on, neither N0(xk) = N

nor P (xk) = 1/2 = maxx∈X P (x) change. This fact shows the inadequacy of the potential

from Section 4 in the general situation. It also shows that an equilibrium here could

hardly be produced by local modifications of an arbitrary maximizer of P as in the proof

of Theorem 3 of Dubey et al. (2006). By the way, that theorem is inapplicable: the

reaction functions are not strictly decreasing; r1 is left continuous; r2 is right continuous.

Remark. For every countable ordinal number α (Natanson, 1974, Chapter XIV), a similar

construction provides an example where the convergence to an equilibrium may require

“α” steps, cf. Theorem 4.3 of Kukushkin (2000).
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To start a proof fit for the general situation, we define R̄i(si) = {xi ∈ Xi| (si, xi) ∈
cl(graph Ri)} and replace Ri with R̄i in the definitions of X0

i , r−i , and r+
i . Each X0

i is still

compact, and monotonicity properties of r−i and r+
i remain intact. Then we reproduce the

same definitions of N0(x) and P (x), which now have a new meaning (actually, P remains

the same).

We add a third lexicographic component in the definition of Â so that the move-

ment from the northwestern to the southeastern corner of Figure 1 be accompanied with

increases in the component.

For every i ∈ N , we define binary relations on Xi:

yi ..i xi ⇐⇒ ∃s̄i ∈ Si [yi ∈ Ri(s̄i) & xi ∈ R̄i(s̄i) \Ri(s̄i)]

(in the following, we say “yi ..i xi holds with si = s̄i”);

yi ..+
i xi ⇐⇒ [yi ..i xi & yi > xi];

yi ..−i xi ⇐⇒ [yi ..i xi & yi < xi].

The relation yi ..i xi means that both yi and xi are in X0
i and that xi can be replaced

with yi without an increase in P . The crucial point is that such replacements cannot

generate a cycle.

An i-singular upward chain is a well ordered subset ∆ ⊆ Xi (inevitably countable)

such that (1) yi ..+
i xi whenever yi ∈ ∆ and xi = max{x′i ∈ ∆| yi > x′i} (then yi =

min{y′i ∈ ∆| y′i > xi}), and (2) yi = sup{xi ∈ ∆| yi > xi} whenever yi ∈ ∆ and

∀xi ∈ ∆ [yi > xi ⇒ ∃zi ∈ ∆(yi > zi > xi)].

An i-singular downward chain is defined dually as a subset ∆ ⊆ Xi, well ordered in

the reversed order on R (i.e., where every subset contains a greatest point) and such that

(1) yi ..−i xi whenever yi ∈ ∆ and xi = min{x′i ∈ ∆| yi < x′i} (then yi = max{y′i ∈ ∆| y′i <

xi}), and (2) yi = inf{xi ∈ ∆| yi < xi} whenever yi ∈ ∆ and ∀xi ∈ ∆ [yi < xi ⇒ ∃zi ∈
∆(yi < zi < xi)].

It is worth noting that ∆∩ [ai, bi], for ai, bi ∈ R, remains an i-singular upward (down-

ward) chain if so was ∆.

We define two more relations on Xi: yi ÂÂ+
i xi (yi ÂÂ−i xi) iff yi > xi (yi < xi) and

there is an i-singular upward (downward) chain containing both yi and xi. Then, we

define

yi ÂÂi xi ⇐⇒ [yi ÂÂ+
i xi or yi ÂÂ−i xi].

Clearly, all the three relations are irreflexive. Checking transitivity and (2) for the last

relation needs some effort.

Step 1. Both relations ÂÂ+
i and ÂÂ−i are transitive and satisfy (2).

Proof. It is obviously sufficient to consider one of the relations, say, ÂÂ+
i . Let zi ÂÂ+

i

yi ÂÂ+
i xi. By definition, there are two i-singular upward chains, ∆′ and ∆′′, such that

yi, zi ∈ ∆′′ and xi, yi ∈ ∆′. Defining ∆ =
(
[xi, yi] ∩∆′) ∪ (

[yi, zi] ∩∆′′), we see that ∆ is

an i-singular upward chain – when checking each condition in the definition, we will find

9



ourselves either totally inside [xi, yi] ∩∆′ or totally inside [yi, zi] ∩∆′′. Since xi, zi ∈ ∆,

we have zi ÂÂ+
i xi.

The proof of (2) is quite similar. Let xk
i → xω

i and xk+1
i ÂÂ+

i xk
i for all k; let ∆k

be an i-singular upward chain containing both xk
i and xk+1

i (k = 0, 1, . . . ). Denoting

∆ = {xω
i } ∪

⋃
k∈N

(
[xk

i , x
k+1
i ] ∩∆k

)
, we again obtain that ∆ is an i-singular upward chain

(the condition xω
i = supk∈N xk

i is essential here) containing both x0
i and xω

i .

Step 2. Let zi ..+
i yi hold with si = s̄i, and y′i ∈ [yi, zi[; then y′i ..−i xi is only possible,

for any xi ∈ Xi, with si = s̄i (in particular, yi ..−i xi is impossible for any xi ∈ Xi).

Proof. By definition, y′i ..−i xi would imply y′i < xi. For si > s̄i, we have r−i (si) ≥
r+
i (s̄i) ≥ zi > y′i, hence y′i /∈ Ri(si); for si < s̄i, r+

i (si) ≤ r−i (s̄i) ≤ yi ≤ y′i < xi, hence

xi /∈ R̄i(si). Therefore, both conditions in the definition of y′i ..i xi could only be satisfied

with si = s̄i.

Step 3. If zi ..+
i yi, then yi ÂÂ−i xi is impossible for any xi ∈ Xi.

Proof. Supposing the contrary, let zi ..+
i yi hold with si = s̄i and let ∆ be an i-singular

downward chain containing both yi and xi > yi. By Step 2, yi ..−i x′i cannot hold

for any x′i; therefore, condition (1) from the definition of an i-singular downward chain

cannot be applicable to yi, hence condition (2) must hold, implying ∆∩]yi, zi[6= ∅. Let

z′i = max{x′i ∈ ∆| x′i < zi}, y′i = max{x′i ∈ ∆| x′i < z′i}, and y′′i = max{x′i ∈ ∆| x′i < y′i},
the maxima existing because ∆ is well ordered in the reversed order. By the definition of

an i-singular downward chain [condition (1)], we have y′′i ..−i y′i ..−i z′i. By the findings of

Step 2, both relation must hold with si = s̄i, i.e., we must have y′i ∈ Ri(s̄i) and y′i /∈ Ri(s̄i)

simultaneously.

Step 4. If zi ÂÂ+
i yi, then yi ÂÂ−i xi is impossible for any xi ∈ Xi.

Proof. Let ∆ be an i-singular upward chain containing both zi and yi. Denoting y′i =

min{x′i ∈ ∆| x′i > yi}, we see that condition (1) from the definition of an i-singular upward

chain holds for y′i and yi, hence y′i ..+
i yi. Now the previous step applies.

Step 5. If zi ÂÂ−i yi, then yi ÂÂ+
i xi is impossible for any xi ∈ Xi.

Proof. The proof is exactly dual to the proofs of Steps 2, 3, and 4.

Step 6. The relation ÂÂi is transitive and satisfies (2).

Proof. Taking into account Steps 4 and 5, Step 1 immediately implies the statement.

Remark. Returning to the path from the northwestern to the southeastern corner of

Figure 1, it is easy to see that the projection of the path to X1 (X2) is an i-singular

upward (downward) chain. Therefore, all the changes in x1 (x2) are upwards in the sense

of ÂÂ+
1 (ÂÂ−2 ) [except for the first step, where N0(x1) ⊃ N0(x0)].

Finally, we define the potential:

y Â x ⇐⇒ [
N0(y) ⊃ N0(x) or [N0(y) = N0(x) & P (y) > P (x)] or(

N0(y) = N0(x) & P (y) = P (x) &

∀i ∈ N [yi = xi or yi ÂÂi xi] & ∃i ∈ N [yi ÂÂi xi]
)]

.
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Step 7. The relation Â is irreflexive and transitive, and satisfies (2).

Proof. The irreflexivity of Â is obvious; checking transitivity is very easy. Checking (2) is

done similarly to Section 4: without restricting generality, N0(xk+1) = N0(xk) for all k; if

P (xk+1) > P (xk) for a single k, then P (xω) > P (x0) and we are home. If P (xk+1) = P (xk)

for all k, then, for each i ∈ N , either xk+1
i ÂÂi xk

i for some k, or xk+1
i = xk

i for all k. In

the first case, Step 6 applies, producing xω
i ÂÂi x0

i ; in the second, xω
i = x0

i .

Step 8. If y . x, then y Â x.

Proof. Let y .i x and s̄i = σi(x−i). Exactly as in Section 4, we obtain y Â x if xi /∈ R̄i(s̄i).

Let xi ∈ R̄i(s̄i) \Ri(s̄i); then N0(y) = N0(x). We have r−i (s̄i) ≤ xi, yi ≤ r+
i (s̄i), hence

Fi(yi) =
∫ s̄i

s−i
r+
i (si) dsi + yi · (s+

i − s̄i) and Fi(xi) =
∫ s̄i

s−i
r+
i (si) dsi + xi · (s+

i − s̄i) exactly

as in Section 4; therefore, P (y) = P (x).

By definition, we have yi ..i xi. If yi > xi (yi < xi), we have yi ..+
i xi (yi ..−i xi).

Picking ∆ = {xi, yi}, we obtain yi ÂÂ+
i xi (yi ÂÂ−i xi), hence yi ÂÂi xi. Since xj = yj for

all j 6= i, we have y Â x.

Thus, Â is a Cournot potential and Theorem 1 is proved.

6 Abstract Reactions

The proper subject of this paper are “systems of reactions” (Kukushkin, 2000) rather than

games as such; Vives (1990) called virtually the same objects “abstract games.” There

is no big difference between the best response correspondences of a strategic game and

abstract reactions, but the latter concept provides a greater flexibility.

A system of reactions S is defined by a finite set of indices N , and sets Xi and mappings

Ri : X−i → 2Xi \ {∅} for all i ∈ N . A point x0 ∈ X =
∏

i∈N Xi is called a fixed point of

S if x0
i ∈ Ri(x

0
−i) for all i ∈ N .

With every system S, one can associate binary relations on X: y .Si x ⇐⇒ [y−i =

x−i & xi /∈ Ri(x−i) 3 yi], y .S x ⇐⇒ ∃i ∈ N [y .S
i x]. Obviously, x ∈ X is a maximizer

for .S if and only if x is a fixed point of S. We omit the superscript S at . when the

system is clear from the context.

A potential for a system of reactions is an irreflexive and transitive binary relation

Â on X such that (1) and (2) hold (with the new interpretation of .). As in Section 2,

the main theorem of Kukushkin (1999) implies that every system of reactions admitting

a potential possesses a fixed point (provided the sets Xi are compact). And again, the

iteration of reactions leads towards fixed points, reaching one in a finite number of steps

if all Xi are finite.

A system of reactions with reciprocal polylinear aggregates (an RPLA system) is char-

acterized by these assumptions: Xi ⊂ R and Ri = Ri ◦ σi for every i ∈ N , where

σi : X−i → R is defined by (3), and Ri is a correspondence from Si = σi(X−i) to Xi;

α
(m)
i0i1...im

is invariant under all permutations of i0, i1, . . . , im.
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Theorem 2. Every RPLA system where every mapping Ri satisfies (4) admits a potential.

There are two ways to prove the theorem. The first is to repeat Sections 4 and 5:

the utility functions were never mentioned there (Example 3 can easily be reformulated

without them). The second is to define an RPLI game by Ui(si, xi) = 1 if xi ∈ Ri(si),

and Ui(si, xi) = 0 otherwise. The same Ri become the best response correspondences

(actually, even (5) holds), so Theorem 1 implies Theorem 2.

The following obvious statement shows an advantage of the new formulation.

Corollary. Let, in an RPLA system, there exist correspondences R′
i : X−i → 2Xi \ {∅}

satisfying (4) and such that R′
i(x−i) ⊆ Ri(x−i) for all i ∈ N and x−i ∈ X−i. Then the

system has a fixed point.

Remark. Actually, we have a “restricted potential” in this situation, which is more than

the mere existence of a fixed point (Nash equilibrium), cf. Kukushkin (2004, Sections 6

and 7.7).

The conditions of the Corollary hold if the original reactions Ri are monotonic in a

weaker sense than (4). For instance,

[s′i ≥ si & xi ∈ Ri(si) & x′i ∈ Ri(s
′
i)] ⇒ x′i ∨ xi ∈ Ri(s

′
i), (8a)

or

[s′i ≥ si & xi ∈ Ri(si) & x′i ∈ Ri(s
′
i)] ⇒ x′i ∧ xi ∈ Ri(si). (8b)

Proposition 6.1. Let, for every i ∈ N in an RPLA system, each Ri(si) be closed and

either (8a) be satisfied for all x′i, xi ∈ Xi and s′i, si ∈ Si, or (8b) be satisfied for all

x′i, xi ∈ Xi and s′i, si ∈ Si. Then there is a fixed point.

Proof. If (8a) is satisfied for a given i ∈ N , we define R′
i(si) = {max Ri(si)}; otherwise,

we define R′
i(si) = {min Ri(si)}. The standard argument (Topkis, 1998) shows that R′

i

satisfies (4). Now Corollary to Theorem 2 applies.

Conditions (8) for the best response correspondences in a strategic game are ensured

by the weak single crossing conditions:

[x′i ≥ xi & s′i ≥ si & Ui(si, x
′
i) ≥ Ui(si, xi)] ⇒ Ui(s

′
i, x

′
i) ≥ Ui(s

′
i, xi); (9a)

[x′i ≥ xi & s′i ≥ si & Ui(s
′
i, xi) ≥ Ui(s

′
i, x

′
i)] ⇒ Ui(si, xi) ≥ Ui(si, x

′
i). (9b)

As is well known, (9a) implies (8a), whereas (9b) implies (8b).

Corollary. Let, for every i ∈ N in an RPLI game, each Ri(si) be closed (which holds,

e.g., if Ui is upper semicontinuous in own strategy xi) and either (9a) be satisfied for all

x′i, xi ∈ Xi and s′i, si ∈ Si, or (9b) be satisfied for all x′i, xi ∈ Xi and s′i, si ∈ Si. Then the

game possesses a Nash equilibrium.

The theorem on monotone selections ascribed by Milgrom and Shannon (1994, Theo-

rem A2) to A. Veinott implies that the monotonicity conditions in Proposition 6.1 could
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be weakened even further; however, the weaker condition admits no clear interpretation

in terms of utility functions.

If the existence of neither greatest nor least best response is ensured, the existence

of a Nash equilibrium can be obtained if we assume (9a) and (9b) together, which is

Milgrom and Shannon’s (1994) single crossing condition. The condition ensures that the

best response correspondence is ascending, i.e.,

[s′i ≥ si & xi ∈ Ri(si) & x′i ∈ Ri(s
′
i)] ⇒ [x′i ∨ xi ∈ Ri(s

′
i) & x′i ∧ xi ∈ Ri(si)]. (10)

The use of the property is based on the following technical result.

Lemma 6.2. Let R be a mapping S → 2X \ {∅}, where S is a partially ordered set and

X is a chain; let R satisfy (10). Then there exists a monotone selection from R, i.e., a

mapping r : S → X such that (1) r(s) ∈ R(s) and (2) s′ ≥ s ⇒ r(s′) ≥ r(s), for all

s, s′ ∈ S.

Proof. We use the Axiom of Choice to the full extent. The set S can be well ordered;

to avoid considering two independent orders on the same set, we assume that there is a

bijection λ : A → S, where A is a well ordered set of the same cardinality as S. We define

r(λ(α)) by (transfinite) induction in α ∈ A. First, we pick r(λ(0)) ∈ R(λ(0)) arbitrarily.

Let r(λ(β)) be defined for all β < α. We define B(α) = {β < α| r(λ(β)) ∈ R(λ(α))}.
If B(α) = ∅, we pick r(λ(α)) ∈ R(λ(α)) arbitrarily. Otherwise, we define r(λ(α)) =

r(λ(min B(α))), the minimum existing because A is well ordered.

Since there is no possibility that r(λ(α)) could be left undefined, we obtain r(λ(α))

for all α ∈ A eventually. Clearly, r(λ(α)) ∈ R(λ(α)) for all α ∈ A, so we only have to

check monotonicity.

Suppose to the contrary that λ(α′) < λ(α) whereas r(λ(α′)) > r(λ(α)); the assumption

that X is a chain is essential here. By (10), r(λ(α)) ∈ R(λ(α′)) and r(λ(α′)) ∈ R(λ(α)).

Without restricting generality, α′ < α, hence α′ ∈ B(α) 6= ∅. The assumption that

r(λ(α′)) 6= r(λ(α)) implies that min B(α) = β < α′ and r(λ(α)) = r(λ(β)). Now β ∈
B(α′) 6= ∅, so the assumption that r(λ(α′)) 6= r(λ(β)) implies that min B(α′) = β′ < β and

r(λ(α′)) = r(λ(β′)). However, now we have β′ ∈ B(α), hence β ≤ β′. The contradiction

proves the monotonicity of r.

Remark. If S ⊆ R, there exists a countable subset order dense in S; then the transfinite

induction can be replaced with ordinary one where parameters are natural numbers.

Proposition 6.3. Every RPLA system where every mapping Ri satisfies (10) has a fixed

point.

Proof. By Lemma 6.2, each Ri admits a monotone selection, which satisfies (4). Now

Corollary to Theorem 2 applies.

Proposition 6.3 is applicable to RPLI games where the best response correspondences

are ascending (e.g., both conditions (9) hold), but the sets Ri(si) need not be closed.
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7 Further Extensions

7.1. The reciprocity condition can be replaced with a hierarchy of players; moreover, even

polylinearity can be weakened considerably in this case. In this subsection we introduce

the concept of a system of reactions with hierarchic-reciprocal polylinear aggregates (an

HRPLA system). Such a system satisfies the first two conditions from the definitions of

an RPLA system, viz. Xi ⊂ R and Ri = Ri ◦ σi for every i ∈ N , but the restrictions on

σi : X−i → R are different.

We assume that N is partitioned into a number of subsets, N =
⋃ q

k=1 Nk with Nk ∩
Nh = ∅ whenever h 6= k. For each k = 1, . . . , q, we denote Mk =

⋃ q
h=k+1 Nh (so Mq = ∅);

we define the rank ρ(i) of a player i by i ∈ Nρ(i). Now we assume that

σi(x−i) =

#Nρ(i)−1∑
m=1

∑

j1,...,jm∈Nρ(i)\{i}
jh 6=jh′ (h6=h′)

α
(m)
ij1...jm

(xMρ(i)
)× xj1 × · · · × xjm ,

where α
(m)
i0i1...im

(xMk
) is invariant under all permutations of i0, i1, . . . , im ∈ Nk for each

k = 1, . . . , q, 1 ≤ m < #Nk, and xMk
∈ XMk

.

In other words, every player is indifferent to the choices of partners with lower ranks,

there is reciprocity between peers, and players with higher ranks may affect their inferiors

in an arbitrary way.

Proposition 7.1. Every HRPLA system where every mapping Ri satisfies (4) admits a

potential.

Proof. If q = 1, Theorem 2 applies, providing the basis for an induction process. Assuming

the statement valid for some q, we have to prove it for q + 1. We denote I = Nq+1 and

J = N \ I (=
⋃ q

k=1 Nk).

The correspondences Ri with i ∈ I form an RPLA system; by Theorem 2, it admits a

potential ÂI defined on XI =
∏

i∈I Xi. For every xI ∈ XI , the correspondences Ri with

i ∈ J form an HRPLA system; by the induction hypothesis, it admits a potential ÂxI

defined on XJ =
∏

i∈J Xi. Now we define our (global) potential as

y Â x ⇐⇒ [
yI ÂI xI or [yI = xI & yJ ÂxI xJ ]

]

Let y .i x; then y Â x by the first lexicographic component if i ∈ I and by the second

if i ∈ J . Condition (2) holds for Â because it holds for both ÂI and every ÂxI .

7.2. Polylinear aggregation rules (3) can be combined with monotonic transformations.

A system of reactions with reciprocal quasi-polylinear aggregates (an RQPLA system) is

characterized by these assumptions: each Xi ⊂ R is compact; there is a continuous and

strictly increasing mapping νi : Xi → R for each i ∈ N ; Ri = Ri ◦ σi for every i ∈ N ,

where

σi(x−i) =
n−1∑
m=1

∑

j1,...,jm∈N\{i}
jh 6=jh′ (h6=h′)

α
(m)
ij1...jm

× νj1(xj1)× · · · × νjm(xjm) (11)
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and Ri : Si → 2Xi\{∅} with Si = σi(X−i); each α
(m)
i0i1...im

is invariant under all permutations

of i0, i1, . . . , im.

Proposition 7.2. Every RQPLA system where every mapping Ri satisfies (4) admits a

potential.

Proof. For every i ∈ N , we define Ξi = νi(Xi) ⊂ R. Each νi admits an inverse ν−1
i : Ξi →

Xi, which is also continuous and strictly increasing; we define σ∗i : Ξ−i → Si by σ∗i (ξ−i) =

σi(〈ν−1
j (ξj)〉j 6=i), and R∗

i = νi ◦ Ri. Clearly, each σ∗i satisfies (3) and each R∗
i satisfies

(4). Thus, the sets Ξi and correspondences R∗
i define an RPLA system; by Theorem 2, it

admits a potential Â∗ defined on Ξ =
∏

i∈N Ξi ⊂ RN . Now we define a potential on X as

y Â x ⇐⇒ ν(y) Â∗ ν(x). The relation is obviously irreflexive and transitive. Checking

(1) is straightforward; condition (2) holds because ν is continuous.

8 Concluding Remarks

8.1. The Cournot relation is purely ordinal, i.e., invariant under any strictly increasing

transformation of the utility function. The same is true of the definition of an RPLI game

and of our conditions (5) and (4). Therefore, this paper belongs to the ordinal strand in

the theory of potential games.

8.2. The class of RPLI games (as well as its generalizations) can be viewed as a natural

extension of the class of games with additive aggregation, considered in Kukushkin (2004):

we just defined σi(x−i) in a more general way. There is a principal difference, however:

In a game from the latter class, there is a single aggregate characteristic,
∑

i∈N xi, which

enters into each player’s utility. In this paper, each player is affected by his “personal”

aggregate, and there is no analogue of the total sum. In a sense, aggregation here is not

separable.

8.3. As was noted in Section 3, for finite games with additive aggregation Theorem 2 of

Kukushkin (2004) requires the same monotonicity condition as our Theorem 1. Mean-

while, Theorem 1 from the same paper only requires (9a) above, which is much weaker

than (5). The difference is not due to any technical shortcomings.

Example 4. Let N = {1, 2, 3}, X1 = {0, 1, 2, 3, 4}, X2 = {0, 1, 2, 3, 4, 5}, X3 = {0, 1},
α

(m)
i0i1...im

= 0 for m > 1, and α
(1)
ij = −1 (i.e., we actually have a game with strategic

substitutes and additive aggregation), hence S1 = {0,−1, . . . ,−6}, S2 = {0,−1, . . . ,−5},
S3 = {0,−1, . . . ,−9}. Let the utilities be:

U1 : U2 : U3 :




0 2 2 2 2 2 4

1 3 3 3 3 3 3

1 3 3 3 3 3 3

1 3 3 3 3 3 3

2 2 2 2 2 2 2







0 0 0 2 2 2

0 0 0 1 1 1

0 0 0 1 1 1

0 0 0 1 1 1

0 0 0 1 1 1

1 1 1 1 1 1




[
0 0 0 0 0 2 2 2 2 2

1 1 1 1 1 1 1 1 1 1

]

where own choice, xi, is on the ordinates axis, and si (= minus the sum of the partners’

choices), on the abscissae axis.
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The best responses are easily seen in the matrices. Condition (4) holds for players 2

and 3, but not for player 1, so our Theorem 1 does not apply. Actually, every utility

function satisfies Topkis’s (1979) increasing differences condition in xi and si, hence the

best responses satisfy (10). Nonetheless, there is a best response improvement cycle:

(3, 0, 0)
1−−−→ (4, 0, 0)

3−−−→ (4, 0, 1)
1−−−→ (1, 0, 1)x2

y2

(3, 5, 0)
1←−−− (0, 5, 0)

3←−−− (0, 5, 1)
1←−−− (1, 5, 1)

.

Therefore, the strict condition (4) in our Theorem 1 cannot be replaced with (10), to

say nothing of (9a). This could be possible under some restrictions (all α
(m)
i0i1...im

≥ 0 or all

α
(m)
i0i1...im

> 0), but so far there is no result to the effect beyond Theorem 1 of Kukushkin

(2004).

There is a very peculiar manifestation of this asymmetry between strategic comple-

ments and substitutes. Consider finite three person RPLI games with linear aggregates

σi(xj, xk) = αijxj + αikxk. The reciprocity condition implies that we have three inde-

pendent parameters αij; let none of them be zero. Rescaling (and perhaps reversing)

the axes, we can transform the game into that with additive aggregation and strategic

complements or substitutes (i.e., with all αij = 1 or all αij = −1). Thus we come to the

conclusion that if the number of negative coefficients αij in the original game is even (0 or

2), then condition (9a) ensures acyclicity; if the number is odd (1 or 3), a stricter version,

(5) above, must be imposed. How could such a conclusion have been expected?

8.4. It goes without saying that the extensions from Sections 6 and 7 can be combined

together.

8.5. Proposition 7.1 does not indicate the possibility to replace α
(m)
i0i1...im

with zeros in an

arbitrary way.

Example 5. Let N = {1, 2, 3}, Xi = {0, i} for all i ∈ N , σ1(x2, x3) = −x2 − x3,

σ2(x1, x3) = −x1, σ3(x1, x2) = −x1 − x2, R1(s1) = {0} for s1 ≤ −3, R1(s1) = {1} for

s1 ≥ −2, R2(−1) = {0}, R2(0) = {2}, R3(s3) = {0} for s3 ≤ −2, and R3(s3) = {3} for

s3 ≥ −1. A fixed point x0 would have to satisfy the equations:

sign(x0
1) = 1− sign(x0

3), sign(x0
2) = 1− sign(x0

1), sign(x0
3) = 1− sign(x0

2),

which is clearly impossible.

8.6. Example 3 raises a natural question: Is a transfinite best response improvement

path possible in an RPLI game with strict strategic supplements, in other words, can an

infinite path fail to find an equilibrium in the limit, if all best response correspondences

have closed graphs (e.g., if the utilities are continuous)? If the path converges, a negative

answer is obvious: the limit must belong to each graph. If n = 2 and x0, x1, . . . , xk, . . . is

an infinite best response improvement path, then each sequence x0
i , x

1
i , . . . , x

k
i , . . . is either

increasing or decreasing; in either case, it converges. For n > 2, there is neither proof nor

counterexample to the statement that every infinite best response improvement path has a

Nash equilibrium among its limit points, nor even counterexample to the hypothesis that

every limit point of every infinite best response improvement path is a Nash equilibrium.
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8.7. S. Takahashi (personal communication) has discovered another asymmetry between

strategic complements and substitutes: The exact analogue of Theorem 2 from Kandori

and Rob (1995), establishing the acyclicity of best responses in symmetric strictly super-

modular games, does not hold for submodular games. Interestingly, no situation is known

where best response improvements would behave nicer under strategic substitutes than

under strategic complements. At a first glance, this seems quite natural; however, if one

starts looking for more or less formal arguments why it should be so, none presents itself.

8.8. A fastidious reader may feel dissatisfaction with the use, in the definition of Fi in

Section 4, of the extension of r+
i beyond Si, as if events in the real world are supposed to

depend on what happens in purely imaginary worlds. Actually, the extension was only

needed to simplify notations. For a compact subset Si ⊂ R, we can define a measure

µi = µL
i + µS

i on Si, where µL
i is the usual Lesbegue measure on Si (induced from R),

while µS
i assigns one half of the length of each constituent interval of [s−i , s+

i ]\Si to either

endpoint (thus, supp(µS
i ) is the set of the endpoints). It is a simple exercise to show that

µi(Si) = s+
i − s−i and Fi(xi) =

∫
Si

min{xi, r
+
i (si)}µi(dsi) for all i ∈ N and xi ∈ Xi.

8.9. Among the proofs of the acyclicity of best response improvements in the existing

literature, a certain number are “relatively straightforward,” i.e., given the assumptions,

one can more or less convincingly explain the choice of arguments: Theorem 2 of Kan-

dori and Rob (1995); Theorems 1 and 3 of Kukushkin (2004); Theorems 7 and 8 of

Kukushkin (2003). There are also two tricks defying explanation: Novshek’s construction

used in the proof of Theorem 2 from Kukushkin (2004) and the Huang–Dubey–Haimanko–

Zapechelnyuk definition of the function P , somewhat modified in (6) above. Both are

logically independent in the sense that there is a situation where one works but the other

does not: finite games with separable, but non-additive, aggregation rules for Novshek’s

trick; e.g., linear aggregates with arbitrary coefficients as in Examples 1 and 2 for the

function P . However, if one takes into account the relative importance of the domain of

applicability of either approach, the latter appears a clear winner.

If the principle tres faciunt collegium can be relied upon, we should expect a third

trick to spring up; perhaps it will prove acyclicity wherever it holds.
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