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Abstract

The acyclicity of individual improvements in a generalized congestion game (where the sums of
local utilities are replaced with arbitrary aggregation rules) can be established with a Rosenthal-
style construction if aggregation rules of all players are “quasi-separable.” Every universal separable
ordering on a finite set can be represented as a combination of addition and lexicography.
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1 Introduction

Rosenthal’s (1973) construction proved extremely fruitful in the study of networks games, group forma-
tion, etc.; it was also a source of inspiration for researchers, even in areas rather distant in a technical
sense (Milchtaich, 1996; Holzman and Law-Yone, 1997; Konishi, Le Breton, and Weber, 1997; Bogo-
molnaia and Jackson, 2002; Sandholm, 2010; McLennan, Monteiro, and Tourky, 2011; Harks, Klimm,
and Möhring, 2011). Monderer and Shapely (1996) built their theory of potential games around it.

Kukushkin (2007) showed the crucial role of addition by introducing the notion of a generalized
congestion game, where the players may aggregate local utilities in an arbitrary way rather than
just summing them up. Then the sum was proven to be necessary (assuming continuity and strict
monotonicity) to ensure the existence of a Nash equilibrium regardless of all other characteristics of
the game.

This paper follows the same line of inquiry, but with even more purely technical flavor. First, we
show that Rosenthal’s construction can be reproduced, with only trivial modification, if the preferences
of all players are “quasi-separable,” i.e., consistent with a universal separable ordering (Proposition 3.1).
This applies, e.g., to the minimum (“weakest-link”) aggregation, which is not separable, but is consis-
tent with the leximin ordering.

Second, we show that every universal separable ordering on a finite set can be represented as a
combination of addition and lexicography (Theorem 4.1). This result can be viewed as a discrete
analogue of the famous Debreu–Gorman Theorem (Debreu, 1960; Gorman, 1968; see also Wakker,
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1989), even though it cannot claim anything approaching the importance of the latter. We abandon
the assumption that the ordering is continuous on a connected domain; instead, we require the ordering
to be applicable to every Cartesian power of a given finite set (like the sum, or leximin/leximax).

The message of this paper can be summarized in two opposite ways. On one hand, we found that
Rosenthal’s construction can work for a broader class of preferences than originally envisaged. On the
other hand, this generalization can be viewed as inessential, and hence Theorem 4.1 interpreted as an
impossibility result.

The following section contains basic definitions; Sections 3 and 4, the main results. Some questions
of secondary importance are discussed in Sections 5 and 6. Section 7 summarizes the message of the
paper.

2 Basics

A strategic game Γ is defined by a finite set N of players, and a set Xi of strategies and a utility function
ui on the set XN :=

∏
i∈N Xi of strategy profiles for each i ∈ N . We always assume each Xi to be

finite.

Given i ∈ N , we denote X−i :=
∏

j ̸=iXj . With every strategic game, we associate the individual
improvement relation on XN (i ∈ N , yN , xN ∈ XN ):

yN ◃i xN 
 [y−i = x−i & ui(yN ) > ui(xN )];

yN ◃ xN 
 ∃i ∈ N [yN ◃i xN ].

A Nash equilibrium is a maximizer of ◃, i.e., a strategy profile xN ∈ XN such that yN ◃ xN holds for
no yN ∈ XN .

In the terminology of Monderer and Shapley (1996), a function P : XN → R is an exact potential
of Γ if ui(yN ) − ui(xN ) = P (yN ) − P (xN ) whenever i ∈ N , yN , xN ∈ XN , and y−i = x−i. A function
P : XN → R is a generalized ordinal potential of the game if P (yN ) > P (xN ) whenever yN , xN ∈ XN

and yN ◃ xN . Clearly, every exact potential is also a generalized ordinal potential.

Being interested in games with ordinal preferences here and following Kukushkin (1999), we define
a potential of Γ as an irreflexive and transitive relation ≻≻ on XN satisfying

∀xN , yN ∈ XN [yN ◃ xN ⇒ yN ≻≻ xN ]. (2.1)

Since XN is finite, the existence of a potential in our sense is equivalent to the existence of a generalized
ordinal potential (Monderer and Shapley 1996, Lemma 2.5); and it obviously implies the existence of
a Nash equilibrium.

A congestion game (Rosenthal, 1973) may have an arbitrary finite set N of players, while strategies
and preferences are defined by the following construction. There are a finite set A of facilities and
a local utility function φα : N → R for each α ∈ A; each xi ∈ Xi (i ∈ N) is a subset of A. Given
xN ∈ XN , we denote N(α, xN ) := {i ∈ N | α ∈ xi} and n(α, xN ) := #N(α, xN ) for each α ∈ A. Now
the utility function of each player i is

ui(xN ) :=
∑
α∈xi

φα(n(α, xN )). (2.2)
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In the most popular interpretation, A is the set of edges of a (directed) graph and each Xi consists
of paths with a given origin and a given target. Under this interpretation, it is natural to assume each
φα to be decreasing (congestion proper). However, such assumptions are not needed for the most basic
results about congestion games; they were not made in Rosenthal (1973), and are not made here.

For every congestion game, the function

P (xN ) :=
∑
α∈A

n(α,xN )∑
k=1

φα(k) (2.3)

is an exact potential (Rosenthal, 1973); therefore, the strict ordering onXN represented by the function,
yN ≻≻ xN 
 P (yN ) > P (xN ), is a potential in the sense of (2.1).

The notion of a generalized congestion game was introduced in Kukushkin (2007). Roughly speak-
ing, it is a game with the same structure of strategy sets as a congestion game proper, but with the sum
in (2.2) replaced with an arbitrary function. Somewhat simplifying that notion, we assume that each
player is characterized by a universal aggregation rule, i.e., an infinite sequence of symmetric functions

U
(m)
i : V m → R (m ∈ N), where V ⊆ R, and that her utility function is

ui(xN ) := U
(#xi)
i

(⟨
φα(n(α, xN ))

⟩
α∈xi

)
.

Naturally, this formula only makes sense if all values of the functions φα belong to V . Since U
(#xi)
i

is symmetric, there is no need to specify an order on xi. In the following, we employ the term an
unordered list (of the length #xi), i.e., a collection of real numbers with possible repetitions. It is

natural to assume every U
(m)
i to be increasing in its arguments, but such an explicit assumption is not

needed here (non-strict monotonicity follows from the definition of quasiseparable aggregation).

3 Quasiseparable aggregation

A universal separable ordering ≽≽≽ on V ⊆ R is an infinite sequence of orderings, i.e., reflexive, transitive,
and total binary relations, ≽m on V m (m ∈ N; we denote ≻m and ∼m, respectively, its asymmetric and
symmetric components) such that

1. ≽1 is the standard order ≥ on V induced from R;

2. for every permutation σ of {1, . . . ,m},

⟨v1, . . . , vm⟩ ∼m ⟨vσ(1), . . . , vσ(m)⟩

(symmetry); by this condition, every relation ≽m can be perceived as defined on the set of un-
ordered lists of the length m;

3. for every m′ > m ≥ 1, every ⟨v1, . . . , vm′⟩ ∈ V m′
, and every ⟨v′1, . . . , v′m⟩ ∈ V m,

⟨v1, . . . , vm, vm+1, . . . , vm′⟩ ≽m′ ⟨v′1, . . . , v′m, vm+1, . . . , vm′⟩ ⇐⇒ ⟨v1, . . . , vm⟩ ≽m ⟨v′1, . . . , v′m⟩

(separability).
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A universal aggregation rule U is consistent with a universal separable ordering ≽≽≽ if there is an
infinite sequence {v̄m ∈ V }m=2,3,... such that for every m′ ≥ m, every ⟨v1, . . . , vm⟩ ∈ V m, and every
⟨v′1, . . . , v′m′⟩ ∈ V m′

,

U (m′)(v′1, . . . , v
′
m′) > U (m)(v1, . . . , vm) ⇒ ⟨v′1, . . . , v′m′⟩ ≻m

′ ⟨v1, . . . , vm, v̄m+1, . . . , v̄m′⟩ (3.1a)

and

U (m)(v1, . . . , vm) > U (m′)(v′1, . . . , v
′
m′) ⇒ ⟨v1, . . . , vm, v̄m+1, . . . , v̄m′⟩ ≻m′ ⟨v′1, . . . , v′m′⟩. (3.1b)

It seems reasonable to call such aggregation rules quasiseparable.

Proposition 3.1. Let ≽≽≽ be a universal separable ordering on V ⊆ R, and Γ be a generalized congestion
game where φα(N) ⊆ V for each α ∈ A and each player’s aggregation rule Ui is consistent with ≽≽≽.
Then Γ admits a potential in the sense of (2.1).

Proof. Let v̄ik be constants associated with the aggregation rule used by player i; we denote Mi :=
maxxi∈Xi #xi and M :=

∑
i∈N Mi. With every xN ∈ XN , we associate an unordered list:

κ(xN ) :=
⟨
⟨φα(k)⟩α∈A,k=1,...,n(α,xN ), ⟨v̄ik⟩i∈N,k=#xi+1,...,Mi

⟩
(assuming the convention that facilities α ∈ A with n(α, xN ) = 0 are not represented in κ(xN ) at
all). It is easy to check that

∑
i#xi =

∑
α n(α, xN ); therefore, the length of κ(xN ) is M for every

xN ∈ XN . If we show that yN ◃ xN implies κ(yN ) ≻M κ(xN ), (2.1) will be proven with ≻M as ≻≻.

Let yN ◃i xN , i.e., ui(yN ) > ui(xN ) and y−i = x−i. A is partitioned into four disjoint subsets:
A0 := xi ∩ yi, A

+ := yi \ xi, A− := xi \ yi, A∗ := A \ (xi ∪ yi); thus, xi = A0 ∪ A− and yi = A0 ∪ A+.
Denoting m̄ := max{#xi,#yi}, we define

κ−i :=
⟨
⟨φα(k)⟩α∈A0,k=1,...,n(α,xN )−1=n(α,yN )−1, ⟨φα(k)⟩α∈A+,k=1,...,n(α,xN )=n(α,yN )−1,

⟨φα(k)⟩α∈A−,k=1,...,n(α,yN )=n(α,xN )−1, ⟨φα(k)⟩α∈A∗,k=1,...,n(α,xN )=n(α,yN ),

⟨v̄jk⟩j∈N,j ̸=i,k=#xj+1,...,Mj
, ⟨v̄ik⟩k=m̄+1,...,Mi

⟩
(under a similar convention).

Let #yi ≥ #xi. We define

κi(xN ) :=
⟨
⟨φα(n(α, xN ))⟩α∈A0∪A− , ⟨v̄ik⟩k=#xi+1,...,#yi

⟩
and

κi(yN ) :=
⟨
φα(n(α, yN ))

⟩
α∈A0∪A+

[
=

⟨
φα(n(α, yN ))

⟩
α∈yi

]
.

Since ui(yN ) > ui(xN ), we have κi(yN ) ≻̄m κi(xN ) by condition (3.1a).

If #yi ≤ #xi, we define

κi(xN ) :=
⟨
φα(n(α, xN ))

⟩
α∈A0∪A−

[
=

⟨
φα(n(α, xN ))

⟩
α∈xi

]
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and
κi(yN ) :=

⟨
⟨φα(n(α, yN ))⟩α∈A0∪A+ , ⟨v̄ik⟩k=#yi+1,...,#xi

⟩
.

Since ui(yN ) > ui(xN ), we have κi(yN ) ≻̄m κi(xN ) by condition (3.1b).

In either case, κ(xN ) = ⟨κ−i,κi(xN )⟩ and κ(yN ) = ⟨κ−i,κi(yN )⟩. Now we have κ(yN ) ≻M κ(xN )
by separability. Proposition 3.1 is proven.

The simplest and most important example of a universal separable ordering is given by the additive
aggregation rule:

v′ ≽m v ⇐⇒
m∑
k=1

ν(v′k) ≥
m∑
k=1

ν(vk), (3.2)

where ν : R → R is strictly increasing. Thus, Rosenthal’s (1973) congestion games are covered by
Proposition 3.1 with this ordering, ν(v) = v, and v̄m = 0 for all m. Moreover, the construction in the
proof generates exactly the potential (2.3) in this case.

At a first glance, different ν(·) and v̄m ̸= 0 provide a more general result, but this is, in a sense, an
illusion; it may be worthwhile to consider the situation in more detail. Let each player i in a generalized
congestion game Γ use a universal aggregation rule Ui consistent with the additive ordering (3.2); the
conditions (3.1) imply that player i’s utility function is (up to a monotonic transformation)

ui(xN ) =
∑
α∈xi

ν(φα(n(α, x))) +

Mi∑
k=#xi+1

ν(v̄ik).

Obviously, we can represent Γ as a congestion game, redefining φ∗
α(k) = ν(φα(k)), adding to A new

facilities (i,m), i ∈ N , 1 ≤ m ≤ Mi, defining φ∗
(i,m)(1) = ν(v̄im), and replacing each xi ∈ Xi with

xi ∪ {(i,#xi + 1), . . . , (i,Mi)}.
A number of similar “pseudo-generalizations” of Rosenthal’s construction were discussed in Kukush-

kin (2007, Section 4).

Another example of a universal separable ordering is the leximin: when comparing two lists of local
utility values, we start with the worst in either list; in the case of equality, we move to the second
worst, etc. The minimum (“weakest-link”) aggregation,

U (m)(v1, . . . , vm) := min
k=1,...,m

ν(vk),

is consistent with this ordering (strictly speaking, we must modify our definition in this case, allowing
v̄k = +∞) although not separable itself. A similar connection exists between the maximum (“best-
shot”) aggregation and the leximax ordering. Thus, Rosenthal’s construction of a potential, as modified
in the proof of Proposition 3.1, can work in both these cases.

Finally, we may go ordinal the whole way, and assume that the preferences of the players may
be described by orderings without numeric representations. Then the leximin or leximax orderings
themselves will be eligible.
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4 Universal separable orderings on a finite set

Theorem 4.1. For every finite set V ⊆ R and every universal separable ordering ≽≽≽ on V, there are a
natural number n < #V and a mapping µ : V → Rn such that

⟨v′1, . . . , v′m⟩ ≽m ⟨v1, . . . , vm⟩ ⇐⇒
m∑
k=1

µ(v′k) ≥Lex

m∑
k=1

µ(vk) (4.1)

for every m ∈ N and v′1, . . . , v
′
m, v1, . . . , vm ∈ V, where the sums in the right-hand side are understood

coordinate-wise, and ≥Lex denotes the lexicographic order on Rn : first the first coordinate matters,
then the second, etc.

Proof. Whenever v, v′ ∈ V , it will be convenient to denote the ordered pair [v, v′] and call it an interval.
An interval [v, v′] is positive if v′ ≥ v. A formal sum

∑m
k=1[vk, v

′
k] is called positive if

⟨v′1, . . . , v′m⟩ ≽m ⟨v1, . . . , vm⟩. (4.2)

The empty sum is also assumed positive. Since some intervals in such a sum may be identical, we also
have a notion of a positive linear combination

∑m
k=1 θk[vk, v

′
k] with nonnegative integer θk. Assuming

−[vk, v
′
k] = [v′k, vk], we extend the notion to negative integer θk as well.

We denote Q the field of rational numbers and Q the vector space (over Q) of all formal linear
combinations

∑m
k=1 rk[vk, v

′
k] of positive intervals in V with rational coefficients. Then we define Q+

as the set of I ∈ Q that are positive in the sense of (4.2) or become positive after multiplication by an
n ∈ N.

Lemma 4.1. Q+ is a half-space in Q, i.e.,

∀I, I ′ ∈ Q+

[
(I + I ′) ∈ Q+

]
; (4.3a)

∀I ∈ Q+ ∀r ∈ Q
[
r ≥ 0 ⇒ rI ∈ Q+

]
; (4.3b)

∀I ∈ Q
[
I ∈ Q+ or (−I) ∈ Q+

]
. (4.3c)

Proof. We start with (4.3a). If nI and n′I ′ are positive integer combinations, then so are n′nI and

n′nI ′ too. Let n′nI =
∑m

k=1[vk, v
′
k] and n′nI ′ =

∑m′

k=m+1[vk, v
′
k]. Applying (4.2) and the separability

of ≽m, we obtain

⟨v′1, . . . , v′m, v′m+1, . . . , v
′
m′⟩ ≽m

′ ⟨v1, . . . , vm, v′m+1, . . . , v
′
m′⟩ ≽m

′ ⟨v1, . . . , vm, vm+1, . . . , vm′⟩,

i.e., n′n(I+I ′) is a positive integer combination. The proof of (4.3b) is even simpler. (4.3c) immediately
follows from the completeness of ≽m.

Now we define
I ′ > I 
 (I ′ − I) ∈ Q+

for all I ′, I ∈ Q. Clearly, > is an ordering; we define ≫ and ≃ as its asymmetric and symmetric
components, respectively. By Lemma 4.1, > is consistent with addition in a natural sense.
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Since every ≽m is symmetric, we have

[v, v′] + [v′, v′′] ≃ [v, v′′] (4.4)

whenever v, v′, v′′ ∈ V and v ≤ v′ ≤ v′′.

Let I ′, I ∈ Q and I ≫ 0; we say that I ′ is not Archimedean dominated by I, I ′ >> I, if there is
an integer k such that kI ′ ≫ I. For I ≪ 0, we define I ′ >> I 
 ∃k [kI ′ ≫ −I]. Adding I >> 0 by
definition for all I ∈ Q, we obtain an ordering; its asymmetric and symmetric components are denoted
≫ and ≈, respectively. When I ′ ≈ I, we say that I ′ and I have the same Archimedean rank. Thus, Q
is partitioned into equivalence classes of ≈. By definition, I and −I have the same Archimedean rank
for every I ∈ Q. If I ′ ≫ I, then I ′ ≫ I ≫ −I ′ if I ′ ≫ 0, while −I ′ ≫ I ≫ I ′ otherwise.

Whenever I0 ≫ 0 and I0 >> I > 0, we define

I/I0 := sup{r ∈ Q | I > rI0} ∈ R

(an attempt to apply the definition to I ≫ I0 would produce I/I0 = +∞). When I ≪ 0, we define
I/I0 := −[(−I)/I0] = inf{r ∈ Q | rI0 > I}.

Lemma 4.2. Let I, I ′, I0 ∈ Q, I0 ≫ 0, I0 >> I ′, I0 >> I, and r ∈ Q. Then

(I ′ + I)/I0 = (I ′/I0) + (I/I0);

(rI)/I0 = r(I/I0);

I0 ≫ I ⇐⇒ I/I0 = 0.

Proof. The proof consists of rather tedious checks. Let I ′ ≫ 0 and I ≫ 0; then for every r ∈ Q
such that r < (I ′/I0) + (I/I0), we can find r1, r2 ∈ Q such that r1 + r2 = r, r1 < I ′/I0, and
r2 < I/I0. By definition, I ′ ≫ r1I0 and I ≫ r2I0, hence (I ′ + I) ≫ rI0; since r was arbitrary,
(I ′ + I)/I0 ≥ (I ′/I0) + (I/I0). Conversely, for every r ∈ Q such that r > (I ′/I0) + (I/I0), we can find
r1, r2 ∈ Q such that r1 + r2 = r, r1 > I ′/I0, and r2 > I/I0. By definition, I ′ ≪ r1I0 and I ≪ r2I0,
hence (I ′ + I) ≪ rI0; since r was arbitrary, (I ′ + I)/I0 ≤ (I ′/I0) + (I/I0).

Turning to negative intervals, it is enough to consider I ′ ≫ 0, I ≫ 0, and I ′ − I ≫ 0; then for
every r ∈ Q such that r < (I ′/I0) − (I/I0), we can find r1, r2 ∈ Q such that r1 − r2 = r, r1 < I ′/I0,
and r2 > I/I0. By definition, I ′ ≫ r1I0 and I ≪ r2I0, hence (I ′ − I) ≫ rI0; since r was arbitrary,
(I ′ − I)/I0 ≥ (I ′/I0)− (I/I0). The converse inequality is obtained in a similar way.

Checking the second equality, we may assume I ≫ 0 and r > 0; then rI > rr′I0 ⇐⇒ I > r′I0.

As to the last equivalence, it is again sufficient to consider I ≫ 0. If nI > I0, then I/I0 ≥ 1/n > 0.
Conversely, if I/I0 > 0, then I > rI0 for every r ∈ Q such that 0 < r < I/I0, hence (1/r)I > I0, hence
I >> I0.

Lemma 4.3. For every finite-dimensional vector subspace L ⊆ Q, there is a natural number n ≤ dimL
and a mapping λ : L → Rn such that λ is linear over Q and

∀I ′, I ∈ L [I ′ > I ⇐⇒ λ(I ′) ≥Lex λ(I)]. (4.5)
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Proof. Let I1, . . . , Ih be a basis of L; without restricting generality, I1 >> Ik ≫ 0 for all k. For every
I ∈ L, we set q(I) := I/I1. By Lemma 4.2, q : L → R is linear over Q. If dimL = 1, then L = {rI1}r∈Q
and we are home, by (4.3b), with λ := q.

Otherwise, we argue by induction in dimL. Since q(I1) = 1, the kernel of q, K = {I ∈ L | q(I) = 0},
is a proper vector subspace of L. By the induction hypothesis, there is a linear operator λ′ : K → Rm

with m < dimL representing > on K in the sense of (4.5). Now we fix a projection p : L → K, i.e., a
linear operator such that p(I) = I whenever I ∈ K, and define λ : L → Rm+1 by λ(I) := ⟨q(I), λ′(p(I))⟩
for every I ∈ L. Checking that λ represents > on L is straightforward: if q(I ′) > q(I), then obviously
I ′ ≫ I; if q(I ′) = q(I), then (I ′ − I) ∈ K, hence λ(I ′) ≥Lex λ(I) ⇐⇒ λ′(I ′) ≥Lex λ′(I) ⇐⇒ I ′ >
I.

Let V = {v0, v1, . . . , vm̄} with vk < vk+1 for every relevant k. We call each [vk, vk+1] an ele-
mentary interval and denote E the set of elementary intervals. For each vk ∈ V , we set κ(vk) :=∑k−1

h=0[v
h, vh+1] ∈ Q, so κ(v0) = 0. Applying Lemma 4.3 with L = Q(E), we obtain appropriate

n ≤ #E = #V − 1 and λ.

Now let m ∈ N and v′1, . . . , v
′
m, v1, . . . , vm ∈ V be given. By the definition (4.2), ⟨v′1, . . . , v′m⟩ ≽m

⟨v1, . . . , vm⟩ if and only if
∑m

k=1[vk, v
′
k] > 0; by (4.4), [vk, v

′
k] ≃

(
κ(v′k)− κ(vk)

)
. Therefore,

⟨v′1, . . . , v′m⟩ ≽m ⟨v1, . . . , vm⟩ ⇐⇒
m∑
k=1

κ(v′k) >
m∑
k=1

κ(vk).

By Lemma 4.3,
m∑
k=1

κ(v′k) >
m∑
k=1

κ(vk) ⇐⇒
m∑
k=1

λ(κ(v′k)) ≥Lex

m∑
k=1

λ(κ(vk)).

Defining µ : V → Rn as µ = λ ◦ κ, we obtain (4.1). Theorem 4.1 is proven.

Proposition 4.1. Given V ⊆ R, a natural number n, and a mapping µ : V → Rn, the sequence of
relations ≽m defined by (4.1) constitutes a universal separable ordering on V if and only if µ is strictly
increasing w.r.t. the lexicographic order ≥Lex on Rn.

A straightforward proof is omitted.

Theorem 4.1 and Proposition 4.1 together provide a characterization of universal separable orderings
on a finite set.

As an example, let us consider how representation (4.1) can be obtained for a universal separable
ordering where, at a first glance, addition has no place, viz. the leximin ordering. We set n := #E =
#V − 1, i.e., V = {v0, v1, . . . , vn} with vk < vk+1 for all k. For each v ∈ V and k = 1, . . . , n, we
define µk(v) := 1 if v ≥ vk and µk(v) := 0 otherwise. Given a list v1, . . . , vm, we immediately see that∑m

k=1 µ1(vk) = m − #{k ∈ {1, . . . ,m} | vk = v0},
∑m

k=1 µ2(vk) = m − #{k ∈ {1, . . . ,m} | vk ≤ v1},
etc. Therefore, the lexicographic comparison of these sums produces the leximin ordering indeed.

Remark. Applying the constructions from the proof of Theorem 4.1 to the leximin ordering, we imme-
diately see that all elementary intervals have different Archimedean ranks: [vk, vk+1] ≫ [vh, vh+1] ⇐⇒
h > k. Therefore, the representation (4.1) demands n = #V − 1 in this case, and hence the inequality
n < #V in the formulation of Theorem 4.1 cannot be strengthened.
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5 Separability on infinite domains

The finiteness of the set V was not needed in Proposition 4.1; however, the proof of Theorem 4.1
collapses without the assumption. Moreover, it seems implausible that finite lexicography could be
sufficient to represent every separable ordering, e.g., the leximin ordering, even on V = N.

To keep the hope for a characterization result alive, we need a notion of lexicography with infinitely
many indices. Two, at least, independent versions of such a notion are available.

Let B be a well ordered set. Then a lexicographic order ≥Lex on RB is defined in essentially the
same way as on Rn. Comparing two vectors from RB, we find the least coordinate β ∈ B where they
differ (B is well ordered!) and decide accordingly.

Proposition 5.1. Given a set V ⊆ R, a well ordered set B, and a mapping µ : V → RB, the sequence
of relations ≽m defined by (4.1) constitutes a universal separable ordering on V if and only if µ is
strictly increasing.

A straightforward proof is omitted.

Unfortunately, there is no ground to expect the class of universal separable orderings described in
Proposition 5.1 to be exhaustive. An alternative way to define lexicography without finiteness looks
more promising although there is no clear-cut result as yet.

Let there be a set W and a list of functions µβ : W → R indexed by a parameter β ∈ B; we call
the list pseudo-finite if for every w ∈ W , µβ(w) = 0 except for a finite number of β ∈ B. Given a
pseudo-finite list with B linearly ordered, we define the lexicographic order on W in a natural way:

w′ >Lex w 
 ∃β ∈ B
[
µβ(w

′) > µβ(w) & ∀β′ < β [µβ′(w′) ≥ µβ′(w)]
]
;

w′ ≥Lex w 

[
w′ >Lex w or ∀β ∈ B [µβ(w

′) = µβ(w)]
]
.

It is easy to see that ≥Lex is an ordering.

Proposition 5.2. Let there be a set V ⊆ R, a chain B, and a pseudo-finite list of functions µβ : V → R
(β ∈ B) such that v′ >Lex v whenever v′, v ∈ V and v′ > v. For each m ∈ N, we denote ≽m the ordering
≥Lex defined by the list of functions

µm
β (v1, . . . , vm) :=

m∑
k=1

µβ(vk). (5.1)

Then the sequence of ≽m is a universal separable ordering on V .

A straightforward proof is omitted.

The leximin ordering can be represented by pseudo-finite lexicography defined in Proposition 5.2
without any restrictions on the domain. Given a set V ⊆ R, we set B := V and define, for every v ∈ V ,
µv(v) = −1 and µw(v) = 0 for all w ̸= v. Obviously, the list is pseudo-finite. It is easily to see that the
functions µm

v defined by (5.1) count how many times every particular v ∈ V enters the list v1, . . . , vm;
hence lexicographic comparison leads to the leximin ordering in essentially the same way as at the end
of Section 4.

The leximax ordering, and hence the maximum aggregation rule, can be treated dually.
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6 On symmetry

In our definition of a universal aggregation rule, we demanded every U (m) to be symmetric. In principle,
we could proceed without this restriction, assuming that the strategies in a generalized congestion
game are lists rather than subsets. Without symmetry, however, we would not be able to reproduce
Rosenthal’s construction of a potential; moreover, even the existence of a Nash equilibrium could not
be guaranteed.

Proposition 6.1. Let U (m) : V m → R, where V ⊆ R, have the property that every generalized conges-
tion game where #xi = m for each strategy of each player, φα(N) ⊆ V for each α ∈ A, and each player
aggregates local utilities with U (m) possesses a Nash equilibrium. Then U (m) must be symmetric.

Proof. Otherwise, swapping two arguments over would change the value of U (m). Without restricting
generality, we may assume u+ = U (m)(v1, v2, v3, . . . , vm) > U (m)(v2, v1, v3, . . . , vm) = u− for some
v1, v2, v3, . . . , vm ∈ V .

Now let us consider a generalized congestion game where: N := {1, 2}; the facilities A := {a, b, c, d}∪
{ek}k=3,...,m; X1 :=

{
⟨a, b, e3, . . . , em⟩, ⟨c, d, e3, . . . , em⟩

}
; X2 :=

{
⟨d, a, e3, . . . , em⟩, ⟨b, c, e3, . . . , em⟩

}
;

φt(1) := v1 and φt(2) := v2 for each t ∈ {a, b, c, d}, while φek(2) := vk for all k = 3, . . . ,m; each player
i ∈ N aggregates local utilities with U (m).

The 2× 2 matrix of the game looks as follows:

dae bce
abe (u−, u+) (u+, u−)
cde (u+, u−) (u−, u+).

There is no Nash equilibrium in the game.

Remark. Neither continuity, nor monotonicity of U (m) were needed in the proof. Thus, this result
generalizes Lemmas B.1 and B.2 from Kukushkin (2007).

7 Conclusion

To summarize, Proposition 3.1 shows that Rosenthal’s (1973) construction hinges on the separability
of additive aggregation. Very technically speaking, we thus found that the same construction can work
for a broader class of preferences than originally envisaged.

On the other hand, this generalization is, to a large extent, illusory. In a particular quasi-separable
generalized congestion game (with a finite number of players and a finite number of facilities) only
a finite number of ≽m and a finite set V of possible values of local utilities can be relevant. By
Theorem 4.1, every ≽m admits a representation (4.1) on V ; and the lexicographic ordering on Rn

obviously admits a scalar additive representation (3.2) on every finite subset. Thus, the main findings
of this paper might as well be described as an impossibility result: for Rosenthal’s construction to be
applicable to a generalized congestion game, the preferences must admit an additive representation.

On the other other hand, if more players or facilities are added to a game, the representation
(3.2) may become invalid and have to be modified. Therefore, one can argue that a combination of
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addition and lexicography as in Theorem 4.1 does not admit a single representation (3.2) suitable for
all occasions, and hence such combinations do, indeed, define a broader class of preferences for which
Rosenthal’s approach can work.
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8 P.S. (Supplement after publication)

The unification of Propositions 5.1 and 5.2 turned out to be rather simple.

Let there be a set W , a chain B, and a list of functions µβ : W → R indexed by β ∈ B; we call the
list pseudo-well-ordered if for every w ∈ W , the set {β ∈ B | µβ(w) ̸= 0} is well ordered. Whenever µβ

is a pseudo-well-ordered list of functions on W and m is a positive integer, the equality

µm
β (v1, . . . , vm) :=

m∑
k=1

µβ(vk) (8.1)

defines a pseudo-well-ordered list of functions on Wm.

Given a pseudo-well-ordered list of functions on W , we define the lexicographic order on W in
essentially the same way as in Proposition 5.2:

w′ >Lex w 
 ∃β ∈ B
[
µβ(w

′) > µβ(w) & ∀β′ < β [µβ′(w′) ≥ µβ′(w)]
]
; (8.2a)

w′ ≥Lex w 

[
w′ >Lex w or ∀β ∈ B [µβ(w

′) = µβ(w)]
]
. (8.2b)

It is easy to see that ≥Lex is an ordering.

Proposition 8.1. Let there be a set V ⊆ R, a chain B, and a pseudo-well-ordered list of functions
µβ : V → R (β ∈ B) such that v′ >Lex v whenever v′, v ∈ V and v′ > v. For each m ∈ N, we denote
≽m the ordering ≥Lex on V m defined by (8.2) with the functions µm

β from (8.1). Then the sequence of
≽m is a universal separable ordering on V .

A straightforward proof is omitted.

Prospects for a characterization of universal separable orderings on any infinite set V still remain
unclear.
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