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Abstract
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1 Introduction

The concept of strategic complementarity was first developed in a cardinal form, around the notion
of a supermodular function (Topkis, 1978, 1979; Veinott, 1989; Vives, 1990; Milgrom and Roberts,
1990). Milgrom and Shannon (1994) gave the idea an ordinal expression and obtained a neat char-
acterization result, Theorem 4 in their paper. For our purposes here, that result is better perceived
as two independent statements on comparative statics, the first relating to changes in the feasi-
ble set and the second to changes in the utility function; in Quah’s (2007) terminology, these are,
respectively, “type B” and “type A” problems.

Concerning type B problems, Milgrom and Shannon (1994, Corollary 1) showed that the set of
optimal choices depends on the sublattice of available choices in a monotone way if and only if the
utility function is quasisupermodular. For type A problems, they showed that, given a parametric
family of quasisupermodular utility functions, the set of optimal choices from every sublattice is
monotone in the parameter if and only if the single crossing condition holds.

It should be stressed that Milgrom and Shannon established the necessity of quasisupermodu-
larity only in type B problems; actually, there are sufficient conditions for increasing best responses
in strategic games that do not imply this property of utility functions (Kukushkin et al., 2005,
Lemma 3.1). Also restricted to type B problems are similar necessity results concerning weak (Shan-
non, 1995) or strong (Milgrom and Shannon, 1994; Shannon, 1995) monotonicity.

This paper presents characterization results for type A problems. Our approach has these three
distinguishing features. First, we describe preferences with binary relations (orderings) rather than
utility functions. Second, we simultaneously keep in mind several interpretations of monotonicity,
following in this respect LiCalzi and Veinott (1992).

Finally, we concentrate on a single perturbation of preferences. As is well known, single crossing
conditions (of various kinds) are necessary and sufficient for a monotone reaction of the set of
optimal choices from every chain. We describe the exact restrictions on the preferences that ensure
a monotone reaction of the set of optimal choices from every sublattice whenever a perturbation
of preferences satisfies the corresponding single crossing condition. Roughly speaking, we partition
each condition that has already emerged in type B problems into two “halves,” the first ensuring a
monotone response when the preference ordering becomes more like the basic order, the second, in
the opposite case.

The understanding of consequences of a single perturbation allows us to obtain new sufficient
conditions for increasing best responses that do not imply quasisupermodularity, as well as to char-
acterize preference orderings that can be inserted into parametric settings without destroying the
monotonicity of the set of optima. In particular, quasisupermodularity is necessary in type A prob-
lems if we want monotonicity in every conceivable sense; otherwise, weaker conditions will do.

Our principal motivation is technical, even aesthetic: Since monotonicity considerations play a
significant role in economic theory, in particular, in game theory, a deeper understanding of interre-
lationships between various properties cannot be useless. A specific promising area is the existence
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of pure strategy monotone equilibria in Bayesian games (like, e.g., first-price auctions). As Athey
(2001) was first to show, ordinal notions like single crossing or quasisupermodularity can be surpris-
ingly helpful in solving the equilibrium existence problem in such games. Generalizing Athey, Reny
(2011) found that rather weak versions of the conditions (not considered in Milgrom and Shannon,
1994, or Shannon, 1995) are actually sufficient to derive quite strong conclusions. The new, weaker,
versions developed here may help obtain even stronger results.

Section 2 reproduces the standard notion of a choice function generated by the maximization of a
binary relation; in Section 3, we define a number of extensions of an order from points to subsets. In
Sections 4 and 5, we reproduce conditions related, respectively, to type A problems on chains (single
crossing) and type B problems on sublattices (various versions of quasisupermodularity).

The central results of the paper are in Sections 6 and 7. The former contains the conditions
related to type A problems on sublattices and their characterizations; the latter considers parametric
optimization. A few concluding remarks are in Section 8.

2 Preferences and choice

Throughout the paper, we assume a set A of alternatives given. There is an agent whose preferences
over the alternatives are expressed by a binary relation Â on A, which is assumed to be an ordering,
i.e., irreflexive, transitive, and negatively transitive (z 6Â y 6Â x ⇒ z 6Â x). Then the “non-strict
preference” relation º defined by y º x ­ x 6Â y is reflexive, transitive, and total; the indifference
y ∼ x ­ [x 6Â y & y 6Â x] is an equivalence relation.

Orderings can also be defined in terms of representations in chains: Â is an ordering if and only if
there is a chain C and a mapping u : A → C such that y Â x ⇐⇒ u(y) > u(x) for all x, y ∈ A (then
y º x ⇐⇒ u(y) ≥ u(x)). The most usual assumption in game theory is that the preferences of a
player are described by a utility function u : A → R. Here we work in a purely ordinal framework,
so it is natural to replace R with an arbitrary chain (e.g., Rm with a lexicographic order).

As is usual in decision theory, we allow for the possibility that only a subset X ⊆ A may be
available for choice. The set of all subsets of A is denoted BA. Given X ∈ BA, we define

M(X,Â) := {x ∈ X | @ y ∈ X [y Â x]} = {x ∈ X | ∀ y ∈ X [x º y]}, (1)

the set of maximizers of Â on X. A very helpful observation is that y Â x whenever Â is an ordering,
x ∈ X, and x /∈ M(X,Â) 3 y (“revealed preference”).

Clearly, M(X,Â) 6= ∅ if X is a finite nonempty subset of A. We do not restrict ourselves to finite
subsets here; nor do we study more general conditions for the existence of maximizers. In a sense, we
brush aside the distinction between an empty set M(X,Â) and a nonempty one. A rationalization
for this attitude, following Shannon (1995, p. 213), is given in Section 3.

We also consider parametric families 〈Ât〉t∈T of orderings on A, the parameter t reflecting the
impact of actions of other players or impersonal external forces (e.g., prices in outside markets).
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Given a parametric family and X ∈ BA, the best response correspondence RX : T → BX ⊆ BA is
defined in the usual way:

RX(t) := M(X,Ât) . (2)

Describing the preferences of a player in a strategic game by a parametric family of orderings on
the player’s strategy set X, we lose some information available in the standard model (an ordering
on X×T would be an adequate ordinal description). It is impossible to discuss, say, strong equilibria
or the (in)efficiency of Nash equilibria in our framework. On the other hand, a parametric family of
orderings is adequate when the subject is the existence or comparative statics of Nash equilibria, or
individual adaptive dynamics.

Remark. Some twenty five years ago, Olga Bondareva argued that the proper definition of a non-
cooperative game (in an ordinal context) must stipulate that each player is only able to compare
strategy profiles differing in her own choice. Although one does not have to accept this, rather
extreme, view, there is something to it.

3 Monotonicity

We always assume A to be a partially ordered set (a poset). Most often, it is a lattice, in which
case LA denotes the set of all sublattices of A. The exact definitions are assumed commonly known.
Given a lattice A and x, y ∈ A, we denote L(x, y) := {x, y, x ∨ y, x ∧ y}, the minimal sublattice of A
containing both x and y; clearly, #L(x, y) ∈ {1, 2, 4}.

The reversal of an order (y < x ­ x > y) produces an order again; moreover, a lattice remains
a lattice. Having proved a theorem, we can replace, in all assumptions and the statement itself, the
relations and operations >, ≥, ∨, etc. with <, ≤, ∧, etc., and obtain another valid theorem. The
use of this simple observation (referred to as “duality”) leads to considerable economy in the total
length of proofs.

To discuss monotonicity, we extend the order from A to BA. Following Veinott (1989), we
consider four ways to do so for a lattice A:

Y ≥∧ X ­ ∀y ∈ Y ∀x ∈ X [y ∧ x ∈ X]; (3a)

Y ≥∨ X ­ ∀y ∈ Y ∀x ∈ X [y ∨ x ∈ Y ]; (3b)

Y ≥Vt X ­ [Y ≥∨ X & Y ≥∧ X]; (3c)

Y ≥wV X ­ ∀y ∈ Y ∀x ∈ X [y ∨ x ∈ Y or y ∧ x ∈ X]. (3d)

One more relation can be defined for any poset A:

Y >> X ­ ∀y ∈ Y ∀x ∈ X [y ≥ x]. (4)

4



Sometimes, we employ a few more relations on BA that also make sense for any poset A:

Y >Up X ­ ∀y ∈ Y \X ∀x ∈ X [y > x]; (5a)

Y >Dn X ­ ∀y ∈ Y ∀x ∈ X \ Y [y > x]; (5b)

Y > X ­ [Y >Up X & Y >Dn X]; (5c)

Y >w X ­ ∀y ∈ Y \X ∀x ∈ X \ Y [y > x]. (5d)

Each of the relations (3), (4), or (5) holds trivially if either Y or X is empty; it is this fact that makes
separation between existence and monotonicity possible (nonexistence cannot destroy monotonicity).

If attention is restricted to nonempty subsets, then > is a partial order, i.e., reflexive, antisymmet-
ric and transitive relation. >> and ≥Vt are antisymmetric and transitive, but generally not reflexive;
none of the other relations (3) or (5) need even be transitive. If the order on A is reversed, Y ≥∧ X
transforms into X ≥∨ Y , Y ≥∨ X into X ≥∧ Y , Y >Dn X transforms into X >Up Y , Y >Up X into
X >Dn Y , and Y ≥∗ X into X ≥∗ Y for ≥∗ defined by any other relation (3), (4), or (5).

Remark. The relation ≥Vt is often called “strong set order.” It was introduced into game-theoretic
literature by Topkis (1978, p. 308), who gave the relation no particular name, but unambiguously
ascribed it to “Veinott (personal communication).” Actually, >> is stronger than any relation (3) or
(5).

To facilitate comparisons with LiCalzi and Veinott (1992), we also define an auxiliary relation on
BA:

Y ./ X ­ ∀y ∈ Y ∀x ∈ X [y ≥ x or x ≥ y]. (6)

The conjunction of any one relation (3) with ./ is equivalent to the conjunction of the corresponding
relation (5) with ./. In particular, relations (3) are equivalent to relations (5) when A is a chain.

When considering a parametric family of preference relations, we assume that T is also a poset.
Let ≥∗ denote one of the relations (3), (4), or (5). A correspondence R : T → BA is increasing w.r.t.
≥∗ if R(t′) ≥∗ R(t) whenever t′ > t. Veinott (1989) called correspondences increasing w.r.t. ≥Vt (≥wV)
in this sense (weakly) ascending. Topkis (1978) called correspondences increasing w.r.t. >> strongly
ascending ; those increasing w.r.t. ≥∧ (≥∨), may be called “meet” (“join”) ascending; those increasing
w.r.t. >, “semi-strongly” ascending.

Such monotonicity is closely related to the existence of monotone selections from R [i.e., increasing
mappings r : T → A such that r(t) ∈ R(t) for every t ∈ T ], provided R(t) 6= ∅ for all t. If
a correspondence R : T → BA is increasing w.r.t. >>, then every selection from R is increasing.
If R is increasing w.r.t. ≥∧, ≥∨, or ≥wV, then a monotone selection exists under a completeness
assumption about every value R(t) (Veinott, 1989, Theorem 3.2; Kukushkin, 2009, Proposition 3.1
and Theorem 1); naturally, a stronger assumption is needed in the last case. If R is increasing w.r.t.
≥Vt, then no completeness assumption at all is needed provided A is a sublattice of the Cartesian
product of a finite number of chains (Kukushkin, 2009, Theorem 2). If R is increasing w.r.t. >, then
no further restrictions are needed for the existence of a monotone selection.
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We are interested in conditions on the preferences ensuring monotonicity, w.r.t. one or another
of the relations (3), (4), or (5), of correspondences RX defined by (2). The monotonicity of a single
correspondence RX may happen just “by accident”; however, when a wide enough class of admissible
subsets X is taken into account, necessity results become obtainable. In Sections 4–6, we concentrate
on a single perturbation of Â or X, returning to the correspondence R as a whole in Section 7.

A general theorem about ordered sets, see, e.g., Dushnik and Miller (1941), plays an important
technical role here.

Szpilrajn Theorem. On every poset A, there exists a linear extension of the basic order, i.e.,
an irreflexive and transitive binary relation À such that

[
y 6= x ⇒ [y À x or x À y]

]
and[

y > x ⇒ y À x
]

for all x, y ∈ A.

4 Type A problems on chains: Single crossing

It is well known that the “single crossing” conditions of various kinds (Milgrom and Shannon, 1994;
Shannon, 1995) are important for the monotonicity of best responses. Those conditions are most
conveniently presented with the help of a ternary relation on the set of binary relations on a given
set: “B1 is closer to B0 than B2 is”; similar observations were made by Quah and Strulovici (2009)
and Alexei Savvateev (a seminar presentation, 2007). In the following, the role of B0 is always played
by the basic order on A, while B1 and B2 are (strict or non-strict) preference relations.

Let Â and Â′ be orderings on a poset A. We consider four conditions:

∀x, y ∈ A
[
y > x & y Â x ⇒ y Â′ x]

; (7a)

∀x, y ∈ A
[
y > x & y º x ⇒ y º′ x]

; (7b)

∀x, y ∈ A
[
y > x & y º x ⇒ y Â′ x]

; (7c)

∀x, y ∈ A
[
y > x & y Â x ⇒ y º′ x]

. (7d)

Each condition defines a binary relation on the set of orderings on A. The first two are preorders.
The third is transitive, but generally not reflexive. The last relation is reflexive, but need not be
transitive.

For more convenience in further referencing, we consider four “reversed” versions of conditions
(7):

∀x, y ∈ A
[
y < x & y º x ⇒ y º′ x]

; (8a)

∀x, y ∈ A
[
y < x & y Â x ⇒ y Â′ x]

; (8b)

∀x, y ∈ A
[
y < x & y º x ⇒ y Â′ x]

; (8c)

∀x, y ∈ A
[
y < x & y Â x ⇒ y º′ x]

. (8d)
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It is easily checked that each condition (8) is equivalent to the corresponding condition (7) after the
exchange of the roles of Â and Â′. If the order on A is reversed, conditions (7a), (7b), (7c), and (7d)
transform into (8b), (8a), (8c), and (8d), respectively.

An ordering Â on a poset A is (strictly) increasing if y º x (y Â x) whenever y > x. The
Szpilrajn Theorem shows the existence of a strictly increasing ordering on every poset. If Â is
[strictly] increasing, then (8b) [(8c)] holds for every Â′. (Strictly) decreasing orderings are defined
dually and have dual properties.

Proposition 1. Let Â and Â′ be orderings on a poset A. Then the following statements are equivalent.

1. Condition (7a) holds.

2. There holds M(X,Â′) ≥∧ M(X,Â) whenever X ∈ BA is a chain.

3. There holds M(X,Â′) ≥∧ M(X,Â) whenever X ∈ BA is a chain with #X = 2.

Proof. Let Statement 1 hold, X ∈ BA be a chain, y ∈ M(X,Â′) and x ∈ M(X,Â). If y ≥ x, we are
home immediately; let x > y. If y ∈ M(X,Â), we are home again. If y /∈ M(X,Â), then x Â y,
hence x Â′ y by (7a), contradicting the assumption y ∈ M(X,Â′).

Let Statement 1 be violated: there are x, y ∈ A such that y > x, y Â x, but x º′ y. Then we
define X := {x, y} and immediately obtain x ∈ M(X,Â′) \ M(X,Â) while M(X,Â) = {y}, hence
M(X,Â′) ≥∧ M(X,Â) does not hold, i.e., Statement 3 is invalid.

Proposition 2. Let Â and Â′ be orderings on a poset A. Then the following statements are equivalent.

1. Condition (7b) holds.

2. There holds M(X,Â′) ≥∨ M(X,Â) whenever X ∈ BA is a chain.

3. There holds M(X,Â′) ≥∨ M(X,Â) whenever X ∈ BA is a chain with #X = 2.

The proof is dual to that of Proposition 1.

Proposition 3 (Milgrom and Shannon, 1994). Let Â and Â′ be orderings on a poset A. Then
the following statements are equivalent.

1. Conditions (7a) and (7b) hold.

2. There holds M(X,Â′) ≥Vt M(X,Â) whenever X ∈ BA is a chain.

3. There holds M(X,Â′) ≥Vt M(X,Â) whenever X ∈ BA is a chain with #X = 2.

Proposition 4 (Shannon, 1995). Let Â and Â′ be orderings on a poset A. Then the following
statements are equivalent.

7



1. Condition (7c) holds.

2. There holds M(X,Â′) >> M(X,Â) whenever X ∈ BA is a chain.

3. There holds M(X,Â′) >> M(X,Â) whenever X ∈ BA is a chain with #X = 2.

Proposition 5 (Shannon, 1995). Let Â and Â′ be orderings on a poset A. Then the following
statements are equivalent.

1. Condition (7d) holds.

2. There holds M(X,Â′) ≥wV M(X,Â) whenever X ∈ BA is a chain.

3. There holds M(X,Â′) ≥wV M(X,Â) whenever X ∈ BA is a chain with #X = 2.

Type B problems when A is a chain present no difficulty.

Proposition 6. Let Â be an ordering on a chain A and let ≥∗ be one of relations (3c), (4), or (5c)
on BA. Then M(Y,Â) ≥∗ M(X,Â) whenever Y, X ∈ BA and Y ≥∗ X.

A straightforward proof is omitted.

5 Type B problems on sublattices: Quasisupermodularity

Naturally, one does not have to be satisfied with maximization on chains, although scalar strategies
are met in economics models most often. When the attention is switched to lattices, both type A
and type B problems require more complicated answers than those given by Propositions 1–5 or
Proposition 6, respectively. We start with a reproduction of basic conditions and results related to
type B problems. First of all, when the relation ≥Vt is restricted to LA, it becomes a partial order;
accordingly, sublattices of A are usually compared w.r.t. this relation.

Milgrom and Shannon (1994) introduced the notion of a quasisupermodular (QSM ) function
on a lattice. Their definition can easily be reformulated in terms of a preference ordering (Alexei
Savvateev, a seminar presentation, 2007):

∀x, y ∈ A
[
x Â y ∧ x ⇒ y ∨ x Â y

]
; (9a)

∀x, y ∈ A
[
x º y ∧ x ⇒ y ∨ x º y

]
. (9b)

In light of the following results, it seems reasonable to call (9a) meet quasisupermodularity (∧-QSM )
and (9b) join quasisupermodularity (∨-QSM ).

An ordering Â on a lattice A is strictly quasisupermodular (SQSM ) if

∀x, y ∈ A
[
[y ∨ x > x > y ∧ x & x º y ∧ x] ⇒ y ∨ x Â y

]
; (9c)
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Â is weakly quasisupermodular (wQSM ) if

∀x, y ∈ A
[
x Â y ∧ x ⇒ y ∨ x º y

]
. (9d)

It is easy to see that strict quasisupermodularity (9c) implies every other condition (9), hence qua-
sisupermodularity as well. Weak quasisupermodularity (9d) is implied by every other condition
(9).

Remark. Reny (2011, Section 4.1) applies the term “weak quasisupermodularity” to what is called
“join quasisupermodularity” (9b) here; our usage follows Shannon (1995) and, in a broader sense,
Veinott (1989).

Proposition 7 (LiCalzi and Veinott, 1992, Theorem 1). Let Â be an ordering on a lattice A.
Then the following statements are equivalent.

1. Condition (9d) holds, i.e., Â is wQSM.

2. There holds M(Y,Â) ≥wV M(X,Â) whenever Y,X ∈ LA and Y ≥Vt X.

3. There holds M(Y,Â) ≥wV M(X,Â) whenever Y,X ∈ LA, Y ≥Vt X, and #Y = #X = 2.

Proposition 8 (LiCalzi and Veinott, 1992, Theorem 3). Let Â be an ordering on a lattice A.
Then the following statements are equivalent.

1. Condition (9a) holds, i.e., Â is ∧-QSM.

2. There holds M(Y,Â) ≥∧ M(X,Â) whenever Y,X ∈ LA and Y ≥Vt X.

3. There holds M(Y,Â) ≥∧ M(X,Â) whenever Y,X ∈ LA, Y ≥Vt X, and #Y = #X = 2.

Proposition 9 (LiCalzi and Veinott, 1992, Theorem 2). Let Â be an ordering on a lattice A.
Then the following statements are equivalent.

1. Condition (9b) holds, i.e., Â is ∨-QSM.

2. There holds M(Y,Â) ≥∨ M(X,Â) whenever Y,X ∈ LA and Y ≥Vt X.

3. There holds M(Y,Â) ≥∨ M(X,Â) whenever Y,X ∈ LA, Y ≥Vt X, and #Y = #X = 2.

Remark. Propositions 8 and 9 together imply Corollary 1 of Milgrom and Shannon (1994).

Proposition 10 (LiCalzi and Veinott, 1992, Theorem 5). Let Â be an ordering on a lattice
A. Then the following statements are equivalent.

1. Condition (9c) holds, i.e., Â is SQSM.

2. There hold M(Y,Â) > M(X,Â) and M(Y,Â) ./ M(X,Â) whenever Y, X ∈ LA and Y ≥Vt X.
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3. There holds M(Y,Â) >w M(X,Â) whenever Y, X ∈ LA, Y ≥Vt X, and #Y = #X = 2.

Remark. Actually, LiCalzi and Veinott (1992) did not consider relations (5), only the conjunction
of ≥Vt and ./, which is equivalent to the conjunction of > and ./.

Since every lattice of two points is a chain, Propositions 7–10 show that monotone comparative
statics in type B problems on chains or on sublattices require the same list of conditions.

In principle, we might study the monotonicity of M(·,Â) : LA → BA, or BA → BA, when one
of “order” relations (3), (4), or (5) is imposed on both the source and target. However, the answers
would be straightforward and not especially interesting: the monotonicity of M(X,Â) in X ∈ BA

w.r.t. >> or > holds for any Â, cf. Proposition 6; the monotonicity of M(X,Â) in X ∈ BA or X ∈ LA

w.r.t. ≥∧ or >Up holds if and only if Â is decreasing; the monotonicity of M(X,Â) in X ∈ BA or
X ∈ LA w.r.t. ≥∨ or >Dn holds if and only if Â is increasing; the monotonicity of M(X,Â) in X ∈ LA

or X ∈ BA w.r.t. ≥wV or >w holds if and only if the agent is indifferent between all outcomes. There
is nothing surprising in that. The relations >> and > are so strong that it does not matter exactly
what is optimized; the other relations, on the contrary, are so weak that severe restrictions on Â are
necessary to obtain monotonicity of optima even in a very weak sense.

6 Type A problems on sublattices

Returning to type A problems, we start by noticing that the necessity of conditions (7) for a monotone
response to a perturbation of preferences holds on any class of admissible subsets that contains all
finite chains (but not otherwise, see Quah and Strulovici, 2009). The sufficiency is less robust.

Example 1. Let A := {(0, 0), (0, 1), (1, 0), (1, 1)} ⊂ R2, and two orderings on A be defined by the
following matrices (the axes are directed upwards and rightwards):

Â[
4 0
0 3

] Â′[
5 4
0 6

]

Clearly, (7c) holds; moreover, even the strictly increasing differences condition holds. However,
M(A,Â) = {(0, 1)}, while M(A,Â′) = {(1, 0)}. Therefore, M(A,Â′) ≥∗ M(A,Â) does not hold for
any relation (3), (4), or (5) as ≥∗.

Monotone response of every set M(X,Â) (X ∈ LA) to every perturbation of preferences satisfying
an appropriate single crossing condition (7), or (8), is restored if we impose restrictions onÂ. Roughly
speaking, we partition each condition (9) into two “halves” – “upward-looking” and “downward-
looking” ones. The following list of conditions is obtained by applying a uniform procedure to
each condition (9), viz. we retain the same left hand side and replace the right hand side with the
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disjunction of two alternatives:

∀x, y ∈ A
[
x Â y ∧ x ⇒ [(y ∨ x Â x) or (y ∨ x Â y)]

]
; (10a)

∀x, y ∈ A
[
x º y ∧ x ⇒ [(y ∨ x º x) or (y ∨ x º y)]

]
; (10b)

∀x, y ∈ A
[
[y ∨ x > x > y ∧ x & x º y ∧ x] ⇒ [(y ∨ x Â x) or (y ∨ x Â y)]

]
; (10c)

∀x, y ∈ A
[
x Â y ∧ x ⇒ [(y ∨ x º x) or (y ∨ x º y)]

]
. (10d)

To obtain the next list, we re-write each condition (9) using the tautology (P ⇒ Q) ≡ (¬Q ⇒
¬P ), and then apply the same procedure. In other words, we have the negation of the right hand side
of the appropriate condition (9) in the left hand side and, again, the disjunction of two alternatives
in the right hand side:

∀x, y ∈ A
[
y º y ∨ x ⇒ [(y ∧ x º x) or (y ∧ x º y)]

]
; (11a)

∀x, y ∈ A
[
y Â y ∨ x ⇒ [(y ∧ x Â x) or (y ∧ x Â y)]

]
; (11b)

∀x, y ∈ A
[
[y ∨ x > x > y ∧ x & y º y ∨ x] ⇒ [(y ∧ x Â x) or (y ∧ x Â y)]

]
; (11c)

∀x, y ∈ A
[
y Â y ∨ x ⇒ [(y ∧ x º x) or (y ∧ x º y)]

]
. (11d)

Remark. Each of conditions (10) and (11) holds trivially when x and y are comparable in the basic
order.

Proposition 11. An ordering Â on a lattice A satisfies any one condition (9) if and only if it
satisfies both corresponding conditions (10) and (11).

Proof. The necessity is obvious in each case. To prove the sufficiency for (9a), we suppose the
contrary. Let x Â y ∧ x, but y º y ∨ x; then y ∨ x Â x by (10a), hence y Â y ∧ x by transitivity,
which contradicts (11a). The proof of the implication [(10b) & (11b)] ⇒ (9b) is dual. The proofs of
the other implications are similar.

If the order on A is reversed, conditions (10) and (11) transform into each other; moreover,
“meet-related” conditions become “join-related” and vice versa.

Conditions (10), as well as (11), are ordered between themselves in the same way as (9): (c)
implies all others; (d) is implied by all others. There is no other implication between the conditions.

Example 2. Let A := {(0, 0), (0, 1), (1, 0), (1, 1)} ⊂ R2; we consider four orderings on A represented
by these matrices (the axes are directed upwards and rightwards):

[
1 2
0 3

] [
2 2
0 1

] [
2 1
0 0

] [
1 1
0 0

]
.

The ordering represented by the first matrix satisfies (10c), hence all conditions (10), but not (11d),
hence none of (11). The second matrix satisfies (10c) and (11b), but not (11a). The third, (10c) and
(11a), but not (11b). The last one satisfies (10c), (11a), and (11b), but not (11c). The impossibility
to derive conditions (10) from (11) is shown dually.
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None of conditions (10) or (11) seems to play any role in type B problems even though they have
been derived from conditions (9). In type A problems, however, each of the eight is necessary and
sufficient for a kind (actually, two kinds) of the monotonicity of optima.

Proposition 12. Let A be a lattice and Â be an ordering on A. Then the following statements are
equivalent.

1. Â satisfies (10a).

2. There holds M(X,Â′) ≥∧ M(X,Â) whenever X ∈ LA, Â′ is an ordering on X, and (7a) holds
on X.

3. There holds M(X,Â′) ≥wV M(X,Â) whenever X ∈ LA, Â′ is an ordering on X, and (7d) holds
on X.

4. There holds M(X,Â′) ≥∧ M(X,Â) whenever X ∈ LA, #X ≤ 4, and Â′ is an ordering on A
such that (7a) and (7b) hold on A.

5. There holds M(X,Â′) ≥wV M(X,Â) whenever X ∈ LA, #X ≤ 4, and Â′ is an ordering on A
such that (7a) holds on A.

Proof. The implications [Statement 2 ⇒ Statement 4] and [Statement 3 ⇒ Statement 5] are obvious.
Therefore, it is enough to show that (10a) implies both Statements 2 and 3, while the negation of
(10a) implies the negation of both Statements 4 and 5.

Let (10a) hold, X ∈ LA, x ∈ M(X,Â), and y ∈ M(X,Â′). Then x º y ∨ x; assuming that
y ∧ x /∈ M(X,Â), we have x Â y ∧ x, hence y ∨ x Â y by (10a). If (7a) holds, we immediately
obtain y ∨ x Â′ y, which contradicts the optimality of y. If (7d) holds, we obtain y ∨ x º′ y, hence
y∨x ∈ M(X,Â′). Since x and y were arbitrary, we obtain M(X,Â′) ≥∧ M(X,Â) in the first case and
M(X,Â′) ≥wV M(X,Â) in the second.

Let (10a) be violated: there are x, y ∈ A such that x Â y ∧ x, but y º y ∨ x and x º y ∨ x.
Exchanging the labels “x” and “y” if needed, we assume x º y. Then we define X := L(x, y), so
y ∧ x /∈ M(X,Â) 3 x.

To show that Statement 4 does not hold, we denote Y := {z ∈ A | z ≥ y}. Our assumptions imply
x /∈ Y : otherwise, we would have y ∨ x = x and y ∧ x = y, hence x Â y and y º x simultaneously.
Now we define an ordering Â′ on A by setting z′ Â′ z if and only if one of these conditions holds:
(i) z′ Â z and z, z′ ∈ Y ; (ii) z′ Â z and z, z′ ∈ A \ Y ; (iii) z /∈ Y 3 z′. Both (7a) and (7b) are
obvious: whenever z ∈ Y and z′ > z, we have z′ ∈ Y as well. Meanwhile, y ∈ M(X,Â′), hence
M(X,Â′) ≥∧ M(X,Â) does not hold, i.e., Statement 4 is invalid.

To show that Statement 5 does not hold, we define Â′ in the same manner as in the previous
paragraph, but with Y := {z ∈ A | z Â y & z > y} ∪ {y}. Clearly, M(X,Â′) = {y}, hence
M(X,Â′) ≥wV M(X,Â) does not hold. Meanwhile, (7a) is obvious: whenever z′ > z, z′ Â z, and
z ∈ Y , we have z′ ∈ Y as well. Thus, Statement 5 is invalid.
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Proposition 13. Let A be a lattice and Â be an ordering on A. Then the following statements are
equivalent.

1. Â satisfies (10b).

2. There holds M(X,Â′) ≥∨ M(X,Â) whenever X ∈ LA, Â′ is an ordering on X, and (7b) holds
on X.

3. There holds M(X,Â′) >> M(X,Â) whenever X ∈ LA, Â′ is an ordering on X, and (7c) holds
on X.

4. There holds M(X,Â′) ≥∨ M(X,Â) whenever X ∈ LA, #X ≤ 4, and Â′ is an ordering on A
such that (7c) holds on A.

Proof. The implications [Statement 2 ⇒ Statement 4 ⇐ Statement 3] are obvious. Therefore, it is
enough to show that (10b) implies both Statements 2 and 3, while the negation of (10b) implies the
negation of Statement 4.

Let (10b) hold, X ∈ LA, x ∈ M(X,Â) and y ∈ M(X,Â′). Then x º y and x º y ∧ x; therefore,
y ∨ x º y by (10b). If (7b) holds, then y ∨ x º′ y, hence y ∨ x ∈ M(X,Â′). Let us show that
y ≥ x if (7c) holds. Supposing the contrary, we have y ∨ x > y; therefore, relation y ∨ x º y implies
y ∨ x Â′ y by (7c), which contradicts the optimality of y. Since x and y were arbitrary, we obtain
M(X,Â′) ≥∨ M(X,Â) in the first case and M(X,Â′) >> M(X,Â) in the second.

Let (10b) be violated: there are x, y ∈ A such that x º y ∧ x, but x Â y ∨ x and y Â y ∨ x. Note
that x and y must be incomparable in the basic order. Exchanging the labels “x” and “y” if needed,
we assume x º y. Then we define X := L(x, y), so x ∈ M(X,Â). Now we define an ordering Â′ on
A in the same manner as in the proof of Proposition 12, with Y := {z ∈ A | z ≥ y}. Invoking the
Szpilrajn Theorem, we pick a linear order À on A such that z′ À z whenever z′ > z. Then we define
Â′′ as a lexicography:

z′ Â′′ z ­
[
z′ Â′ z or [z′ ∼′ z & z′ À z]

]
. (12)

To check (7c) for Â′′ and Â, we suppose that z′ > z and z′ º z. Then z′ À z by the choice of À.
If z ∈ Y , then z′ ∈ Y as well; therefore, z′ º′ z. Applying (12), we see that z′ Â′′ z as it should be.
Meanwhile, M(X,Â′′) = {y}, hence M(X,Â′′) ≥∨ M(X,Â) does not hold.

Proposition 14. Let A be a lattice and Â be an ordering on A. Then the following statements are
equivalent.

1. Both conditions (10a) and (10b) hold.

2. There holds M(X,Â′) ≥Vt M(X,Â) whenever X ∈ LA, Â′ is an ordering on X, and (7a) and
(7b) hold on X.

3. There holds M(X,Â′) ≥Vt M(X,Â) whenever X ∈ LA, #X ≤ 4, and Â′ is an ordering on A
such that (7a) and (7b) hold on A.
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Proof. The equivalence immediately follows from Propositions 12 and 13.

Remark. Agliardi (2000) called a function u on a lattice A pseudosupermodular if the ordering
represented by u satisfies (10a) and (10b). However, she did not suggest anything like Proposition 14.

Proposition 15. Let A be a lattice and Â be an ordering on A. Then the following statements are
equivalent.

1. Â satisfies (11a).

2. There holds M(X,Â) ≥∧ M(X,Â′) whenever X ∈ LA, Â′ is an ordering on X, and (8a) holds
on X.

3. There holds M(X,Â) >> M(X,Â′) whenever X ∈ LA, Â′ is an ordering on X, and (8c) holds
on X.

4. There holds M(X,Â) ≥∧ M(X,Â′) whenever X ∈ LA, #X ≤ 4, and Â′ is an ordering on A
such that (8c) holds on A.

The proof is dual to that of Proposition 13.

Proposition 16. Let A be a lattice and Â be an ordering on A. Then the following statements are
equivalent.

1. Â satisfies (11b).

2. There holds M(X,Â) ≥∨ M(X,Â′) whenever X ∈ LA, Â′ is an ordering on X, and (8b) holds
on X.

3. There holds M(X,Â) ≥wV M(X,Â′) whenever X ∈ LA, Â′ is an ordering on X, and (8d) holds
on X.

4. There holds M(X,Â) ≥∨ M(X,Â′) whenever X ∈ LA, #X ≤ 4, and Â′ is an ordering on A
such that (8a) and (8b) hold on A.

5. There holds M(X,Â) ≥wV M(X,Â′) whenever X ∈ LA, #X ≤ 4, and Â′ is an ordering on A
such that (8b) holds on A.

The proof is dual to that of Proposition 12.

Proposition 17. Let A be a lattice and Â be an ordering on A. Then the following statements are
equivalent.

1. Both conditions (11a) and (11b) hold.

2. There holds M(X,Â) ≥Vt M(X,Â′) whenever X ∈ LA, Â′ is an ordering on X, and (8a) and
(8b) hold on X.
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3. There holds M(X,Â) ≥Vt M(X,Â′) whenever X ∈ LA, #X ≤ 4, and Â′ is an ordering on A
such that (8a) and (8b) hold on A.

Proof. The equivalence immediately follows from Propositions 15 and 16.

Theorem 1. An ordering Â on a lattice A is quasisupermodular if and only if it has both following
properties.

1. There holds M(X,Â′) ≥Vt M(X,Â) whenever X ∈ LA, Â′ is an ordering on X, and (7a) and
(7b) hold on X.

2. There holds M(X,Â) ≥Vt M(X,Â′) whenever X ∈ LA, Â′ is an ordering on X, and (8a) and
(8b) hold on X.

Moreover, the “if” part survives the restriction of both requirements to X ∈ LA with #X ≤ 4 and Â′
defined on A.

Proof. The equivalence immediately follows from Propositions 11, 14, and 17.

Remark. The “only if” part adds rather little to Theorem 4 of Milgrom and Shannon (1994), but
does not follow therefrom: Â′ need not be QSM [and its quasisupermodularity would not follow even
from (7c) or (8c)].

Theorem 2. An ordering Â on a lattice A is quasisupermodular if and only if it has all the following
properties.

1. There holds M(X,Â′) >> M(X,Â) whenever X ∈ LA, Â′ is an ordering on X, and (7c) holds
on X.

2. There holds M(X,Â) >> M(X,Â′) whenever X ∈ LA, Â′ is an ordering on X, and (8c) holds
on X.

3. There holds M(X,Â′) ≥wV M(X,Â) whenever X ∈ LA, Â′ is an ordering on X, and (7d) holds
on X.

4. There holds M(X,Â) ≥wV M(X,Â′) whenever X ∈ LA, Â′ is an ordering on X, and (8d) holds
on X.

Moreover, the “if” part survives the restriction of all requirements to X ∈ LA with #X ≤ 4 and Â′
defined on A.

Proof. The equivalence immediately follows from Propositions 11 and 12–16.

Remark. Again, the “only if” part does not add very much to Theorems 2 and 3 of Shannon (1995),
but is technically independent of them.
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Proposition 18. Let A be a lattice and Â be an ordering on A. Then the following statements are
equivalent.

1. Â satisfies (10c).

2. There hold M(X,Â′) > M(X,Â) and M(X,Â′) ./ M(X,Â) whenever X ∈ LA and Â′ is an
ordering on X such that (7a) and (7b) hold on X.

3. There hold M(X,Â′) >Up M(X,Â) and M(X,Â′) ./ M(X,Â) whenever X ∈ LA and Â′ is an
ordering on X such that (7a) holds on X.

4. There holds M(X,Â′) >Up M(X,Â) whenever X ∈ LA, #X ≤ 4, and Â′ is an ordering on A
such that (7a) and (7b) hold on A.

Proof. The implications [Statement 2 ⇒ Statement 4 ⇐ Statement 3] are obvious. Therefore, it is
enough to show that (10c) implies both Statements 2 and 3, while the negation of (10c) implies the
negation of Statement 4.

Let (10c) hold, X ∈ LA, (7a) hold on X, x ∈ M(X,Â), and y ∈ M(X,Â′); then x º y and
x º y ∧ x. Assuming that y and x are incomparable in the basic order, we have y ∨ x Â y by (10c),
hence y ∨ x Â′ y by (7a), which contradicts the optimality of y. Therefore, M(X,Â′) ./ M(X,Â). If
y ≥ x, there can be no problem with (5a), nor (5c).

Let x > y. An assumption that x Â y would, by (7a), imply x Â′ y, again contradicting the
optimality of y; therefore, y ∈ M(X,Â) ∩ M(X,Â′), hence there is no problem with (5a). If (7b)
holds as well, we have x º′ y since x º y, hence x ∈ M(X,Â) ∩ M(X,Â′). Since x and y were
arbitrary, we have M(X,Â′) > M(X,Â) in the first case and M(X,Â′) >Up M(X,Â) in the second.

Let (10c) be violated: there are x, y ∈ A such that y ∨ x > x > y ∧ x, x º y ∧ x, x º y ∨ x,
and y º y ∨ x. As usual, we may assume x º y. Then we set X := L(x, y), so x ∈ M(X,Â), and
define an ordering Â′ on A in the same manner as in the proof of Proposition 12, with Y := {z ∈ A |
z ≥ y}. Both (7a) and (7b) hold for the same reason as there. Meanwhile, x /∈ M(X,Â′) 3 y, hence
M(X,Â′) >Up M(X,Â) does not hold, i.e., Statement 4 is invalid.

Proposition 19. Let A be a lattice and Â be an ordering on A. Then the following statements are
equivalent.

1. Â satisfies (11c).

2. There hold M(X,Â) > M(X,Â′) and M(X,Â) ./ M(X,Â′) whenever X ∈ LA and Â′ is an
ordering on X such that (8a) and (8b) hold on X.

3. There hold M(X,Â) >Dn M(X,Â′) and M(X,Â) ./ M(X,Â′) whenever X ∈ LA and Â′ is an
ordering on X such that (8b) holds on X.

4. There holds M(X,Â) >Dn M(X,Â′) whenever X ∈ LA, #X ≤ 4, and Â′ is an ordering on A
such that (8a) and (8b) hold on A.
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The proof is dual to that of Proposition 18.

Theorem 3. An ordering Â on a lattice A is strictly quasisupermodular if and only if it has both
following properties.

1. There hold M(X,Â′) > M(X,Â) and M(X,Â′) ./ M(X,Â) whenever X ∈ LA and Â′ is an
ordering on X such that (7a) and (7b) hold on X.

2. There hold M(X,Â) > M(X,Â′) and M(X,Â) ./ M(X,Â′) whenever X ∈ LA and Â′ is an
ordering on X such that (8a) and (8b) hold on X.

Moreover, the “if” part survives the restriction of both requirements to X ∈ LA with #X ≤ 4 and Â′
defined on A; it also survives dropping the component with ./ in both requirements.

Proof. The equivalence immediately follows from Propositions 11, 18, and 19.

Proposition 20. Let A be a lattice and Â be an ordering on A. Then the following statements are
equivalent.

1. Â satisfies (10d).

2. There holds M(X,Â′) ≥∧ M(X,Â) whenever X ∈ LA and Â′ is an ordering on X such that
(7c) holds on X.

3. There holds M(X,Â′) ≥wV M(X,Â) whenever X ∈ LA and Â′ is an ordering on X such that
(7b) holds on X.

4. There holds M(X,Â′) ≥wV M(X,Â) whenever X ∈ LA, #X ≤ 4, and Â′ is an ordering on A
such that (7c) holds on A.

Proof. The implications [Statement 2 ⇒ Statement 4 ⇐ Statement 3] are obvious. Therefore, it
is enough to show that (10d) implies Statements 2 and 3, while the negation of (10d) implies the
negation of Statement 4.

Let (10d) hold, X ∈ LA, x ∈ M(X,Â), and y ∈ M(X,Â′); then x º y and x º y ∧ x. Assuming
that x Â y∧x, we obtain y∨x º y by (10d). If (7c) holds on X, then y∨x Â′ y, which contradicts the
optimality of y; therefore, y∧x ∈ M(X,Â). If (7b) holds, then y∨x º′ y; therefore, y∨x ∈ M(X,Â′).
Since x and y were arbitrary, we have M(X,Â′) ≥∧ M(X,Â) in the first case, and M(X,Â′) ≥wV

M(X,Â) in the second.
Let (10d) be violated: there are x, y ∈ A such that x º y and x Â y ∧ x, but y Â y ∨ x. We

define X := L(x, y), so y ∧x /∈ M(X,Â) 3 x, and orderings Â′ and Â′′ on A in the same way as in the
proof of Proposition 13. Condition (7c) for Â and Â′′ holds for the same reason as there. Meanwhile,
y ∨ x /∈ M(X,Â′′) 3 y, hence M(X,Â′′) ≥wV M(X,Â) does not hold, i.e., Statement 4 is invalid.
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Proposition 21. Let A be a lattice and Â be an ordering on A. Then the following statements are
equivalent.

1. Â satisfies (11d).

2. There holds M(X,Â) ≥∨ M(X,Â′) whenever X ∈ LA and Â′ is an ordering on X such that (8c)
holds on X.

3. There holds M(X,Â) ≥wV M(X,Â′) whenever X ∈ LA and Â′ is an ordering on X such that
(8a) holds on X.

4. There holds M(X,Â) ≥wV M(X,Â′) whenever X ∈ LA, #X ≤ 4, and Â′ is an ordering on A
such that (8c) holds on A.

The proof is dual to that of Proposition 20

Theorem 4. An ordering Â on a lattice A is weakly quasisupermodular if and only if it has both
following properties.

1. There holds M(X,Â′) ≥wV M(X,Â) whenever X ∈ LA and Â′ is an ordering on X such that
(7a) and (7b) hold on X.

2. There holds M(X,Â) ≥wV M(X,Â′) whenever X ∈ LA and Â′ is an ordering on X such that
(8a) and (8b) hold on X.

Moreover, the “if” part survives the restriction of both requirements to X ∈ LA with #X ≤ 4 and Â′
defined on A.

Proof. The equivalence immediately follows from Propositions 11, 20, and 21.

7 Parametric optimization

In this section, we return to parametric families of orderings on A and the best response correspon-
dences RX : T → BX ⊆ BA defined by (2).

Given posets A and T and a parametric family U = 〈Ât〉t∈T of orderings on A, we say that U
satisfies the meet single crossing condition if (7a) holds for Ât as Â and Ât′ as Â′ whenever t, t′ ∈ T
and t′ > t. Similarly, U satisfies the join, strict, or weak single crossing condition if (7b), (7c), or
(7d) holds under the same circumstances. We say that U satisfies the single crossing condition if
it satisfies both join and meet single crossing conditions. Our terminology coincides with that of
Milgrom and Shannon (1994) and Shannon (1995) when U is represented by a utility function (they
did not explicitly define the meet and join single crossing conditions, though).

Remark. Reny (2011, Section 4.1) applies the term “weak single crossing” to what is called “join
single crossing” here; our usage follows Shannon (1995) and, in a broader sense, Veinott (1989).
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Clearly, the (meet, join, strict, or weak) single crossing conditions could be defined with references
to (8) as well. If both orders on A and T are reversed, meet and join single crossing conditions
transform into each other; their conjunction, as well as strict and weak single crossing conditions,
are “self-dual” in this sense. Propositions 1–5 immediately imply that each of the single crossing
conditions is equivalent to the monotonicity (in one sense or another) of correspondences RX for all
chains X ∈ BA.

Propositions 12–21 give us sufficient conditions for the monotonicity of correspondences RX for
all sublattices X ∈ LA. Given a poset T , a monotone pseudopartition of T consists of two subsets
T ↑, T ↓ ⊆ T such that ∀t′, t ∈ T

[
t′ > t ⇒ [t ∈ T ↑ or t′ ∈ T ↓]

]
. Clearly, any two points outside

T ↑ ∪ T ↓ must be incomparable.

Proposition 22. Let U = 〈Ât〉t∈T be a parametric family of orderings on a lattice A; let U satisfy
the strict single crossing condition. Let there be a monotone pseudopartition 〈T ↑, T ↓〉 of T such that
Ât satisfies (10b) for t ∈ T ↑ and (11a) for t ∈ T ↓. Then every RX (X ∈ LA) is increasing w.r.t. >>.

Proof. Let t′ > t. If t ∈ T ↑, then (10b) holds with Ât as Â while (7c) holds with Ât′ as Â′ and Ât as
Â. Therefore, RX(t′) >> RX(t) for every X ∈ LA by Statement 3 of Proposition 13. If t′ ∈ T ↓, then
(11a) holds with Ât′ as Â while (8c) holds with with Ât as Â′ and Ât′ as Â. Therefore, RX(t′) >> RX(t)
for every X ∈ LA by Statement 3 of Proposition 15.

Proposition 23. Let U = 〈Ât〉t∈T be a parametric family of orderings on a lattice A; let U satisfy
the meet single crossing condition. Let there be a monotone pseudopartition 〈T ↑, T ↓〉 of T such that
Ât satisfies (10a) for t ∈ T ↑ and (11a) for t ∈ T ↓. Then every RX (X ∈ LA) is increasing w.r.t. ≥∧.
Proposition 24. Let U = 〈Ât〉t∈T be a parametric family of orderings on a lattice A; let U satisfy
the join single crossing condition. Let there be a monotone pseudopartition 〈T ↑, T ↓〉 of T such that
Ât satisfies (10b) for t ∈ T ↑ and (11b) for t ∈ T ↓. Then every RX (X ∈ LA) is increasing w.r.t. ≥∨.
Proposition 25. Let U = 〈Ât〉t∈T be a parametric family of orderings on a lattice A; let U satisfy
the single crossing condition. Let there be a monotone pseudopartition 〈T ↑, T ↓〉 of T such that Ât
satisfies (10a) and (10b) for t ∈ T ↑, and (11a) and (11b) for t ∈ T ↓. Then every RX (X ∈ LA) is
increasing w.r.t. ≥Vt.

Proposition 26. Let U = 〈Ât〉t∈T be a parametric family of orderings on a lattice A; let U satisfy
the weak single crossing condition. Let there be a monotone pseudopartition 〈T ↑, T ↓〉 of T such that
Ât satisfies (10a) for t ∈ T ↑ and (11b) for t ∈ T ↓. Then every RX (X ∈ LA) is increasing w.r.t.
≥wV.

Proposition 27. Let U = 〈Ât〉t∈T be a parametric family of orderings on a lattice A; let U satisfy
the single crossing condition. Let there be a monotone pseudopartition 〈T ↑, T ↓〉 of T such that Ât
satisfies (10c) for t ∈ T ↑, and (11c) for t ∈ T ↓. Then every RX (X ∈ LA) is increasing w.r.t. >.
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Proposition 28. Let U = 〈Ât〉t∈T be a parametric family of orderings on a lattice A; let U satisfy
the single crossing condition. Let there be a monotone pseudopartition 〈T ↑, T ↓〉 of T such that Ât
satisfies (10d) for t ∈ T ↑, and (11d) for t ∈ T ↓. Then every RX (X ∈ LA) is increasing w.r.t. ≥wV.

Each proof is quite similar to that of Proposition 22.

Remark. Lemma 3.1 of Kukushkin et al. (2005) immediately follows from Proposition 25 (T ↑ = T ).

To obtain characterization results for parametric settings, somewhat cumbersome terminology is
needed. Let T and T̄ be two posets such that T = T̄ \ {t̄} (t̄ ∈ T̄ ); let Ū = 〈Ât〉t∈T̄ be a parametric
family of orderings on a lattice A, and U := 〈Ât〉t∈T . We say that Ū is an extension of U with the
single crossing property if (7a) and (7b) hold for Ât̄ as Â and Ât as Â′ whenever T 3 t > t̄, whereas
(7a) and (7b) hold for Ât as Â and Ât̄ as Â′ whenever t̄ > t ∈ T . Similarly, Ū is an extension of U
with the strict [weak, meet, or join] single crossing property if (7c) [(7d), (7a), or (7b)] holds for Ât̄
as Â and Ât as Â′ whenever T 3 t > t̄, whereas (7c) [(7d), (7a), or (7b)] holds for Ât as Â and Ât̄ as Â′
whenever t̄ > t ∈ T .

We say that an ordering Â on a lattice A preserves ascendance if, whenever U is a parametric
family of orderings on A such that RX defined by (2) is increasing w.r.t. ≥Vt for every X ∈ LA,
and Ū is an extension of U with the single crossing property such that Ât̄ coincides with Â, every
correspondence R̄X (X ∈ LA) defined by (2) for Ū is increasing w.r.t. ≥Vt. Similarly, an ordering
Â on a lattice A preserves strong [weak, meet, or join] ascendance if, whenever U is a parametric
family of orderings on A such that RX defined by (2) is increasing w.r.t. >> [≥wV, ≥∧, ≥∨] for every
X ∈ LA, and Ū is an extension of U with the strict [weak, meet, or join] single crossing property
such that Ât̄ coincides with Â, every correspondence R̄X (X ∈ LA) defined by (2) for Ū is increasing
w.r.t. >> [≥wV, ≥∧, ≥∨].

Proposition 29. An ordering Â on a lattice A preserves meet (join) ascendance if and only if it is
∧(∨)-QSM.

Proof. The first equivalence immediately follows from Propositions 11, 12, and 15; the second, from
Propositions 11, 13, and 16.

Proposition 30. An ordering Â on a lattice A preserves weak ascendance if and only if it satisfies
(10a) and (11b).

Proof. The equivalence immediately follows from Propositions 12 and 16.

Proposition 31. An ordering Â on a lattice A preserves strong ascendance if and only if it satisfies
(11a) and (10b).

Proof. The equivalence immediately follows from Propositions 13 and 15.

Theorem 5. Let Â be an ordering on a lattice A. Then the following statements are equivalent.
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1. Â is quasisupermodular.

2. Â preserves ascendance.

3. Â preserves both strong ascendance and weak ascendance.

Proof. The equivalence immediately follows from Theorems 1 and 2.

Remark. Once again, the implication [Statement 1 ⇒ Statement 2] is rather close to being a
corollary to Theorem 4 of Milgrom and Shannon (1994), but does not quite follow therefrom. The
connection between the implication [Statement 1 ⇒ Statement 3] and Theorems 2 and 3 of Shannon
(1995) is even looser.

To “utilize” Propositions 18–21 in the same style, we say that an ordering Â on a lattice A
preserves semi-strong ascendance [weakly preserves weak ascendance] if the monotonicity of every
correspondence RX , X ∈ LA, w.r.t. > [≥wV] is sustained after the insertion of Â with the single
crossing property into any parametric family of orderings.

Proposition 32. An ordering Â on a lattice A preserves semi-strong ascendance if and only if it is
SQSM.

Proof. The equivalence immediately follows from Propositions 18 and 19.

Proposition 33. An ordering Â on a lattice A weakly preserves weak ascendance if and only if it
is wQSM.

Proof. The equivalence immediately follows from Propositions 20 and 21.

8 Concluding remarks

8.1. In most cases, the relations between different conditions relevant to type A (or type B for that
matter) problems follow a simple rule: the stronger version of monotonicity we want, the stronger
restriction should be imposed on preferences. In the case of Proposition 31 vs. Proposition 30, we
have stronger monotonicity under stronger single crossing conditions, and indeed, the restrictions
are incomparable. When it comes to Proposition 31 vs. Proposition 32, we again have stronger
monotonicity under stronger single crossing conditions, but the first restriction on preferences is
milder! I can suggest no a priori explanation why it should be so.

Another unexplained observation is that (strict) quasisupermodularity, as well as (9a) and (9b)
separately, play the same roles in both type A and type B problems, whereas weak quasisupermod-
ularity does not.
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8.2. An alternative approach to monotone comparative statics can be based on monotone selections
from RX or M(·,Â). Separation between the existence and monotonicity of optima becomes im-
possible in this case, hence the prospects for comprehensive characterization results are rather dim.
Some partial results can be derived, nonetheless.

Proposition 34 below immediately implies that every selection from M(·,Â) : LA → BA is in-
creasing if and only if Â is strictly+ quasisupermodular. Theorem 1 of LiCalzi and Veinott (1992),
plus Theorem 3.2 of Veinott (1989) or Theorem 1 of Kukushkin (2009), shows that the restriction of
M(·,Â) to the poset FA ⊆ LA of all finite nonempty sublattices of A admits a monotone selection
if and only if Â is weakly quasisupermodular. Invoking, additionally, Theorem 2 of Shannon (1995)
and restricting attention to order upper semicontinuous orderings Â, we see that weak quasisuper-
modularity is equivalent to the existence of a monotone selection from the restriction of M(·,Â) to
the poset MA ⊆ LA of all subcomplete sublattices of A.

Similar approach to type A problems needs notions of the preservation of the existence, or
universality, of monotone selections from RX , which can be formulated in a straightforward way.
Proposition 30, respectively Proposition 31, then imply results similar to those of the preceding
paragraph, where weak quasisupermodularity is replaced with the conjunction of (10a) and (11b),
while strict+ quasisupermodularity with the conjunction of (11a) and (10b).

Edlin and Shannon (1998), as well as Strulovici and Weber (2010), did study monotone compar-
ative statics in terms of monotone selections; however, both additionally assumed smoothness and
employed local considerations. Therefore, their results are not directly comparable to ours.

8.3. An anonymous referee has raised the question of what would happen to our results if the
attention is restricted to preferences described by real-valued utility functions rather than orderings.
All sufficiency statements obviously remain valid, so the question boils down to whether Â′ and Â′′ in
the proofs of necessity parts of Propositions 12, 13, 18, and 20 admit numeric representations if Â
does. A positive answer is easy to obtain in the case of the first relation; in the second case, it is
obvious for a countable A, but generally wrong otherwise – neither Szpilrajn’s “construction,” nor
lexicography (12) preserve numerical representability.

Something could be done about that. First, we may separate ≥∧ from >> in Proposition 13: to
prove the necessity of (10b) for the monotonicity in the former sense, only Â′ satisfying (7a) and
(7b) is needed, and there is no problem with numerical representability here. This is sufficient to
save Proposition 14 and Theorem 1. We may also weaken the current Statement 3 of Proposition 13
only demanding (7c) to hold on X. Then Theorem 2 will be essentially saved; we only have to
drop the last claim in the “moreover. . . ” part. Finally, we may weaken the current Statement 4 in
Proposition 20, only demanding (7a) and (7b) to hold; that statement is sufficient for Theorem 4.
Whether Propositions 13 and 20 could be saved in their present form remains unclear.

8.4. Five “order” relations (3) and (4) form a lattice (with the logical implication as order), which
is not a sublattice of the lattice of all binary relations on BA. Five single crossing conditions [four
(7) and the conjunction of (7a) and (7b) – single crossing proper] form an isomorphic lattice; the
same applies to five “QSM-style” conditions [the four (9) and the conjunction of (9a) and (9b) –
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quasisupermodularity proper], as well as their “halves,” (10) and (11). Neither is a sublattice of the
lattice of all binary relations, respectively Boolean functions, on the set of orderings on A. Each of
the three will become a sublattice if we add the disjunction of, respectively, ≥∧ and ≥∨, (7a) and (7b),
or (9a) and (9b). However, there will be no analog of Propositions 1–5 or 7–9: the new conditions
will be sufficient for the monotonicity w.r.t. the new “order,” but not necessary.

Example 3. Let A := {0, 1, 2, 3}, T := {0, 1}, and a function u : A × T → R be defined by the
following matrix (the A-axis is directed rightwards; the T -axis, upwards):

3 3 5 4
0 1 2 2

Neither condition (7a) nor (7b) is satisfied for the orderingsÂ′ represented by u(·, 1) and Â represented
by u(·, 0): (7a) is violated for x = 0 and y = 1; (7b), for x = 2 and y = 3. On the other hand,
every mapping RX (X ∈ BA) is increasing w.r.t. the disjunction of ≥∧ and ≥∨: RA(1) = {2} while
RA(0) = {2, 3}, hence RA(1) ≥∧ RA(0); on A \ {3} as well as on A \ {2}, (7a) holds; on A \ {0} as
well as on A \ {1}, (7b) holds.

Similarly, the ordering Â on the lattice A×T represented by u satisfies neither condition (9): (9a)
is violated in the leftmost 2×2 cell; (9b), in the rightmost 2×2 cell. On the other hand, the mapping
M(·,Â) : LA×T → BA×T is increasing w.r.t. ≥Vt on the source and the disjunction of ≥∧ and ≥∨ on
the target. Let X, Y ∈ LA×T and Y ≥Vt X. By Theorem 2 of Milgrom and Shannon (1994), there
are Z ∈ LA×T and a+, a− ∈ Z such that Y = {a ∈ Z | a ≥ a+} and X = {a ∈ Z | a ≤ a−}. If Z is a
chain, we have M(Y,Â) ≥Vt M(X,Â) by Milgrom and Shannon’s Corollary 1 because every ordering
on a chain is QSM. If (2, 1) /∈ Z 3 (3, 1), then M(Y,Â) = {(3, 1)}, hence M(Y,Â) >> M(X,Â). If
(2, 1) ∈ Z, then M(Y,Â) = {(2, 1)}, hence M(Y,Â) >> M(X,Â) unless M(X,Â) = {(2, 0), (3, 0)},
in which case M(Y,Â) ≥∧ M(X,Â). Finally, if Z ∩ {(2, 1), (3, 1)} = ∅, then Z is contained in the
leftmost 2× 2 cell, where Â is ∨-QSM, hence M(Y,Â) ≥∨ M(X,Â) by Proposition 17.

It may also be noted that the monotonicity w.r.t. the disjunction of ≥∧ and ≥∨ seems not to lead
to any new result on the existence of monotone selections.

8.5. The description of preferences with an ordering may seem very general, but it may also seem
not general enough. Leaving aside the abstruse question of how much rationality in an agent’s
preferences it is “right” to assume, there is a mundane reason to go beyond orderings. Suppose a
utility function u(x, t) is bounded above in x for every t, but need not attain a maximum; then
ε-optimization suggests itself strongly, and this means considering a preference relation

y Ât x ­ u(y, t) > u(x, t) + ε

(with ε > 0). RX(t) consists of all ε-maxima of u(·, t). The relation Ât is a strictly acyclic semiorder,
but need not be an ordering. If u satisfies Topkis’s (1978) increasing differences condition, then
{Ât}t∈T satisfies the single crossing conditions; if u is supermodular in the first argument, then Ât is
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QSM. Nevertheless, none of the results of this paper is applicable even under so strong assumptions;
actually, RX need not be ascending. The existence of a monotone selection can be proven when
both X and T are chains; the existence of an ε-Nash equilibrium, when every strategy set is a chain
(Kukushkin, 2009, Theorems 3 and 4). However, there is no similar result of any kind for non-scalar
sets X.

8.6. The “order” relation >> is never mentioned in Section 5; although Theorem 5 of LiCalzi and
Veinott (1992) does contain a statement involving that relation, it can be easily derived from what
is reproduced as Statement 2 of our Proposition 10 (if Y ∩ X = ∅, then Y >> X is equivalent to
Y > X), hence should not be counted here. Actually, characterization results involving the relation
>> can be obtained in both type B and type A problems.

Let us call an ordering Â on a lattice A strictly+ quasisupermodular (S +QSM ) if

∀x, y ∈ A
[
[x > y ∧ x & x º y ∧ x] ⇒ y ∨ x Â y

]
. (13)

Effectively, it means that Â is SQSM and no pair of points comparable in the basic order can be
equivalent; in other words, the relation (7c) is reflexive on Â. The restriction is quite exacting: if,
loosely speaking, both the set of alternatives and the preferences are continuous, then (13) implies
that Â is either strictly increasing or strictly decreasing.

Proposition 34. Let Â be an ordering on a lattice A. Then the following statements are equivalent.

1. There holds (13).

2. There holds M(Y,Â) >> M(X,Â) whenever Y, X ∈ LA and Y ≥Vt X.

3. There holds M(X,Â′) >> M(X,Â) whenever X ∈ LA and Â′ is an ordering on X such that (7a)
holds on X, and there holds M(X,Â) >> M(X,Â′) whenever X ∈ LA and Â′ is an ordering on
X such that (8b) holds on X.

Moreover, Statement 2 can be restricted to Y, X ∈ LA with #Y = #X = 2; Statement 3 can be
restricted to X ∈ LA with #X ≤ 4 and Â′ defined (and satisfying the appropriate single crossing
condition) on A.

A proof, similar to those above, is omitted; we also omit an exact formulation of the characteri-
zation of S+QSM in terms of monotonicity preserved.
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