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Abstract

An algorithm is described that constructs, in a polynomial time, a Nash equilibrium in
a finite game with additive aggregation and decreasing best responses.
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1 Introduction

In games with increasing best responses (“strategic complements”), the existence of a Nash
equilibrium can be easily derived [12] from Tarski’s fixed point theorem [11]. Moreover, an
equilibrium in a finite game can be found, by Algorithms I or II of [12], in a polynomial time
(w.r.t. the number of players and the maximal number of strategies of one player).

In a game with decreasing best responses (“strategic substitutes”), there may be no equilib-
rium at all, the straightforward analog of Tarski’s theorem for decreasing mappings being plainly
wrong. Nonetheless, Novshek [10] showed that this property of the best responses ensures the
existence of an equilibrium in the Cournot oligopoly model [2]. Although he worked with a
continuous model and argued by continuity, the key role was played by a purely discrete trick.
The fact was shown in [6], where an algorithm constructing a Nash equilibrium in every finite
game with integer strategies, additive aggregation, and decreasing best responses was explicitly
defined. Unfortunately, the necessity to scan virtually the whole set of strategy profiles could
not be excluded, hence the time taken could only be estimated as an exponential.
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The objective of this paper is to present a modification of the algorithm of [6] that is guar-
anteed to find a Nash equilibrium in a polynomial time.

Quite recently, Bashlaeva and Lebedev [1] described an algorithm that checks the existence
of a Nash equilibrium in a finite game with additive aggregation in a polynomial time, and
produces one if it exists. However, that algorithm, being of a dynamic programming type,
demands huge memory. Here, we just move through the set of strategy profiles, the next profile
at each step being determined by the current one, without any need to remember the history.

2 Fixed-point framework

We start in a fixed-point framework, essentially the same as in [6, Proposition 1]. There is a
finite set N (of players); for each i ∈ N , there is a set Xi = {0, . . . ,mi} (of strategies) and a
multi-function Ri : Si → 2Xi\{∅}, where Si := {0, . . . ,

∑
j ̸=i mj} (the best responses). A strategy

profile x0
N ∈ XN :=

∏
i∈N Xi is a fixed point if, for each i ∈ N ,

x0
i ∈ Ri

(∑
j ̸=i

x0
j

)
.

Assuming each Ri decreasing in the sense that x′
i ≤ xi whenever x

′
i ∈ Ri(s

′
i), xi ∈ Ri(si), and

s′i > si, we describe an algorithm that constructs a fixed point, thereby proving its existence.

We set T :=
∑

i∈N Xi = {0, . . . , m̄}, where m̄ :=
∑

i∈N mi, and extend each Ri to a mapping
T → 2Xi \ {∅} by setting Ri(si) := {0} when si ∈ T \ Si. For every i ∈ N and t ∈ T , we define

Bi(t) := {xi ∈ Xi | xi ∈ Ri(t− xi)}.

Then we assume the set N linearly ordered, say, N = {1, . . . , n}, and consider T ×N with
the lexicographic order where the t-component matters first, so (0, 1) is the minimum, followed
by (0, 2), etc., while (m̄, n) is the maximum. We define C∗ := (T ×N)∪{∗} assuming ∗ > (t, i)
for every (t, i) ∈ T × N . For every (t, i) ∈ T × N , its successor (t, i)′ is uniquely defined:
(t, i)′ = (t, i+ 1) if i < n, (t, n)′ = (t+ 1, 1) if t < m̄, and (m̄, n)′ = ∗.

We define a mapping ξN from (a subset of) C∗ to XN , i.e., a sequence of strategy profiles
indexed by pairs (t, i), by backward recursion. First, we set ξj(∗) := 0 for all j ∈ N . Then we
apply a uniform procedure ensuring the following properties whenever ξN(t, i) is defined:

ξi(t, i) ∈ Bi(t); (1a)∑
j∈N

ξj(t, i) ≤ t; (1b)
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∀j ∈ N
[
ξj(t, i) ≥ ξj((t, i)

′)
]
. (1c)

Having ξN((t, i)
′) already defined, we set

Qi(t) := {xi ∈ Bi(t) | xi ≥ ξi((t, i)
′) & xi +

∑
j ̸=i

ξj((t, i)
′) ≤ t}.

If Qi(t) = ∅, the process stops with a diagnosis “failure.” Otherwise, we define ξj(t, i) :=
ξj((t, i)

′) for all j ̸= i and ξi(t, i) := maxQi(t); conditions (1) are easy to check. If
∑

j∈N ξj(t, i) =
t, the process stops with a diagnosis “success”; otherwise, we move further.

Theorem. The process just described ends at some stage (t+, i+) with a diagnosis “success,”
and ξN(t

+, i+) is a fixed point.

Proof. To start with, 0 ∈ Qi(m̄) ̸= ∅ for each i ∈ N , so a failure could only happen when t < m̄.

Claim 1. If ξN(t, i) is defined and
∑

j∈N ξj(t, i) < t, then ξi(t, i) ∈ Bi(t− 1).

Proof of Claim 1. We denote si := t − ξi(t, i) >
∑

j ̸=i ξj(t, i). Since ξi(t, i) ∈ Bi(t), we have
ξi(t, i) ∈ Ri(si). If ξi(t, i) ∈ Ri(si − 1) as well, we are home. Supposing the contrary, we must
have xi > ξi(t, i) for every xi ∈ Ri(si − 1) ̸= ∅. Let us fix an xi ∈ Ri(si − 1) and define
τ := xi + si − 1; clearly, τ − t = xi − ξi(t, i) − 1 ≥ 0. Now we have xi ∈ Bi(τ); besides,
xi +

∑
j ̸=i ξj((τ, i)

′) ≤ τ since ξj((τ, i)
′) ≤ ξj((t, i)

′) for every j ∈ N . Thus, xi ∈ Qi(τ) and
xi > ξi(τ, i), which contradicts the choice of ξi(τ, i).

Claim 2. Whenever ξN((t, i)
′) is defined, we have Qi(t) ̸= ∅.

Proof of Claim 2. The assumptions of Claim 1 hold for (t + 1, i), hence ξi(t + 1, i) ∈ Bi(t).
Moreover, since ξi((t, i)

′) = ξi(t+ 1, i), we have ξi(t+ 1, i) ∈ Qi(t) as well.

Note that if ξN(0, n) is defined, then conditions (1b) and (1c) immediately imply that
ξi(0, n) = 0 for each i ∈ N , which means a success. Thus, Claim 2 implies that our process
cannot end in failure. Since C∗ is finite, it must end; therefore, it ends with success.

Claim 3. If the process stops at (t+, i+) with a diagnosis “success,” then ξN(t
+, i+) is a fixed

point.

Proof of Claim 3. It is obviously sufficient to prove that ξi(t
+, i+) ∈ Bi(t

+) for all i ∈ N . For
i ≥ i+, this immediately follows from the description of the process. For i < i+, we have
ξi(t

+, i+) ∈ Bi(t
+ + 1) from the same description; then we invoke Claim 1.

The theorem is proven.
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Denoting m := maxi∈N mi, we see that #C∗ ≤ O(mn2). At each step (t, i), the set {xi ∈
Xi | ξi((t, i)′) ≤ xi ≤ t −

∑
j ̸=i ξj((t, i)

′)} is scanned to determine which strategies belong to

Qi(t). Altogether, the algorithm requires no more than O(m2n2) “elementary” steps.

Remark. The number of steps required in [1] is bounded above by O(m3n3).

3 Strategic games

Let Γ be a strategic game with a finite set N of players and strategy sets Xi = {0, . . . ,mi} for
each i ∈ N ; let the utility functions of the players be ui(xN) = Ui(

∑
j ̸=i xj, xi). Denoting Si :=

{0, . . . ,
∑

j ̸=imj}, we define the best response correspondence of each player i ∈ N , Ri : Si →
2Xi \{∅}, by Ri(si) := Argmaxxi∈Xi

Ui(si, xi). A strategy profile x0
N ∈ XN :=

∏
i∈N Xi is a Nash

equilibrium if, for each i ∈ N ,

x0
i ∈ Ri

(∑
j ̸=i

x0
j

)
.

The constructions from the previous section apply whenever each Ri is decreasing. The only
difference is that we no longer can view checking whether xi ∈ Ri(si) as an elementary operation.
However, such a check requires no more than mi comparisons of utilities, hence our algorithm
remains polynomial, with time taken not exceeding O(m3n2).

If there are no a priori grounds to believe that the best responses are decreasing, we can
invoke well-known sufficient conditions: strictly decreasing differences (Topkis [12]),

∀x′
i, xi ∈ Xi ∀s′i, si ∈ Si

[
[x′

i > xi & s′i > si] ⇒
Ui(s

′
i, x

′
i)− Ui(s

′
i, xi) < Ui(si, x

′
i)− Ui(si, xi)

]
, (2)

or, more generally, strict single crossing (Milgrom and Shannon [9]),

∀x′
i, xi ∈ Xi ∀s′i, si ∈ Si

[
[x′

i > xi & s′i > si &

Ui(s
′
i, x

′
i) ≥ Ui(s

′
i, xi)] ⇒ Ui(si, x

′
i) > Ui(si, xi)

]
. (3)

The verification of either condition can be done in a polynomial time. In both cases, we may
restrict ourselves to s′i = si + 1; in the first case, to x′

i = xi + 1 as well. Thus, no more than
O(m2n2) comparisons of utilities are required to check (2), and no more than O(m3n2) to check
(3).

Remark. Instead of checking conditions (2) or (3), we can just run the algorithm. If the process
ends successfully, we have a Nash equilibrium; if it ends in failure, we, at least, know that the
best responses are not decreasing.
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If each Xi is an arbitrary finite set of integers, a straightforward modification of our con-
structions is needed, cf. [6, Proposition 2]; the algorithm remains polynomial w.r.t. the number
of players and the maximal “range” of a strategy set, maxXi −minXi.

If each Xi is an arbitrary finite set of real numbers, the existence of a Nash equilibrium still
holds because we can approximate the game with an integer one; however, the algorithm can
hardly be called polynomial in any reasonable sense. By [7, Theorem 2], a Nash equilibrium will
be reached in a finite number of steps if we iterate the best responses starting from any strategy
profile. Unfortunately, the number of steps needed admits no polynomial estimate.

Remark. The sequence ξN(t, i) in the above proof is not generated by iteration of the best
responses.

A completely unrelated trick invented by Huang [4] for studying fictitious play was made
applicable to best response dynamics in [3]. Further development [8, 5] showed that additive
aggregation can be replaced with, e.g., general linear one, ui(xN) = Ui(

∑
j ̸=i aijxj, xi) provided

aij = aji for all j ̸= i. If (3) holds, then a Nash equilibrium exists and is reached from any
strategy profile, in a finite number of steps, by iterations of the best responses. Unfortunately,
the number of steps needed again admits no polynomial estimate, and there is no analog of
Novshek’s trick in this, more general, situation.

Remark. Since there are no restrictions on the signs of aij, the best responses here may be
increasing in some players’ strategies and decreasing in others’.

Finally, let us return to games with strategic complements. Both Algorithms I and II of
[12] produce increasing sequences in each player’s strategy set; therefore, the total number of
steps cannot exceed mn. Adding the comparisons of utilities, we obtain O(m2n2). It should
be stressed that there is no need for any aggregation in the utilities and that the strategy sets
may be arbitrary finite lattices. Although the standard sufficient conditions for increasing best
responses, similar to (2) or (3), apparently cannot be verified in polynomial time in the general
case, we can run either algorithm anyway and, as above, either find an equilibrium, or learn
that the best responses are not increasing.
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