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Abstract

An abstract theory of improvement dynamics for binary relations in topo-
logical spaces is developed, providing a general framework for studying various
improvement relations and tâtonnement processes in strategic games. It has
already been established that the presence of aggregation (i.e., of a complete
ordering on the set of strategy profiles) of certain kinds is conducive to the
acyclicity of best response improvement paths. Here the connection between
acyclicity and aggregation is studied in the context of a monotonic endomor-
phism, where more definite results prove obtainable. A general question of
“minimal concord” between topology and order, sufficient for meaningful con-
clusions, is also addressed.
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1 Introduction

It has long been recognized in the (individual or social) choice theory that an acyclic
binary relation on a finite set always has a maximal element. However, the fact
that this simple theorem can play a rather important rôle in strategic game theory
seems not to have been recognized till the seminal paper of Monderer and Shapley
(1996). Many equilibrium concepts in game theory are defined through the absence
of “objections” or “blocking.” For instance, Nash equilibrium assumes the absence of
profitable individual deviations; strong equilibrium, of profitable coalition deviations.
Since the “blocking” defines a binary relation on the set of strategy profiles, equilibria
themselves can be perceived as maximal elements. Therefore, the acyclicity of the
underlying relation ensures the existence of an equilibrium as well as the convergence
of all improvement paths.

In Kukushkin (2000) a framework was developed for studying various tâtonnement
processes in strategic games, including best response dynamics in the style of Milch-
taich (1996). The main results concerned “systems of reactions,” a natural generaliza-
tion of the best response correspondences in strategic games. Roughly speaking, the
acyclicity of best response dynamics in games with strategic complements or substi-
tutes (Bulow et al., 1985) was established, provided that each player is only affected
by an appropriate aggregate of the strategies of the partners. (To be more precise,
the uniqueness of best responses was also assumed in most theorems.) Naturally, a
question arises of whether the presence of such aggregates is necessary (in a sense),
or there may exist absolutely different sufficient conditions.

The research reported here was motivated by this question although nothing more
than a certain advance in understanding can be claimed. Necessary and sufficient
conditions for acyclicity are obtained for endomorphisms, i.e., for order-preserving
mappings of a partially ordered set into itself; unlike systems of reactions, this context
is related to strategic games only metaphorically. Besides, the approach to acyclicity
of binary relations on topological spaces outlined in Kukushkin (2000) is developed
in a more systematic way.

When relations on infinite sets are considered, the absence of finite improvement
cycles does not ensure even the existence of a maximizer on a compact space, to say
nothing of the convergence of improvement paths. Improvement paths parameterized
with transfinite numbers suggest themselves strongly: if an infinite number of steps
have been made, a limit point can be taken and, if the point is still not a maximizer,
the process can continue further; it is essential whether it may or may not return
back after a “transfinite number” of steps. Under closer inspection, acyclicity splits
into two different properties: Ω-acyclicity and weak Ω-acyclicity (roughly speaking,
the difference between them corresponds to that between a limit point and a limit),
one of them being sufficient, and the other necessary, for the existence of maximizers
over every compact subset.
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Some readers may feel that transfinite dynamics cannot make any sense: it will
take “all the time” to reach the first limit. However, this objection would be equally
valid with respect to any theorem stating, e.g., the convergence of a dynamic pro-
cess to an equilibrium: the convergence takes all the time, hence the agents won’t
be able to enjoy being in an equilibrium. Actually, the relationship between mathe-
matical statements involving infinity and statements about the real world is not at
all straightforward and has been a subject of philosophical debate for centuries; no
attempt to add anything to the debate is made here.

A view is acceptable to us that an infinite or transfinite process “really” means
a finite one with indefinite (perhaps very long) duration. Anyway, what matters is
logical consistency of mathematical constructions. Besides, the properties of binary
relations defined in terms of improvement paths can bear on the problem of the
relevance of maximizers and make sense regardless of whether such paths are perceived
as adequate to describe actual dynamics (Kukushkin, 2002).

It should be noted that the use of improvement paths in the general theory of
binary relations was not unpopular in the 1970s (Smith, 1974; Mukherji, 1977); later
on, it somehow went out of fashion. This work argues that the potential of improve-
ment paths as a means of understanding the structure of binary relations is far from
being exhausted.

What is relevant to an abstract binary relation is relevant to an endomorphism,
i.e., to a mapping of a set into itself, as well: fixed points are maximizers; iteration of
the endomorphism generates improvement paths. Tarski’s (1955) fixed point theorem
establishes the existence of a fixed point for an increasing (i.e., order-preserving)
endomorphism of a complete lattice; however, the convergence of iterations is not
ensured [to be more precise, it only takes place for paths starting “near the top” or
“near the bottom” (Topkis, 1979; Vives, 1990)].

Acyclicity presents itself when it comes to increasing endomorphisms of sets with
orderings (i.e., reflexive, transitive, and complete relations), provided there is a certain
degree of concord between topology and order. The usual assumption of continuity
(cf. Nachbin, 1965; Birkhoff, 1967) proves too stringent. For instance, if an en-
domorphism preserves a lexicographic ordering constructed of continuous orderings,
the convergence of iterations to a fixed point is ensured; the fact may seem exotic,
but monotonicity w.r.t. a lexicographic order emerges in important economic models
(Milgrom and Shannon, 1994; Edlin and Shannon, 1998).

Section 2 starts with a “folk” Theorem 0 stating the equivalence of several proper-
ties of binary relations on finite sets to acyclicity. Then Theorems 1 and 2 establish a
hierarchy of mostly nonequivalent properties of binary relations on topological spaces,
each of which having something to do with acyclicity.

Section 3 considers orderings on a topological space. A general question of “min-
imal concord” between topology and order, sufficient for meaningful conclusions, is
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addressed, leading to the formulation of two properties: pseudocontinuity and quasi-
continuity. Corollary to Theorem 3 shows that the latter property of a complete order
is equivalent to the condition that every compact subset is compact in its intrinsic (as
a chain) topology. In Subsection 3.2 special attention is paid to lexicography; a lexi-
cographic combination of quasicontinuous orderings is proved to be quasicontinuous
as well (Theorem 4).

The key rôle is played by Section 4: Theorems 5 and 6 show that the presence of
an appropriate ordering is necessary and sufficient for the acyclicity of all monotonic
endomorphisms.

Section 5 adds to Kukushkin (2000) quantitatively: Theorems 7 and 8 show that
another kind of aggregation, that defined by the maximum (minimum) function,
ensures acyclicity under the strategic complements (substitutes) condition. There are
also some achievements in purely technical terms; they are discussed in Subsection 5.4.

2 Acyclicity

2.1 Improvement Paths

A binary relation on a set X is a Boolean function X × X → {>,⊥}. It is a usual
practice to write yRx instead of R(y, x) = >, and zRyRx instead of zRy and yRx.
We will usually denote relations with symbols such as . or Â rather than with letters.

A binary relation . is reflexive if x . x for all x ∈ X, irreflexive if x . x for no
x ∈ X, and transitive if z . y . x ⇒ z . x. If y . x ⇒ y .. x for all y, x ∈ Y ⊆ X,
we say that . is coarser than .. on Y , or that .. is finer than . on Y (for equivalence
relations, the opposite terminology appears more reasonable, but we mostly have in
mind irreflexive relations). For a given relation ., its transitive closure º on Y is
defined by: y º x if and only if y .. x for every .. which is transitive and finer than
. on Y . Thus, º is “the coarsest transitive refinement of ..”

A simple improvement path for . in Y ⊆ X (the relation and the set will not be
mentioned when clear from the context) is a (finite or infinite) sequence {xk}k=0,1,...

such that xk ∈ Y and xk+1 . xk for all relevant k. Obviously, y º x, where º is
the transitive closure of . on Y , if and only if there exists a finite improvement path
{x0, . . . , xm} in Y such that x0 = x, m > 0, and xm = y. A finite improvement cycle
is a finite improvement path such that x0 = xm and m > 0. A relation is acyclic if it
admits no finite improvement cycle; obviously, . is acyclic if and only if its transitive
closure is irreflexive.

A maximizer for . over Y ⊆ X is x ∈ Y such that y . x does not hold for any
y ∈ Y .
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. has the finite improvement path (FIP) property on Y ⊆ X if there exists no
infinite improvement path for . in Y . . has the weak FIP property on Y if, for every
x ∈ Y , there exists a finite improvement path {x0, . . . , xm} for . in Y such that
x0 = x and xm is a maximizer for . over Y . . has the von Neumann-Morgenstern
(NM) property on Y if the previous condition holds with m ≤ 1; this actually means
that the set of all maximizers for . over Y is a von Neumann-Morgenstern solution
(hence the unique NM-solution) on Y .

Remark. The FIP property was introduced for the individual improvement rela-
tion in a strategic game by Monderer and Shapley (1996); the same property of an
abstract binary relation was called “strict acyclicity” by von Neumann and Morgen-
stern (1953). The term “weak FIP” was used by Friedman and Mezzetti (2001) for
the individual improvement relation in strategic games; the same property of the best
response improvement relation in a strategic game was called “weak acyclicity” by
Young (1993).

Clearly, each of the three properties implies the existence of a maximizer over a
nonempty Y . Either of NM and FIP implies the weak FIP property; generally, they
do not imply each other. The following important theorem hardly deserves a formal
proof.

Theorem 0. Let . be a binary relation on a set X; then the following statements are
equivalent:

. is acyclic on X;

. has the FIP property on every finite subset Y ⊆ X;

. has the weak FIP property on every finite subset Y ⊆ X;

. admits a maximizer over every nonempty finite subset Y ⊆ X.

Our first objective is to study whether and how Theorem 0 could be extended
to topological spaces, replacing “finite” with “compact.” Throughout the paper,
whenever a topological term is mentioned, X is assumed a Hausdorff topological space
with a countable base of open sets (as is well known, topology on X is then adequately
described by convergent sequences). Improvement paths will be parameterized by
countable ordinal numbers. Some of the previous definitions also need modification
in this case.

A partially ordered set is well ordered if every subset contains a least point (then
the set obviously must be a chain). Ordinal numbers, or just ordinals, are types of
well ordered sets; Natanson (1974, Chapter XIV), can be used as a reference book.
The set of all countable ordinals, denoted K, is well ordered (but uncountable) itself.
We denote [0, α[ the set {β ∈ K| β < α}; note that α /∈ [0, α[. Each α ∈ K is the
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type of [0, α[ (Theorem 3, Section 3, Chapter XIV of Natanson). For each α ∈ K, its
successor, denoted α+1, is uniquely defined as the type of the set {β ∈ K| β ≤ α}. An
ordinal α ∈ K \{0} is called isolated if α = β+1; otherwise, α is called a limit ordinal
number. The least limit ordinal is ω: the type of the chain of all natural numbers.
ω and greater ordinals are called transfinite numbers. It is sometimes convenient to
consider a partial function α− 1 defined by the equality α = (α− 1) + 1 for isolated
α and not defined at all for limit ordinals. Every countable subset of K has a least
upper bound in K (Theorem 2, Section 5, Chapter XIV of Natanson). Every limit
ordinal α ∈ K is the least upper bound of a strictly increasing infinite sequence in K
(Theorem 4, Section 5, Chapter XIV of Natanson).

Let . be a binary relation on X. An improvement path for . in Y ⊆ X (the
relation and the set will not be mentioned when clear from the context) is a mapping
π : Dom(π) → Y , where Dom(π) is either K or [0, µ[ for µ ∈ K, satisfying these two
conditions:

1. π(α + 1) . π(α) whenever α, α + 1 ∈ Dom(π);

2. if α ∈ Dom(π) and α is a limit ordinal, there exists a sequence {βk}k for which
βk+1 > βk for all k = 0, 1, . . . , α = supk βk, and π(α) = limk→∞ π(βk).

. has the countable improvement path (CIP) property on Y if there exists no
improvement path π for . in Y with Dom(π) = K. . has the weak CIP property on
Y if, for every x ∈ Y , there exists an improvement path π in Y such that π(0) = x,
Dom(π) = [0, α + 1[, and π(α) is a maximizer for . over Y .

A discrepancy in our terminology can easily be observed: generally, CIP does not
imply weak CIP (consider, e.g., the real line with the standard order). On a compact
space, however, where the only obstacle to extending an improvement path further is
the fact that it has reached a maximizer, CIP means that every improvement path,
if continued whenever possible, ends at a maximizer, thus implying the weak CIP. A
formal proof is to be found in Theorem 2 ([2.4] ⇒ [2.5]) below.

2.2 Transitive Relations

A binary relation Â on X is called ω-transitive if it is transitive and the conditions
xω = limk→∞ xk and xk+1 Â xk for all k = 0, 1, . . . always imply xω Â x0.

Remark. It is worth noting that xω Â xk is valid for all k = 0, 1, . . . in the above
situation, once Â is ω-transitive.

A mapping ν : Dom(ν) → X, where Dom(ν) is either K or [0, µ[ for µ ∈ K, is
called a monotonic path for Â if it satisfies the condition: α > β ⇒ ν(α) Â ν(β) for
all α, β ∈ Dom(ν).
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Proposition 2.1. Let Â be an irreflexive and ω-transitive relation on X; then there
exists no monotonic path ν for Â with Dom(ν) = K.

Proof. Supposing the contrary, we denote F (α) = cl ν({β ∈ K| β > α}) [6= ∅] for
every α ∈ K, and F =

⋂
α∈K F (α); clearly, all the sets F (α) contain one another.

Since X has a countable base of open sets, there exists a countable subset L ⊆ K
such that F =

⋂
α∈L F (α) (the Lindelöf theorem, see, e.g., Kuratowski, 1966, p. 54);

clearly, L cannot have a maximum. Now we denote α∗ = sup L (it exists in K
by the Statement 2 of Theorem 2, Section 5, Chapter XIV of Natanson, 1974) and
x∗ = ν(α∗); α∗ > α for every α ∈ L, hence x∗ ∈ F .

Let U1, . . . , Uk, . . . be a countable base of open neighbourhoods of x∗; without
restricting generality, Uk+1 ⊆ Uk for all k. Let us pick α0 > α∗ arbitrarily and
then define, by induction, a sequence {αk}k=1,2,... such that αk > αk−1 > α∗ and
ν(αk) ∈ Uk for each k: since x∗ ∈ F ⊆ F (αk−1), there exists αk > αk−1 such that
ν(αk) ∈ Uk. Now ν(αk) → x∗ and ν(αk) Â ν(αk−1) for all k; since Â is ω-transitive,
x∗ Â ν(αk) Â ν(α∗) = x∗, which contradicts the irreflexivity of Â.

Let Π be a set of monotonic paths for Â; we call Π closed w.r.t. extension if, for
any monotonic path ν for Â, the condition that each restriction of ν to [0, µ+1[

(
µ ∈

Dom(ν)
)

belongs to Π implies that ν ∈ Π too. The set of ν ∈ Π with Dom(ν) ⊂ K
will be denoted Π∗. A continuation rule is a mapping ϑ : Π∗ → Π∗ such that
every ν ∈ Π∗ is the restriction of ϑ(ν) to Dom(ν) [i.e., Dom(ν) ⊆ Dom(ϑ(ν)) and
β ∈ Dom(ν) ⇒ ϑ(ν)(β) = ν(β)].

Proposition 2.2. Let Â be an irreflexive and ω-transitive relation on X, Π be a
nonempty set of monotonic paths for Â, closed w.r.t. extension, and ϑ : Π∗ → Π∗ be
a continuation rule. Then there exists ν ∈ Π∗ such that ϑ(ν) = ν.

Proof. By Proposition 2.1, Π∗ = Π. We introduce a strict order on Π:

ν ′′ > ν ′ ⇐⇒ Dom(ν ′) ⊂ Dom(ν ′′) &∀β ∈ Dom(ν ′) [ν ′(β) = ν ′′(β)].

If ν is a maximizer for the order over Π, then ϑ(ν) = ν. Let us establish the existence
of a maximizer by Zorn’s Lemma. If C ⊆ Π is a chain, we define ∆ =

⋃
ν∈C Dom(ν).

For every β ∈ ∆, we define ν∗(β) = ν(β) for ν ∈ C and β ∈ Dom(ν) (the fact
that C is a chain ensures that it does not matter which ν satisfying the conditions is
used), obtaining ν∗ ∈ Π (because Π is closed w.r.t. extension) such that ν∗ ≥ ν for
all ν ∈ C.

Lemma 2.3. Let º be an ω-transitive relation on X and π be an improvement path
for º; then π is a monotonic path for º.

Proof. By transfinite recursion in α, we prove the following statement: π(β′) º π(β)
whenever α ≥ β′ > β and π(β′) is defined. If α = 1, the definition of an improvement
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path suffices; when considering an induction step, we only have to check the statement
for β′ = α. If α is isolated, then π(α) º π(α−1) and π(α−1) º π(β) (by the induction
hypothesis) imply π(α) º π(β) by the transitivity of º. If α is a limit ordinal, then,
by the definition of an improvement path, π(α) = limk→∞ π(βk), where βk+1 > βk

for all k = 0, 1, . . . , and α = supk βk; without restricting generality, we may assume
β0 > β. Thus, we have π(β0) º π(β) and π(βk+1) º π(βk) for all k by the induction
hypothesis, hence π(α) º π(β0) by the ω-transitivity of º, hence π(α) º π(β).

Theorem 1. A binary relation Â on X has the NM property on every finite subset
Y ⊆ X if and only if Â is irreflexive and transitive on X. A binary relation Â on X
has the NM property on every compact subset Y ⊆ X if and only if Â is irreflexive
and ω-transitive on X.

Proof. The sufficiency in the first statement is straightforward. It was noticed first
by von Neumann and Morgenstern (1953, (65:I)); however, they did not mention the
necessity of the condition, which is also rather simple: If x Â x, there is no maximizer
over {x}; if z Â y Â x, then neither x nor y can be maximizers for Â over {x, y, z},
hence z Â x is obligatory. The necessity in the second statement needs just one
similar step more: If xk → xω and xk+1 Â xk for all k, then none of xk can be a
maximizer for Â over {xk}k ∪ {xω}, which is compact, hence xω Â x0 is obligatory.

Finally, letÂ be irreflexive and ω-transitive on X, Y ⊆ X be compact, and x0 ∈ Y .
We denote Π the set of improvement paths π for Â in Y with π(0) = x0; obviously,
Π = ∅ if and only if x0 is a maximizer for Â over Y , in which case there is nothing
to prove. Taking into account Lemma 2.3, we easily see that Π is a nonempty set
of monotonic paths for Â closed w.r.t. extension. As can easily be seen, each π ∈ Π
with Dom(π) = [0, α[ satisfies just one of the following conditions:

α is a limit ordinal; (2.1a)

α− 1 is defined and π(α− 1) is not a maximizer for Â over Y ; (2.1b)

α− 1 is defined and π(α− 1) is a maximizer for Â over Y . (2.1c)

Let us consider a continuation rule ϑ : Π → Π such that ϑ(π) = π if (2.1c) holds,
and Dom(ϑ(π)) = [0, α + 1[ otherwise: if (2.1a) holds, then ϑ(π)(α) is a limit point
of π, which always exists because of Theorem 4, Section 5, Chapter XIV of Natanson
(1974) and the assumed compactness of Y ; if (2.1b) holds, then ϑ(π)(α) Â π(α− 1).
Now Proposition 2.2 and the definition of ϑ immediately imply the existence of π
starting at x0 and ending at a maximizer π(α). Since π is a monotonic path for Â,
π(α) Â x.

For a given relation ., its ω-transitive closure º on Y ⊆ X is defined by: y º x if
and only if y .. x for every .. which is ω-transitive and finer than . on Y . Thus, º
is “the coarsest ω-transitive refinement of ..”
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Lemma 2.4. Let . be a binary relation on X, º be its ω-transitive closure on Y ⊆ X,
and y, x ∈ Y . Then y º x if and only if there exist an improvement path π for . in
Y and α ∈ K satisfying π(0) = x, α > 0, and π(α) = y.

Proof. Let there be an improvement path π such that x = π(0), y = π(α), and α > 0.
If .. is an ω-transitive relation finer than ., then π is an improvement path for .. too,
hence, by Lemma 2.3, a monotonic path for .., hence y .. x. Since .. was arbitrary,
y º x.

The opposite implication is proved by noticing that the relation “there is an
improvement path of a strictly positive length from x to y” is ω-transitive (a formal
proof consists in a reference to Theorem 7, Section 2, Chapter XIV of Natanson
(1974), about lexicographic sums of well ordered sets).

2.3 Acyclic Relations

An improvement cycle for . is an improvement path π such that Dom(π) = [0, α+1[,
α > 0, and π(α) = π(0). . is called Ω-acyclic if there is no improvement cycle for ..
An improvement path π : Dom(π) → X is called narrow if π(βk) → π(α) for every
limit ordinal α ∈ Dom(π) and every strictly increasing sequence {βk}k=0,1,... such that
α = supk βk; in other words, if each π(α) is the limit of the preceding path rather
than a limit point. . is called weakly Ω-acyclic if there is no narrow improvement
cycle for .; it is called ω-acyclic if it is acyclic and the conditions xk+1 . xk for all
k = 0, 1, . . . and x0 = limk→∞ xk are incompatible.

Remark. The notion of ω-acyclicity was first introduced (for complete relations) by
Smith (1974) under the name of “weak σ-transitivity”; however, “acyclicity” seems
a more appropriate term here. It is worth noting that xk . xω is impossible for any
ω-acyclic relation ., any improvement path xk → xω, and any k = 0, 1, . . .

A potential for . (on X) is an irreflexive and ω-transitive relation Â finer than .,
i.e., satisfying y . x ⇒ y Â x for all y, x ∈ X.

The equivalence of all conditions in Theorem 0 is replaced with a chain of impli-
cations:

Theorem 2. For a binary relation . on X, let us consider the following conditions:

2.1. . is Ω-acyclic on X;

2.2. . admits a potential on X;

2.3. . has the CIP property on X;

2.4. . has the CIP property on every compact Y ⊆ X;
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2.5. . has the weak CIP property on every compact Y ⊆ X;

2.6. . admits a maximizer over every nonempty compact Y ⊆ X;

2.7. . is weakly Ω-acyclic on X;

2.8. . is ω-acyclic on X.

Then this chain of implications holds:

[2.1] ⇐⇒ [2.2] ⇐⇒ [2.3] ⇒ [2.4] ⇒ [2.5] ⇐⇒ [2.6] ⇒ [2.7] ⇒ [2.8].

Proof. [2.1] ⇒ [2.2]: By Lemma 2.4, Ω-acyclicity of . implies that its ω-transitive
closure is irreflexive, hence is a potential for ..

[2.2] ⇒ [2.3]: Let Â be a potential, and π an improvement path, for .. By
definition, π is an improvement path for Â, hence, by Lemma 2.3, is a monotonic
path for Â; therefore, Proposition 2.1 states that Dom(π) ⊂ K.

[2.3] ⇒ [2.1] is, in a sense, straightforward: If there were an improvement cycle,
we could move along it forever. However, a rigorous proof needs technical details.

Let us suppose the contrary: there are α ∈ K and an improvement path π for .
such that α > 0 and π(0) = π(α). By transfinite recursion we prove, for each β ∈ K,
the existence of σ(β) ∈ K such that σ(β) < α and the superposition π ◦ σ is an
improvement path for .. For β < α, we define σ(β) = β; then π ◦ σ coincides with π.
If σ(β − 1) + 1 < α, we define σ(β) = σ(β − 1) + 1, obtaining π(σ(β)) . π(σ(β − 1)).
If σ(β − 1) + 1 = α, we define σ(β) = 0; the requirement from the definition of
an improvement path is satisfied for π ◦ σ at β because π(σ(β)) = π(0) = π(α)
and π(α) . π(α − 1) = π(σ(β − 1)). Finally, if β is a limit ordinal, we denote
γ = supβ′<β σ(β′), obtaining γ ≤ α; if γ < α, we define σ(β) = γ; if γ = α, σ(β) = 0.
When σ(β) is defined for all β ∈ K, π ◦ σ becomes an improvement path defined on
K, which contradicts CIP.

[2.3] ⇒ [2.4] is obvious.

[2.4] ⇒ [2.5]: Let Y ⊆ X be compact and x0 ∈ Y . We denote Â the ω-transitive
closure of . on Y ; it is irreflexive because of Lemma 2.4 and [2.3] ⇒ [2.1] applied to
Y . If x0 is a maximizer for Â over Y , then it is a maximizer for . as well and we
are home. Otherwise, Theorem 1 implies the existence of a maximizer y for Â over
Y such that y Â x0; by Lemma 2.4, x0 is connected to y with an improvement path
for ..

[2.5] ⇒ [2.6] is obvious.

[2.6] ⇒ [2.5]: Let . be a binary relation on X admitting a maximizer over every
nonempty compact subset Y ⊆ X, and let us fix Y . We denote º the ω-transitive
closure of . on Y , Â the asymmetric, and ∼ symmetric, components of º; both Â and
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∼ are obviously ω-transitive too. By Lemma 2.4, y º x implies that x is connected to
y with an improvement path for .; therefore, by Theorem 1, every x ∈ Y is connected
with an improvement path for . to a maximizer for Â over Y .

Let x0 be a maximizer for Â over Y ; if we show that x0 is connected with an
improvement path for . to a maximizer for . over Y , our proof will be completed. We
denote Z = {y ∈ Y | y ∼ x0}, Z∗ = cl Z; if Z∗ = ∅, then Z = ∅ and x0 is a maximizer
for . over Y . If Z∗ 6= ∅, there exists a maximizer x∗ for . over Z∗; let us show
x∗ ∈ Z. Otherwise, there is an infinite sequence xk → x∗ such that xk ∈ Z for all k,
hence xk ∼ xk+1; therefore, there exist improvement paths from x0 to x1 to x2 etc.
Denoting π the “superposition” of the paths, we obtain a path π such that π(0) = x0

and π(βk) = xk for k = 1, 2, . . . (formally, Theorem 7, Section 5, Chapter XIV of
Natanson (1974) should be invoked); denoting α = supk βk and π(α) = x∗, we see
that x∗ º x0, hence x∗ ∼ x0 [because x0 is a maximizer for Â], hence x∗ ∈ Z. Suppose
y . x∗ for y ∈ Y ; then we may define π(α + 1) = y, so y º x0, hence y ∼ x0, hence
y ∈ Z, contradicting the choice of x∗.

[2.6] ⇒ [2.7]: Let π be a narrow improvement path such that π(α∗) = π(0) for
some α∗ > 0. We denote Y = {π(α)}α∈[0,α∗[; obviously, there is no maximizer for
. over Y . Let us show that Y is compact. Let yk ∈ Y for k = 0, 1, . . . ; by the
definition of Y , yk = π(αk), α ∈ [0, α∗[. Denote βk = minh≥k αh (it exists because
[0, α∗[ is well ordered); obviously, βk+1 ≥ βk for all k. Without restricting generality,
either βk+1 = βk for all k, or βk+1 > βk for all k. In the first case, {π(βk)}k is
obviously convergent; in the second, denoting βω = supk βk, we have βω ≤ α∗ and
yk → π(βω) ∈ Y because π is narrow.

[2.7] ⇒ [2.8] is obvious.

Remark. Mukherji (1977, Corollary 3) proved the implication [2.6] ⇒ [2.8].

Example 2.1. The set X is a circle parameterized with a real number modulo 2π.
Denoting ⊕ addition modulo 2π, we define a binary relation as follows:

y . x ⇐⇒ y = x⊕ ψ,

where ψ is incommensurable with 2π.

Example 2.2. The set X is the same as in the previous example; the relation . is
almost the same, but exactly one pair, (ψ, 0), has been deleted from the graph of the
relation.

Example 2.3. The set X is almost the same as in the previous examples, but one
point, ψ, has been deleted (thus X is topologically an open interval). The relation .
on the remaining points is the same as in Example 2.2.

In each of the examples, the relation is weakly Ω-acyclic (because no infinite
improvement path is narrow), but not Ω-acyclic (because the initial point of every
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infinite improvement path is among its limit points). In Example 2.1, the set X is
compact, but there is no maximizer over X. In Example 2.2, there is the weak CIP
property on every compact subset Y ⊆ X: if there is an infinite improvement path
in Y , then 0 ∈ Y is a limit point; otherwise, every improvement path in Y reaches a
maximizer at a finite step. In Example 2.3, there is even the FIP property on every
compact subset Y ⊆ X.

Example 2.4. The set X is the same as in Example 2.1, but parameterized with
x ∈ [−π, π[ (“−π = π”). The relation . is defined by a mapping f : X → X,
y . x ⇐⇒ y = f(x), where

f(x) = (x + π)/2, if 0 ≤ x < π;

f(x) = x/2, if − π ≤ x < 0

(f is discontinuous at 0 and±π). Any simple improvement path with x0 ≥ 0 converges
to xω = π[= −π]; any simple improvement path with x0 < 0 converges to xω = 0.
Thus the relation is ω-acyclic, but not weakly Ω-acyclic because x0 = 0 implies
xω+ω = x0 (and the path is narrow).

Thus, none of the one-sided implications in Theorem 2 can be reversed.

Comparing the formulations of Theorems 0 and 2, we see that in the new situation
the acyclicity condition “splits” into several properties, each of which deserving some
attention. Logically speaking, a condition (formulated without mentioning maxi-
mizers) might exist, intermediate between Ω-acyclicity and weak Ω-acyclicity and
equivalent to the existence of maximizers on compact subsets. It seems instructive,
however, to try to imagine a general sufficient condition for the existence, valid for
both Example 2.3 and the standard order on an open interval.

3 Aggregation

3.1 Orderings

A preorder is a reflexive and transitive binary relation; an ordering is a complete
preorder (the term “weak order” is used as often, but it is grammatically more conve-
nient to use one word rather than two). With every preorder º, asymmetric relations
Â and ≺, as well as an equivalence relation ∼, are naturally associated.

A maximum of Y ⊆ X w.r.t. an ordering º is x ∈ Y such that x º y for all
y ∈ Y . A maximizing sequence on Y ⊆ X w.r.t. an ordering º is an infinite sequence
{xk}k=0,1,... such that xk ∈ Y and xk+1 Â xk for all k, and for every y ∈ Y there is k
for which xk Â y. If Z ⊆ Y ⊆ X, a least upper bound, or a supremum, of Z in Y w.r.t.
an ordering º is x ∈ Y for which x º z for all z ∈ Z, and y º x whenever y ∈ Y
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and y º z for all z ∈ Z. Dually are defined a minimum, a minimizing sequence, and
a greatest lower bound or an infimum.

Proposition 3.1. If º is an ordering on X, then Â is ω-transitive if and only if
every nonempty compact Y ⊆ X contains a maximum w.r.t. º.

Proof. If Â is ω-transitive, then, by Theorem 1, there exists a maximizer for Â over
Y , which is obviously a maximum of Y w.r.t. º. If Â is not ω-transitive, i.e., xk → xω,
xk+1 Â xk for all k, but x0 º xω, then the sequence y0 = xω, yk = xk for k = 1, 2, . . .
violates the ω-acyclicity condition.

Remark. The statement is due to Smith (1974, Theorem 4.1).

Proposition 3.2. If º is an ordering with an ω-transitive component Â, then every
nonempty Y ⊆ X contains either a maximum or a maximizing sequence w.r.t. º.

Proof. Let Π be the set of monotonic paths for Â in Y . We define a continuation
rule ϑ : Π → Π as follows: If there exist y∗ ∈ Y such that y∗ Â ν(β) for all
β ∈ Dom(ν) = [0, µ[, then Dom(ϑ(ν)) = [0, µ + 1[ and ϑ(ν)(µ) is one such y∗;
otherwise, ϑ(ν) = ν. Since Π is nonempty and closed w.r.t. extension, Proposition 2.2
implies the existence of a “fixed point,” ϑ(ν∗) = ν∗; let Dom(ν∗) = [0, µ∗[. If µ∗ − 1
is defined, then ν∗(µ∗ − 1) is a maximum of Y ; otherwise, there exists an increasing
sequence {βk}k in K such that µ∗ = supk βk, in which case {ν(βk)}k is a maximizing
sequence on Y .

If º is represented by a real function ϕ : X → IR (y º x ⇐⇒ ϕ(y) ≥ ϕ(x)),
the statement of Proposition 3.2 holds without any restriction on ϕ. Generally, the
ω-transitivity condition cannot be dropped.

Example 3.1. Let X = [0, 1]. By the Axiom of Choice, X can be well ordered; let
Â be such an order. We denote Y the set of x ∈ X such that {y ∈ X| x Â y} is
countable. Y cannot be countable itself: otherwise, the minimal x ∈ X such that
x Â y for all y ∈ Y would belong to Y . On the other hand, if Y contained a maximum
or a maximizing sequence, it would be countable.

An ordering º on X is continuous if every lower contour {x ∈ X| y Â x} (y ∈ X)
and every upper contour {y ∈ X| y Â x} (x ∈ X) are open. We call an ordering º
on X pseudocontinuous if both Â and ≺ are ω-transitive. We call an ordering º on
X quasicontinuous if it is pseudocontinuous and there are no two infinite sequences
{xk}k and {yh}h such that xk → xω, yh → yω, and

∀k ∀h [
xω Â yh Â yh+1 Â xk+1 Â xk Â yω

]
(3.1)

Theorem 3. An ordering º on X is quasicontinuous if and only if for every nonempty
compact Y ⊆ X and every Z ⊆ Y there exists a supremum of Z in Y w.r.t. º.
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Proof. Let º be quasicontinuous, Z ⊆ Y ⊆ X, and Y be nonempty and compact;
we denote Z+ = {y ∈ Y | ∀z ∈ Z[y Â z]}. If Z = ∅, then Z+ = Y is compact,
hence contains a maximizer for ≺, which is obviously a supremum of Z. Let Z 6= ∅;
by Proposition 3.2, it contains either a maximum or a maximizing sequence w.r.t.
Â. In the first case, the maximum is obviously a supremum. In the second case,
since Y is compact, the sequence may be assumed convergent, xk → xω ∈ Y ; by the
ω-transitivity, xω Â xk for all k, hence xω ∈ Z+ 6= ∅. By the dual to Proposition 3.2,
Z+ contains either a minimum, which is again the supremum needed, or a minimizing
sequence, {yh}h, which may be assumed convergent, yh → yω ∈ Y with yω ≺ yh for
all h. Now yω ≺ xm for some m would imply that the sequences {xk}k=m,m+1,... and
{yh}h satisfy the prohibited condition (3.1). Therefore, yω ∈ Z+; but then we must
have yω Â yh for some h, which is impossible.

Now let º not be quasicontinuous. If it is not even pseudocontinuous, e.g., if
xk → xω and xk+1 Â xk for all k, but x0 º xω, we define Y = {xk}k=0,1,...∪{xω}. Y is
obviously compact but has no supremum in itself. If º is pseudocontinuous, but (3.1)
holds, we define Y = {xk}k=0,1,... ∪ {xω} ∪ {yh}h=0,1,... ∪ {yω} and Z = {xk}k ⊂ Y . It
is easy to see that upper bounds for Z in Y form the set {xω}∪{yh}h, which contains
no minimum.

In the light of the well known characterization of chains compact in their intrinsic
topology (Birkhoff, 1967), we immediately obtain the following

Corollary. A complete order on a Hausdorff topological space X with a countable
base of open sets is quasicontinuous if and only if every compact subspace Y ⊆ X is
compact in its intrinsic (as a chain) topology.

Besides continuous orderings, obviously quasicontinuous are those with a finite
number of equivalence classes. A rather general class of quasicontinuous orderings is
described in the following subsection.

3.2 Lexicography

In this subsection, a lexicographic combination of preorders is defined; in a sense, the
concept is less general than that of Fishburn (1974): we always obtain a preorder. On
the other hand, our concept does not presuppose constituent relations to be defined
on the whole X.

An arboreous poset is a partially ordered set A such that (1) there exists αmin ∈ A
such that α ≥ αmin for all α ∈ A, (2) every set ←−α = {β ∈ A| β ≤ α} (for α ∈ A) is
well ordered, and (3) every chain ∆ ⊆ A has a least upper bound in A.

Remark. In a sense, a finite arboreous poset is the same thing as a finite tree.

15



We denote B the set of non-maximal elements of A, and N(β) (for every β ∈ B),
the set of α ∈ A immediately following β (i.e., α > β, and α > γ > β is impossible).

Lemma 3.3. For every α, β ∈ A, there exists their greatest lower bound. If α > β,
then there exists α′ ∈ N(β) such that α ≥ α′.

Proof. We denote ∆ = {γ ∈ A| γ ≤ α & γ ≤ β}; ∆ ⊆ ←−α hence is a chain. By the
condition (3) of the above definition, there exists γ∗ = sup ∆. The definition of ∆
implies γ∗ ∈ ∆, hence γ∗ is the greatest lower bound needed. If α > β, we denote
∆′ = {γ ∈ ←−α | γ > β}. By the condition (2) above, ∆′ has the least element α′, which
obviously belongs to N(β).

For every α, β ∈ A, their greatest lower bound will be denoted α ∧ β ∈ A. For
every α ∈ A, we denote µ(α) the type of ←−α . α ∈ A is called an isolated vertex if
µ(α) is an isolated ordinal; α ∈ A is called a limit vertex if µ(α) is a limit ordinal.
For every isolated α ∈ A, α − 1 ∈ A is defined in an obvious way. A is countably
arboreous if µ(α) ∈ K for every α ∈ A; A itself need not be countable in this case.

An arboreous partitioning of a set X with an arboreous poset of indices A is a
family of nonempty subsets C(α) ⊆ X (α ∈ A) such that (1) C(αmin) = X, (2)
{C(α)}α∈N(β) is a partitioning of C(β) for each β ∈ B, and (3) for every limit vertex
α, C(α) =

⋂
α′<α C(α′).

Clearly, C(α) ⊆ C(β) whenever α ≥ β, and C(α)∩C(β) = ∅ whenever α and β are
incomparable. If #N(α) = 1 for some α ∈ B, this α can be deleted from A without
changing the partitioning; for technical simplicity, we assume that #N(α) > 1 for all
α ∈ B.

Lemma 3.4. For every x ∈ X, there exists α ∈ A \ B such that x ∈ C(α).

Proof. Let x ∈ X; we denote ∆ = {α ∈ A| x ∈ C(α)}. Since ∆ is a chain, there
exists its least upper bound α∗ in A. Let us show α∗ ∈ ∆: otherwise, α∗ must be
a limit vertex, but then C(α∗) =

⋂
α∈∆ C(α) 3 x. Finally, if α∗ ∈ B, then x must

belong to C(β) for some β ∈ N(α∗) — a contradiction.

Thus, the family {C(α)}α∈A\B is a partitioning of X; for every x ∈ X, τ(x) ∈ A\B
is uniquely defined by x ∈ C(τ(x)).

Finally, we define an arboreous lexicographic construction. Let there be a count-
ably arboreous partitioning of a set X with a set of indices A, and let a preorder ºβ

on C(β) be given for each β ∈ B, equivalence classes of which are exactly the sets
C(α) for α ∈ N(β). We set

y ∼ x ⇐⇒ ∀α ∈ A [y ∈ C(α) ⇐⇒ x ∈ C(α)],

y Â x ⇐⇒ ∃α ∈ A [y Âα x],
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and y º x ⇐⇒ [y Â x or y ∼ x].

An alternative definition of º is sometimes more convenient.

Lemma 3.5. For every x, y ∈ X, y ∼ x if and only if τ(y) = τ(x), whereas y Â x if
and only if y Âτ(y)∧τ(x) x.

Proof. If y Âα x, then y, x ∈ C(α) and there exist β′′, β′ ∈ N(α) such that β′′ 6= β′,
y ∈ C(β′′) and x ∈ C(β′); it follows immediately that α = τ(y)∧ τ(x). If τ(y) = τ(x)
and x ∈ C(α), then α ≤ τ(x) = τ(y) hence y ∈ C(α) too.

Proposition 3.6. If º is defined by an arboreous lexicographic construction, then it
is a preorder.

Proof. Only transitivity deserves attention. Let z Â y Â x; we denote α1 = τ(z)∧τ(y)

and α2 = τ(y)∧τ(x). α1 and α2 both belong to the same chain
←−−
τ(y), hence α1∧α2 = α1

or α1 ∧ α2 = α2. In the first case, we have z Âα1 y ºα1 x; in the second case,
z ºα1 y Âα1 x; in either case, z Âα1 x, hence z Â x. If an equivalence is present, the
corresponding αi is maximal, making one of the above cases obligatory.

Proposition 3.7. If º is defined by an arboreous lexicographic construction and every
ºα (α ∈ B) is ω-transitive, then º is ω-transitive too.

Proof. First of all, it is easy to see that both Âα and ∼α (α ∈ B) are ω-transitive;
therefore, each C(α) (α ∈ A) is closed. Let xk → xω and xk+1 º xk for all k = 0, 1, . . .
Without restricting generality, either xk+1 ∼ xk for all k = 0, 1, . . . or xk+1 Â xk

for all k = 0, 1, . . . In the first case, xω ∼ x0 is obvious; in the second one, we
denote αk = τ(xk+1) ∧ τ(xk), (k = 0, 1, . . . ) and αω = supk αk. Without restricting
generality, either αk+1 = αk for all k = 0, 1, . . . (hence αω = α0 ∈ B) or αk+1 > αk

for all k = 0, 1, . . . (hence αω is a limit vertex). In the first case, we have xω Âα0 x0

because Âα0 is ω-transitive; in the second case, we have xω Âα0 x0 because all xk

for k = 1, 2, . . . belong to the same equivalence class of ºα0 , which is closed. Thus,
xω Â x0.

Proposition 3.8. If º is defined by an arboreous lexicographic construction and every
ºα (α ∈ B) is an ordering, then º is an ordering too.

The proof is straightforward.

Proposition 3.9. If º is defined by an arboreous lexicographic construction, every
ºα is a pseudocontinuous ordering and every C(α), α ∈ B, is closed, then º is a
pseudocontinuous ordering too.

Proof. Obvious modifications in the proof of Proposition 3.7 are sufficient.
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Theorem 4. If º is defined by an arboreous lexicographic construction, every ºα is a
quasicontinuous ordering and each C(α), α ∈ B, is closed, then º is a quasicontinuous
ordering too.

Proof. By Proposition 3.9, we only have to prove the impossibility of Equality (3.1).
Supposing the contrary, we, exactly as in the proof of Proposition 3.7, denote αk =
τ(xk+1)∧τ(xk) (k = 0, 1, . . . ) and αω = supk αk. Without restricting generality, either
αk+1 = αk for all k = 0, 1, . . . (hence αω = α0 ∈ B) or αk+1 > αk for all k = 0, 1, . . .

In the first case, we have xk ∈ C(α0) for all k, hence xω ∈ C(α0) because C(α0) is
closed, hence yh ∈ C(α0) for all h, hence yω ∈ C(α0). Without restricting generality,
either yh+1 ≺α0 yh for all h, or yh+1 ∼α0 yh for all h. The first relation implies (3.1)
for Âα0 , contradicting our assumption; the second would imply yω ∼α0 yh for all h,
contradicting yh Â xk Â yω.

In the second case, we have C(αω) =
⋂

k C(αk) 3 xω. If yh /∈ C(αω) for some h,
then τ(yh) ∧ τ(xω) < αω, hence τ(yh) ∧ τ(xω) ≤ αk for some k, hence yh ∈ C(αk),
hence yh ≺ xk+1; therefore, yh ∈ C(αω) for all h. Now xω Â yh implies αω ∈ B,
hence C(αω) is closed, hence yω ∈ C(αω), hence yω Â xk for all k, contradicting the
supposed (3.1). (Interestingly, there was no need for the quasicontinuity of any Âα

in this case).

Corollary. If º is defined by an arboreous lexicographic construction and every ºα

(α ∈ B) is a continuous ordering, then º is a quasicontinuous ordering.

Proposition 3.10. If every C(α), α ∈ A, is closed, then A is countably arboreous.

Proof. Otherwise, there must be α ∈ A for which the type of ←−α is K (hence α is
a limit vertex). By the condition (3) of the definition of an arboreous partitioning,
C(α) =

⋂
α′<α C(α′). Invoking the Lindelöf theorem (Kuratowski, 1966, p. 54), we

obtain the existence of a countable set ∆ ⊂ ←−α such that C(α) =
⋂

α′∈∆ C(α′).
Denoting α∗ = sup ∆ (existing in←−α = K by the Statement 2 of Theorem 2, Section 5,
Chapter XIV of Natanson, 1974), we obtain C(α∗) = C(α), hence C(α∗+1) = C(α∗),
contradicting our assumption #N(α∗) > 1.

Example 3.2. A (very) partial case of the above construction is lexicography defined
(in a commonly accepted way) by a finite list of continuous functions ϕi : X → IR
(i = 1, . . . n); A then consists of corteges 〈v1, . . . vk〉 of feasible values of the functions
ϕ1, . . . ϕk (k ≤ n), including the empty cortege, αmin, and ordered by the inclusion.
The partitioning is defined by C(〈v1, . . . vk〉) = {x ∈ X| ∀h ≤ k [ϕh(x) = vh]} . The
Corollary to Theorem 4 implies that the lexicographic ordering is quasicontinuous.
We also see that an arboreous lexicographic construction need not preserve continuity.

Example 3.3. Let ϕ1 and ϕ2 be continuous functions X → IR; we set y º x ⇐⇒[
ϕ1(y) > ϕ1(x) or

(
[ϕ1(y) = ϕ1(x) and is rational] & ϕ2(y) ≥ ϕ2(x)

)
or

(
[ϕ1(y) =
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Figure 1: Function representing a quasicontinuous, but not arboreously lexicographic,
ordering

ϕ1(x) and is irrational] & ϕ2(y) ≤ ϕ2(x)
)]

. The arboreous poset A is the same as
in the previous example (for n = 2), but the orderings ºv1 with irrational v1 differ.
Theorem 4 implies that this exotic ordering is quasicontinuous as well.

Example 3.4. Let X = [0, 1] and the ordering º be represented by the following
numeric function (y º x ⇐⇒ ϕ(y) ≥ ϕ(x)):

ϕ(1) = 1;

ϕ(x) = 2x− 1/2k−1 for 3/2k+1 ≤ x < 1/2k−1 (k = 1, 2, . . . );

ϕ(x) = −2x + 1/2k−2 for 1/2k ≤ x ≤ 3/2k+1 (k = 1, 2, . . . );

ϕ(0) = 0.

It is easy to check that ϕ(x) is continuous everywhere except for points x = 1/2k,
where it is upper semicontinuous (see Fig. 1). (3.1) is impossible for trivial reason:
ϕ(yh+1) < ϕ(yh) for all h and yh → yω imply ϕ(yω) = inf ϕ(yh).

If the ordering could be generated by an arboreous lexicographic construction with
continuous orderings, we would have a nontrivial continuous ordering on X, ºαmin ,
such that

y Âαmin x ⇒ y Â x (3.2)

for all y, x ∈ X. Suppose for the moment that such an ordering exists. Let us
consider the sequence xk = 1/2 − 1/2k+3 (k = 0, 1, . . . ); we have ϕ(xk+1) > ϕ(xk),
hence xk+1 Â xk for all k; obviously, xk → xω = 1/2. Now we have xk ≺ x ¹ xω for
all k and all x ∈ [1/2, 1]; the continuity of ºαmin and (3.2) imply that y ∼αmin x for
all y, x ∈ [1/2, 1]. Considering the sequence xk = 1/4− 1/2k+4 (k = 0, 1, . . . ), which
is also increasing and converges to 1/4, we, quite similarly, obtain xk ≺ x ¹ xω for
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all k and all x ∈ [1/4, 1/2], hence y ∼αmin x for all y, x ∈ [1/4, 1/2]. Continuing the
process, we obtain y ∼αmin x for all y, x ∈]0, 1], hence for all y, x ∈ [0, 1]. But this
contradicts the condition #N(αmin) > 1.

Rather informally, the ordering can be interpreted as generated by a lexicographic
construction (not arboreous!) with continuous orderings on components. Let us
define C(−k) = {1/2k+1} ∪ [1/2k, 1] (k = 0, 1, . . . ), C(−∞) = [0, 1], ϕ0(x) = 1 for
x ∈ C(0) [= {1/2, 1}], ϕk(x) = 1/2k−1 for x ∈ C(−k + 1), and ϕk(x) = ϕ(x) for
x ∈ C(−k)\C(−k +1), (k = 1, 2 . . . ). For each x ∈ X, k(x) = min{k| x ∈ C(−k)} is
uniquely defined (assuming k(0) = ∞); it is easy to check that each ϕk is continuous
on C(−k) and y º x ⇐⇒ (

k(y) > k(x) or [k(y) = k(x) & ϕk(x)(y) ≥ ϕk(x)(x)]
)
. It

remains an open problem whether quasicontinuous orderings with closed equivalence
classes could be characterized as generated by lexicographic constructions (suitably
interpreted) with continuous orderings on components.

4 Monotonic Endomorphisms

As in Kukushkin (2000), we associate with every mapping F : X → 2X \ {∅} (a
correspondence X → X) a binary relation .F : y .F x ⇐⇒ x /∈ F (x) 3 y; for the
particular case of a mapping f : X → X, we have y .f x ⇐⇒ y = f(x) 6= x.
Maximizers for .F (.f ) are exactly the fixed points of F (or f), while improvement
paths for .F (.f ) combine iterating F (or f) and picking limit points. We call a
mapping F (or f) acyclic, ω-acyclic, or Ω-acyclic, if so is .F (.f ).

Let º be a preorder on a set X; we define a preorder º∗ on 2X \ {∅}:

Y º∗ Z ⇐⇒ [∀y ∈ Y \ Z ∀x ∈ Y ∩ Z ∀z ∈ Z \ Y (y Â x Â z)].

It is easy to see that Y ∼∗ Z iff Y = Z (i.e., º∗ is a partial order) and that {y} Â∗ {z}
iff y Â z.

Remark. º∗ is a natural adaptation of Veinott’s order on sublattices (Topkis, 1978)
to preorders.

A mapping F : X → 2X \ {∅} is increasing w.r.t. º if y º x ⇒ F (y) º∗ F (x),
and decreasing (w.r.t. º) if y º x ⇒ F (x) º∗ F (y). For the important particular
case of a single-valued mapping we easily obtain that f : X → X is increasing w.r.t.
º iff y º x ⇒ [f(y) Â f(x) or f(y) = f(x)]; in particular, y ∼ x ⇒ f(y) = f(x).
A set X with a preorder º has the fixed point property if every increasing mapping
f : X → X has a fixed point.

Theorem 5. Let º be a preorder on a set X; then the following conditions are
equivalent:
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5.1. º is an ordering;

5.2. every increasing mapping F : X → 2X \ {∅} is acyclic;

5.3. every increasing mapping f : X → X is acyclic;

5.4. every finite Y ⊆ X has the fixed point property.

Proof. [5.1] ⇒ [5.2]: Let {xk}k=0,1,... be an improvement path for .F ; without restrict-
ing generality, x1 Â x0. Let us show, by induction, that xk+1 Â xk whenever xk+1 is
defined. Indeed, we have xk Â xk−1, xk ∈ F (xk−1) \ F (xk), and xk+1 ∈ F (xk); since
F is increasing, xk+1 Â xk. Now the impossibility of xm = x0 with m > 0 is obvious.

[5.2] ⇒ [5.3] is obvious.

[5.3] ⇒ [5.1]. Suppose the contrary: there exist incomparable a, b ∈ X. If there
is c ∈ X such that c Â a and c Â b (while a and b are incomparable), we define
f : X → X as follows: f(x) = x if a º x and b º x; f(x) = b if a º x, but not
b º x; f(x) = a if b º x, but not a º x; f(x) = c otherwise. It is easily checked
that f is increasing, f(a) = b and f(b) = a. If there are a, b, c ∈ X such that a Â c,
b Â c, and a and b are incomparable, we define f : X → X in a dual way. Finally, if
whenever a and b are incomparable, there is no c comparable with both a and b, we
define f(x) = b if x is comparable with a, and f(x) = a otherwise.

[5.1] ⇒ [5.4]: An ordering on X is an ordering on every Y ⊆ X and an acyclic
mapping of a finite set into itself obviously has a fixed point.

[5.4] ⇒ [5.1]: If a, b ∈ X are incomparable, we define f : {a, b} → {a, b} by
f(a) = b and f(b) = a.

Proposition 4.1. Let º be a preorder on a space X; then the following conditions
are equivalent:

4.1.1. º is a pseudocontinuous ordering;

4.1.2. every increasing mapping F : X → 2X \ {∅} is ω-acyclic;

4.1.3. every increasing mapping f : X → X is ω-acyclic;

Proof. [4.1.1] ⇒ [4.1.2]: Let {xk}k=0,1,... be an improvement path for .F and xk → xω;
without restricting generality, x1 Â x0. As was shown in the previous theorem,
xk+1 Â xk for all k, hence, by pseudocontinuity, xω Â x0, hence xω = x0 is impossible.

[4.1.2] ⇒ [4.1.3] is obvious.

[4.1.3] ⇒ [4.1.1]. By the previous theorem, º is an ordering; we only have to prove
the ω-transitivity. Let a convergent sequence xk → xω violate the condition. Without
restricting generality, we may assume that xk+1 Â xk for all k, but xω ≺ x0. Denoting

21



X+ = {x ∈ X| ∀k [x º xk]}, we define, for every x ∈ X \X+, κ(x) = min{k| x ≺ xk};
then y º x implies κ(y) ≥ κ(x). Now we define f(x) = x for x ∈ X+ and f(x) = xκ(x)

otherwise; obviously, f : X → X is increasing, f(xk) = xk+1, and f(xω) = x0.
Therefore, xω = limk→∞ fk(xω).

Theorem 6. Let º be a preorder on a set X; then the following conditions are
equivalent:

6.1. º is a quasicontinuous ordering;

6.2. every increasing mapping F : X → 2X \ {∅} is Ω-acyclic;

6.3. every increasing mapping F : X → 2X \ {∅} is weakly Ω-acyclic;

6.4. every increasing mapping f : X → X is Ω-acyclic;

6.5. every increasing mapping f : X → X is weakly Ω-acyclic;

6.6. every compact Y ⊆ X has the fixed point property.

Proof. [6.1] ⇒ [6.2] is proven in Kukushkin (2000; Theorem 4.2).

[6.2] ⇒ [6.3], [6.2] ⇒ [6.4], [6.3] ⇒ [6.5], and [6.4] ⇒ [6.5] are obvious.

[6.5] ⇒ [6.1]: By Proposition 4.1, º is a pseudocontinuous ordering. Let two
sequences xk → xω and yh → yω satisfy (3.1); without restricting generality, we
may assume that x0 = yω and y0 = xω. We define: X+ = {x ∈ X| ∀k [x º xk]},
X− = {x ∈ X| ∀h [x ¹ yh]}, Y − = X \ X+, Y + = X \ X−, and Y 0 = X+ ∩ X−;
it is easy to see that 〈Y −, Y 0, Y +〉 is a partitioning of X consistent with º. For
x ∈ Y −, we define κ(x) = min{k| x ≺ xk}; for x ∈ Y +, η(x) = min{h| x Â yh}.
Finally, we define f(x) = xκ(x) if x ∈ Y −, f(x) = x if x ∈ Y 0, and f(x) = yη(x) if
x ∈ Y +. It is easy to check that f : X → X is increasing, xk ∈ Y − and f(xk) = xk+1

for all k, and yh ∈ Y + and f(yh) = yh+1 for all h. Now a narrow cycle for .f is
evident: π(0) = yω = x0, π(k) = xk (k = 1, 2, . . . ), π(ω + h) = yh (h = 0, 1, . . . ), and
π(ω · 2) = yω = π(0).

[6.1] ⇒ [6.6]: A quasicontinuous ordering on X is a quasicontinuous ordering on
every Y ⊆ X, and an Ω-acyclic mapping of a compact space into itself has a fixed
point by Theorem 2.

[6.6]⇒ [6.1]: ºmust be an ordering by [5.4]⇒ [5.1]. If º is not pseudocontinuous,
we note that Y = {xk}k ∪ {xω} from the proof of [4.1.3] ⇒ [4.1.1] is compact and
f from the same proof maps Y into Y without fixed points. Finally, if º is not
quasicontinuous, Y = {xk}k ∪ {yh}h from the proof of [6.5] ⇒ [6.1] is compact and f
from the same proof maps Y into Y without fixed points.

Remark. Theorem 6 demonstrates that ω-acyclicity is of much less importance in
this context than for general relations.
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Remark. When [6.6] ⇒ [6.1] and the necessity in Theorem 3 are put together, we
clearly see an analogy with the main result of Davis (1955).

In the standard usage, the term “monotonic” applies to increasing and decreasing
mappings alike. Here we generally follow the tradition, but it must be kept in view
that the two classes often behave differently.

Proposition 4.2. Let X be a set with a fixed preorder º. Then the following state-
ments are equivalent:

4.2.1. the preorder is degenerate, i.e., y ∼ x for all y, x ∈ X;

4.2.2. every decreasing mapping f : X → X is acyclic;

4.2.3. every decreasing mapping f : X → X has a fixed point.

Proof. Suppose [4.2.1] does not hold. If there exist a, b ∈ X such that b Â a, we
define f(x) = a for x º b and f(x) = b otherwise; f is obviously decreasing, f(a) = b,
f(b) = a, and there is no fixed point. If no such pair exists, there must be a, b ∈ X
such that a and b are incomparable. Now we define f(x) = b if x ∼ a; otherwise,
f(x) = a. Again, f is decreasing, f(a) = b, f(b) = a, and there is no fixed point.

5 Maximum Aggregation in Systems of Reactions

5.1 Basic Definitions

A system of reactions S is defined by a finite set of indices N , and sets Xi and
mappings Ri : X−i → 2Xi \ {∅} for all i ∈ N . x0 ∈ X =

∏
i∈N Xi is called a fixed

point of S if x0
i ∈ Ri(x

0
−i) for all i ∈ N . For technical convenience, we allow singleton

N , in which case Ri( ) (for N = {i}) is just a nonempty subset of Xi = X.

With every system S, one can associate binary relations on X: y .Si x ⇐⇒
[y−i = x−i & xi /∈ Ri(x−i) 3 yi], y .S x ⇐⇒ ∃i ∈ N [y .S

i x]. Clearly, x ∈ X is
a maximizer for .S if and only if x is a fixed point of S; improvement paths for .S

are generated by iterating Ri’s and picking limit points. We call S (Ω-)acyclic if so
is .S . As a rule, we omit the superscript S at .. By Theorem 2, an Ω-acyclic system
of reactions with compact sets Xi has a fixed point.

With every reaction Ri (i ∈ N), a mapping R̃i : X → 2X \ {∅} can be associated,
defined by R̃i(x) = {x−i} × Ri(x−i). It is easy to see that .Si coincides with the

relation .R̃i as defined in the beginning of Section 4. In this sense, the (Ω-)acyclicity
of a system of reactions is equivalent to the “joint” (Ω-)acyclicity of several endomor-
phisms.
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Let S be a system of reactions, I ⊆ N and xI ∈ XI . A reduced system of
reactions S(xI) is characterized by the set of indices N \ I and, for each i ∈ N \ I,
the same Xi and R′

i(xN\I\{i}) = Ri(xI , xN\I\{i}). If I = N \ {i} (i ∈ N), then the
reduced system has a single index, and our convention about the meaning of Ri( )
in such systems proves adequate. A class S of systems of reactions is hereditary if
S ∈ S ⇒ ∀I ⊆ N ∀xI ∈ XI [S(xI) ∈ S].

A quasipotential of a system of reactions is a preorder º on X such that

1. y . x ⇒ y º x;

2. its asymmetric component Â is ω-transitive;

3. for each x ∈ X, there is V (x) ⊆ N such that y .i x implies

(a) i ∈ V (x) ⇒ y Â x and

(b) x º y ⇒ V (y) = V (x).

Let S be a hereditary class of systems of reactions. A collection of quasipotentials
(one for each S ∈ S) is called consistent if, for each S ∈ S,

[x, y ∈ X & C = V (x) & xC = yC & y−C º−C x−C ] ⇒(
y º x & [y Â x or V (y) = V (x)]

)
, (5.1)

where º−C denotes the quasipotential for the reduced system defined by xC = yC .

Theorem 5.4 of Kukushkin (2000) shows that the existence of a consistent collec-
tion of quasipotentials for a hereditary class S implies the existence of a potential for
(hence the Ω-acyclicity of) every S ∈ S.

In the proofs to follow, it is convenient to consider IR∗ = IR × {0, 1} ordered
in a lexicographic way: 〈s′, ϑ′〉 > 〈s, ϑ〉 ⇐⇒ [s′ > s or (s′ = s & ϑ′ > ϑ)]. We
assume that IR is embedded into IR∗ by s|→〈s, 0〉. IR∗ is an interesting object in
itself (Wakker, 1988), but we only use it as an auxiliary construction. The following
properties are essential: if s ∈ IR, s′ ∈ IR∗, and s′ > 〈s, 1〉, then there exists s′′ ∈ IR
such that s′ > s′′ > s; if sk ∈ IR for k = 0, 1, . . . , sk → sω [∈ IR], s∗ ∈ IR∗, and
sω > s∗, then sk > s∗ for all k large enough (if sω < s∗, then sk > s∗ for all k is
possible).

5.2 Increasing Reactions

Theorem 7. Let S be a system of reactions such that each Xi (i ∈ N) is a compact
subset of IR and every Ri(x−i) (i ∈ N , x−i ∈ X−i) is closed in Xi; let, for each i ∈ N ,
a subset I(i) ⊆ N be given such that j ∈ I(i) ⇐⇒ i ∈ I(j); let every reaction Ri be
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increasing w.r.t. the ordering on X−i defined by the function ψi(x−i) = maxj∈I(i) xj

and the partial order on 2Xi \ {∅} defined in Section 4. Then S is Ω-acyclic.

Remark. In principle, we should allow for the case I(i) = ∅ for some i ∈ N . It seems
natural to treat it exactly as the case of N = {i} in the general setting, assuming
that Ri() is just a subset of Xi; then xi can change only once along a path and cannot
affect any other xj. Therefore, we may argue as if I(i) 6= ∅ for every i ∈ N .

Proof. For each i ∈ N , we define Ψi = ψi(X−i); clearly, there exists an increasing
mapping ρi : Ψi → 2Xi \ {∅} such that Ri(x−i) = ρi(ψi(x−i)) for every x−i ∈ X−i.
For xi ∈ Xi, we denote Si(xi) = {si ∈ Ψi| xi ∈ ρi(si) or ∀ξi ∈ ρi(si) [ξi > xi]},
σi(xi) = inf Si(xi) ∈ Ψi, ϑi(xi) = 0 if σi(xi) ∈ Si(xi), ϑi(xi) = 1 otherwise, τi(xi) =
〈σi(xi), ϑi(xi)〉 ∈ Ψ∗

i (actually, τi(xi) is the infimum of Si(xi) in IR∗) and τ+
i (xi) =

max{τi(xi), xi}. For every x ∈ X, we define:

K(x) = {i ∈ N | ψi(x−i) ≥ τi(xi)}; τ+(x) = max
i/∈K(x)

τ+
i (xi);

M(x) = {i ∈ N \K(x)| xi = τ+(x)}; M∗(x) = {i ∈ N \K(x)| τi(xi) = τ+(x)};
K+(x) = {i ∈ K(x)| xi ≥ τ+(x)}; K0(x) = K+(x)∪{i ∈ N | I(i)∩K+(x) 6= ∅}.
We also denote:

XK = {x ∈ X| K+(x) 6= ∅}; XM = {x ∈ X| K+(x) = ∅ 6= M(x)};

X∗ = {x ∈ X| K+(x) = ∅ = M(x)}.

For y, x ∈ X, we define

y º′ x ⇐⇒ K+(x) ⊆ K+(y) & τ+(x) ≥ τ+(y) & ∀i ∈ K0(x)[yi ≥ xi], (5.2)

denoting Â′ and ∼′ the asymmetric and symmetric components of º′. Now we set
y º x if and only if one of the following conditions holds:

y Â′ x; (5.3a)

x ∈ XK & y º′ x; (5.3b)

x ∈ XM & y ∼′ x & M(x) ⊇ M(y); (5.3c)

x ∈ X∗ & y ∈ X∗ & y ∼′ x & M∗(x) ⊇ M∗(y). (5.3d)

Although a complete explanation of the meaning of the constructions can only
be found in the proofs to follow, preliminary hints may help a bit. K(x) (at a given
profile x) consists of the indices i such that xi cannot go downwards at the next
step; τi(xi) for i /∈ K(x) shows how much “support” would be enough to shift i into
K. Therefore, when i ∈ K+(x), xi is large enough to ensure that I(i) ⊆ K(x), so
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such xi cannot ever go downwards: once K+(x) 6= ∅, we have a subset of N where
only upward changes are possible henceforth, and this is enough for a quasipotential.
τ+(x) could be characterized as “the greatest need for support felt anywhere.” At
a first glance, it may seem strange that we should put together unsupported levels
xi and their need for support τi(xi), but this peculiarity is justified by the success of
the whole proof; in a similar constructions for additive aggregation as developed in
the proof of Theorem 6.1 of Kukushkin (2000), xi and τi(xi) are summed up. Since
yi reached at any step is always supported [yi ∈ ρi(y−i) ⇒ i ∈ K(y)], τ+ cannot
increase; whenever i where τ+(x) is attained is touched, “the total need for support”
strictly decreases.

Lemma 5.2.1. º is a preorder.

Proof. Let us see that º is defined by an arboreous lexicographic construction: X =
C(αmin) is partitioned into equivalence classes of º′; then each class with x /∈ XK is
partitioned in accordance with the sets M(x) by (5.3c), so X∗ becomes one of the
components; finally, (5.3d) defines a preorder on X∗. Now Proposition 3.6 applies.

Lemma 5.2.2. For every x ∈ X, K0(x) ⊆ K(x). For every i ∈ N , xi ∈ Xi, and
si ∈ Ψi, si ≥ τi(xi) ⇐⇒ si ∈ Si(xi).

Proof. If j /∈ K(x) and i ∈ K+(x) ∩ I(j), then ψj(x−j) ≥ xi ≥ τ+(x) ≥ τj(xj),
hence j ∈ K(x). Let si > τi(xi) [then si > σi(xi)], but xi /∈ ρi(si) 3 ξi < xi. For
every s′i < si, either ξi ∈ ρi(s

′
i) or ξi ∈ ρi(si) \ ρi(s

′
i); in either case, the monotonicity

of ρi precludes xi ∈ ρi(s
′
i) [there would be xi ∈ ρi(s

′
i) \ ρi(si) otherwise] and ensures

ξ′i ∈ ρi(s
′
i) with ξ′i ≤ ξi < xi. Therefore, s′i /∈ Si(xi), but this contradicts the definition

of σi(xi).

Lemma 5.2.3. Let y .i x; then i ∈ K(y), i ∈ K(x) implies yi > xi, and j ∈
K(x) \K(y) implies j 6= i, i ∈ I(j), xi ≥ τj(xj), and i /∈ K(x).

Proof. By definition, yi ∈ ρi(ψi(x−i)), hence ψi(x−i) ∈ Si(yi), hence τi(yi) ≤ ψi(x−i).
If i ∈ K(x), then xi /∈ ρi(ψi(x−i)) and ψi(x−i) ∈ Si(xi) imply ξi > xi for all ξi ∈
ρi(ψi(x−i)), in particular, yi > xi. Let j ∈ K(x) \K(y); then j 6= i because i ∈ K(y),
hence yj = xj, hence i ∈ I(j) and xi = ψj(x−j) ≥ τj(xj) > yi, hence i /∈ K(x).

Lemma 5.2.4. Let y .i x; then y º′ x. If i ∈ K0(x), y Â′ x; if x º′ y, K0(y) =
K0(x).

Proof. First we show K+(x) ⊆ K(y). Since i ∈ K(y) by Lemma 5.2.3, let us suppose
j 6= i and j ∈ K+(x) \K(y). By Lemma 5.2.3, i ∈ I(j) and i /∈ K(x); however, by
Lemma 5.2.2, i ∈ K(x) because i ∈ K0(x).

To show τ+(y) ≤ τ+(x), let us suppose the contrary. Since i ∈ K(y) by Lemma 5.2.3,
this would imply the existence of j ∈ K(x) \ K(y) with either xj > τ+(x) or
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τj(xj) > τ+(x). In the first case, j ∈ K+(x), hence j ∈ K(y): a contradiction.
In the second case, we must have i /∈ K(x) and xi ≥ τj(xj) by Lemma 5.2.3, but then
xi > τ+(x), contradicting i /∈ K(x).

Now j ∈ K+(x) (for j 6= i or j = i) implies j ∈ K(y) and yj ≥ xj ≥ τ+(x) ≥
τ+(y), i.e., j ∈ K+(y). The two other statements follow immediately from Lem-
mas 5.2.2 and 5.2.3, and from the definition of º′.
Lemma 5.2.5. Let x /∈ XK and y .i x; then y º x. If i ∈ M(x), y Â x; if x º y,
then y /∈ XK and M(y) = M(x); if x ∈ X∗ and i ∈ M∗(x), y Â x; if x ∈ X∗ and
x º y, then y ∈ X∗ and M∗(y) = M∗(x).

Proof. By Lemma 5.2.4, τ+(y) ≤ τ+(x). Let τ+(y) = τ+(x) and j ∈ M(y) \M(x);
then j 6= i because i ∈ K(y), hence xj = yj = τ+(y) = τ+(x), so j /∈ M(x) implies
j ∈ K(x), but then j ∈ K+(x) = ∅. Let τ+(y) = τ+(x), M(y) = M(x) = ∅, and
j ∈ M∗(y) \ M∗(x). Again, j 6= i, hence xj = yj, hence j ∈ K(x) \ K(y), hence
xi ≥ τj(xj) = τj(yj) and i /∈ K(x); since τj(xj) = τ+(x), i ∈ M(x) = ∅.

All the statements about y Â x and x º y immediately follow from i ∈ K(y).

Lemma 5.2.6. Let xk → xω, i ∈ N , si ∈ Ψ∗
i , and τi(x

ω
i ) > si; then there exists

h ∈ IN such that τi(x
k
i ) > si for all k ≥ h.

Proof. Suppose first that si ∈ Ψi. By the definition of τi, si /∈ Si(x
ω
i ), hence xω

i /∈
ρi(si) and there is ξi ∈ ρi(si) for which ξi < xω

i . Since ρi(si) is closed, there exists
h ∈ IN such that ξi < xk

i and xk
i /∈ ρi(si) for all k ≥ h, hence si /∈ Si(x

k
i ). Lemma 5.2.2

implies τi(x
k
i ) > si. If si = 〈s′i, 1〉 with s′i ∈ Ψi, there exists s′′i ∈ Ψi such that

τi(x
ω
i ) > s′′i > s′i, hence τi(x

k
i ) > s′′i > si for all k large enough.

Lemma 5.2.7. Let xk → xω and xk+1 Â xk for all k = 0, 1, . . . ; then xω Â x0.

Proof. Obviously, there must be xk+1 Â′ xk for an infinite number of k; without
restricting generality, we may assume that the condition holds for all k. Moreover,
we may assume that K(xk) = K(x0) and K+(xk) = K+(x0) [hence K0(xk) = K0(x0)]
for all k. Since we can start the sequence {xk}k from k = 1, it is sufficient to prove
xω º′ x0.

As a first step, we notice that xk+1
i ≥ xk

i for all i ∈ K0(x0) and all k implies
xω

i ≥ x0
i , hence ψi(x

ω
−i) ≥ ψi(x

0
−i) for all i ∈ K0(x0). Then we prove that K+(x0) ⊆

K(xω); let i ∈ K+(x0) = K+(xk) for all k. If i /∈ K(xω), then τi(x
ω
i ) > ψi(x

ω
−i); by

Lemma 5.2.6, τi(x
k
i ) > ψi(x

ω
−i) ≥ ψi(x

k
−i), hence i /∈ K(xk) for all k large enough,

contradicting i ∈ K+(xk).

Now let us show that τ+(xω) ≤ τ+(x0); let i /∈ K(xω) and τ+
i (xω

i ) > τ+(x0). If
τ+
i (xω

i ) = xω
i > τ+(x0), then xk

i > τ+(x0) for all k large enough because xk → xω; if
τ+
i (xω

i ) = τi(x
ω
i ) > τ+(x0), then Lemma 5.2.6 implies τi(x

k
i ) > τ+(x0) for all k large
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enough; in either case, τ+
i (xk

i ) > τ+(x0). If i /∈ K(xk), we have τ+(xk) > τ+(x0),
contradicting xk Â′ x0. If i ∈ K(xk), then either τ+(xk) > τi(x

k), hence τ+(xk) >
τ+(x0) again, or i ∈ K+(xk), hence i ∈ K(xω), contradicting our assumption.

Finally, if i ∈ K+(x0) ⊆ K(xω), then xω
i ≥ x0

i ≥ τ+(x0) ≥ τ+(xω), hence i ∈
K+(xω).

Now we define V (x) = K0(x) for x ∈ XK, V (x) = M(x) for x ∈ XM, and V (x) =
M∗(x) for x ∈ X∗. Lemmas 5.2.4, 5.2.5, and 5.2.7 show that º is a quasipotential.
We only have to show its consistency.

Lemma 5.2.8. Let x, y ∈ X, C = V (x), xC = yC, and º−C denote the quasipotential
for the reduced system defined by xC = yC. Then (5.1) holds.

Proof. When the above constructions are developed for the reduced system (fortu-
nately, we only have to consider one reduced system throughout the proof), we add
−C somewhere, most often, as a subscript. It is easy to see that τi(xi) can only
diminish when computed for the reduced system; more precisely, τ−C

i (xi) = min Ψ−C
i

if τi(xi) ≤ maxj∈I(i)∩C xj and τ−C
i (xi) = τi(xi) otherwise. It follows immediately that

i ∈ K−C(x−C) ⇐⇒ i ∈ K(x) \ C.

Suppose that i ∈ N \ C \K(y) and

τ+
i (yi) ≥ τ+(x). (5.4)

Then −Cτ+
i (yi) = τ+

i (yi), so a strict inequality in (5.4) would imply τ+
−C(y−C) >

τ+
−C(x−C), contradicting y−C º−C x−C ; therefore τ+(x) ≥ τ+(y). If K+(x) 6= ∅, then

C = K0(x) ⊆ K0(y) and xj = yj for every j ∈ K0(x) imply that y º x and either
y Â x or V (y) = V (x).

If K+(x) = ∅, we have y º′ x at least and y Â x if K+(y) 6= ∅. Moreover,
τ+
i (yi) < τ+(x) for all i ∈ N \C \K(y) implies y ∼ x and V (y) = V (x) regardless of

whether V (x) = M(x) or V (x) = M∗(x).

If K0(x) = ∅ and (5.4) holds as an equality, then τ+
−C(x−C) = τ+(x) = τ+(y)

because y−C º−C x−C , which is only possible if C = M(x) 6= ∅, hence M−C(x−C) = ∅.
Now τ+

i (yi) = yi would imply M−C(y−C) 6= ∅, which is only compatible with y−C º−C

x−C if K−C(y−C) 6= ∅, but then K+(y) 6= ∅ because τ+(y) = τ+
−C(y−C). Therefore,

τi(yi) > yi for all i satisfying (5.4) (as an equality) and we have M(y) = M(x), hence
y ∼ x and V (y) = V (x).

A reference to Theorem 5.4 of Kukushkin (2000) completes the proof.
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5.3 Decreasing Reactions

Theorem 8. Let S be a system of reactions such that each Xi (i ∈ N) is a compact
subset of IR and every Ri(x−i) (i ∈ N , x−i ∈ X−i) is closed in Xi; let, for each i ∈ N ,
a subset I(i) ⊆ N be given such that j ∈ I(i) ⇐⇒ i ∈ I(j); let every reaction Ri be
decreasing w.r.t. the ordering on X−i defined by the function ψi(x−i) = maxj∈I(i) xj

and the partial order on 2Xi \ {∅} defined in Section 4. Then S is Ω-acyclic.

Remark. As in Theorem 7, the case of I(i) = ∅ for some i ∈ N is dismissed as
trivial.

Proof. For each i ∈ N , we define Ψi = ψi(X−i); clearly, there exists a decreasing
mapping ρi : Ψi → 2Xi \ {∅} such that Ri(x−i) = ρi(ψi(x−i)) for every x−i ∈ X−i.
For xi ∈ Xi, we denote S−i (xi) = {si ∈ Ψi| xi ∈ ρi(si) or ∀ξi ∈ ρi(si) [ξi < xi]},
S+

i (xi) = {si ∈ Ψi| xi ∈ ρi(si) or ∀ξi ∈ ρi(si) [ξi > xi]}, σi(xi) = inf S−i (xi), ϑi(xi) =
0 if σi(xi) ∈ S−i (xi), ϑi(xi) = 1 otherwise, and τi(xi) = 〈σi(xi), ϑi(xi)〉 ∈ IR∗ (again,
τi(xi) is the infimum of S−i (xi) in IR∗). For every x ∈ X, we define:

K(x) = {i ∈ N | ψi(x−i) ∈ S+
i (xi)}; L(x) = {i ∈ N | ψi(x−i) ≥ τi(xi)};

λ(x) = max
i/∈K(x)

xi; ν(x) = max
i/∈L(x)

τi(xi);

τ+(x) = max{ν(x), λ(x)};
M(x) = {i ∈ N \K(x)| xi = τ+(x)}; M∗(x) = {i ∈ N \ L(x)| τi(xi) = τ+(x)};

K+(x) = {i ∈ K(x)| xi ≥ τ+(x)}; L0(x) = {i ∈ N | I(i) ∩K+(x) 6= ∅}.
We also denote:

XK = {x ∈ X| K+(x) 6= ∅}; XM = {x ∈ X| K+(x) = ∅ 6= M(x)};

X∗ = {x ∈ X| K+(x) = ∅ = M(x)}.

For y, x ∈ X, we define

y º′ x ⇐⇒ K+(x) ⊆ K+(y) & τ+(x) ≥ τ+(y) &

∀i ∈ K+(x)[yi ≥ xi] & ∀i ∈ L0(x)[yi ≤ xi], (5.5)

denoting Â′ and ∼′ the asymmetric and symmetric components of º′. Now we set
y º x if and only if one of the following conditions holds:

y Â′ x; (5.6a)

x ∈ XK & y º′ x; (5.6b)

x ∈ XM & y ∼′ x & M(x) ⊇ M(y); (5.6c)
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x ∈ X∗ & y ∈ X∗ & y ∼′ x & M∗(x) ⊇ M∗(y). (5.6d)

The constructions are rather similar to those of Theorem 7. K+(x) consists of the
indices that have already decided always to go upwards; L0(x), downwards. If K+(x)∪
L0(x) ⊂ N , then τ+(x) measures, in a peculiar way, “the degree of undecidedness”
in possible further movements.

Lemma 5.3.1. º is a preorder.

Proof. Indeed, º is defined by an arboreous lexicographic construction exactly in the
same way as in Lemma 5.2.1.

Lemma 5.3.2. For every x ∈ X, L0(x) ⊆ L(x). For every i ∈ N , xi ∈ Xi, and
si, s

′
i ∈ Ψi, si ≥ τi(xi) ⇐⇒ si ∈ S−i (xi) and [si > s′i & si ∈ S+

i (xi)] ⇒ s′i ∈ S+
i (xi).

Proof. If j /∈ L(x) and i ∈ K+(x) ∩ I(j), then ψj(x−j) ≥ xi ≥ τ+(x) ≥ τj(xj), hence
j ∈ L(x). Let si > τi(xi) (then si > σi(xi)), but xi /∈ ρi(si) 3 ξi > xi. For every
s′i < si, either ξi ∈ ρi(s

′
i) or ξi ∈ ρi(si) \ ρi(s

′
i); in either case, the monotonicity of

ρi precludes xi ∈ ρi(s
′
i) (there would be xi ∈ ρi(s

′
i) \ ρi(si) otherwise) and ensures

ξ′i ∈ ρi(s
′
i) with ξ′i ≥ ξi > xi. Therefore, s′i /∈ S−i (xi), but this contradicts the definition

of σi(xi). The last statement follows from the monotonicity of ρi in a similar way.

Lemma 5.3.3. Let y .i x. Then i ∈ K(y)∩L(y); i ∈ K(x) implies yi > xi; i ∈ L(x)
implies yi < xi; j ∈ L(x) \ L(y) implies j 6= i, i ∈ I(j), xi ≥ τj(xj), and i /∈ K(x).

Proof. By definition, yi ∈ ρi(ψi(x−i)), hence ψi(x−i) ∈ S−i (yi)∩S+
i (yi), hence τi(yi) ≤

ψi(x−i) = ψi(y−i). If i ∈ K(x), then xi /∈ ρi(ψi(x−i)) and ψi(x−i) ∈ S+
i (xi) imply

ξi > xi for all ξi ∈ ρi(ψi(x−i)), in particular, yi > xi. For i ∈ L(x), a similar argument
works. Let j ∈ L(x)\L(y); then j 6= i because i ∈ L(y), hence yj = xj, hence i ∈ I(j)
and xi = ψj(x−j) ≥ τj(xj) > yi, hence i /∈ K(x).

Lemma 5.3.4. Let y .i x; then y º′ x. If i ∈ K+(x) ∪ L0(x), then y Â′ x; if x º′ y,
then K+(y) = K+(x) and L0(y) = L0(x).

Proof. First we show K+(x) ⊆ K(y). Since i ∈ K(y) by Lemma 5.3.3, let us suppose
j 6= i and j ∈ K+(x). If i /∈ I(j), then yj = xj and ψj(y−j) = ψj(x−j), hence j ∈ K(y)
as well. If i ∈ I(j), then i ∈ L0(x), hence i ∈ L(x) by Lemma 5.3.2, hence yi < xi,
hence ψj(y−j) ≤ ψj(x−j), hence ψj(y−j) ∈ S+

j (xj) by Lemma 5.3.2, hence j ∈ K(y).

To show τ+(y) ≤ τ+(x), let us suppose the contrary. Let j /∈ K(y) and yj ≥ τ+(x);
then j 6= i, hence xj = yj, hence j ∈ K(x) would imply j ∈ K+(x) contradicting the
findings of the previous paragraph, whereas j /∈ K(x) is only possible if yj = xj =
τ+(x), i.e., j ∈ M(x). Let j ∈ L(x)\L(y) and τj(yj) > τ+(x); by Lemma 5.3.3, j 6= i,
xi ≥ τj(yj), and i /∈ K(x); but then λ(x) ≥ xi > τ+(x): a contradiction.
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If j ∈ K+(x) ⊆ K(y), then yj ≥ xj ≥ τ+(x) ≥ τ+(y), i.e., j ∈ K+(y). The
two other statements follow immediately from Lemmas 5.3.2 and 5.3.3, and from the
definition of º′.
Lemma 5.3.5. Let x /∈ XK and y .i x; then y º x. If i ∈ M(x), y Â x; if x º y,
then y /∈ XK and M(y) = M(x); if x ∈ X∗ and i ∈ M∗(x), then y Â x; if x ∈ X∗

and x º y, then y ∈ X∗ and M∗(y) = M∗(x).

Proof. By Lemma 5.3.4, τ+(y) ≤ τ+(x); moreover, if τ+(y) = τ+(x), then M(y) ⊆
M(x). Let τ+(y) = τ+(x), M(y) = M(x) = ∅, and j ∈ M∗(y) \M∗(x); then j 6= i,
hence xj = yj, hence j ∈ L(x)\L(y), hence xi ≥ τj(xj) and i /∈ K(x) by Lemma 5.3.3;
since τj(xj) = τ+(x), i ∈ M(x) = ∅.

All the statements about y Â x and x º y immediately follow from i ∈ K(y) ∩
L(y).

Lemma 5.3.6. Let xk → xω, i ∈ N , si ∈ Ψ∗
i , and τi(x

ω
i ) > si; then there exists

h ∈ IN such that τi(x
k
i ) > si for all k ≥ h.

The proof is virtually the same as that of Lemma 5.2.6.

Lemma 5.3.7. Let xk → xω and xk+1 Â′ xk for all k = 0, 1, . . . ; then xω
i ≥ xk

i and
ψi(x

ω
−i) ≤ ψi(x

k
−i) for all i ∈ K+(x0) and all k; xω

i ≤ xk
i and ψi(x

ω
−i) ≥ ψi(x

k
−i) for

all i ∈ L0(x0) and all k; and K+(x0) ⊆ K(xω).

Proof. Both inequalities on xω
i immediately follow from xk+1

i ≥ xk
i for i ∈ K+(xk)

and xk+1
i ≤ xk

i for i ∈ L0(xk). If i ∈ K+(x0) ⊆ K+(xk), then I(i) ⊆ L0(xk) by
definition, hence ψi(x

k+1
−i ) ≤ ψi(x

k
−i) for all k. If j ∈ L0(x0) ⊆ L0(xk), i ∈ I(j), and

xk
i = ψj(x

k
−j), then, obviously, i ∈ K+(xk), hence ψj(x

k+1
−j ) ≥ xk+1

i ≥ xk
i = ψj(x

k
−j)

for all k.

Finally, let i ∈ K+(x0), but i /∈ K(xω); then ψi(x
ω
−i) /∈ S+

i (xω
i ), hence xω

i /∈
ρi(ψi(x

ω
−i)) 3 ξi < xω

i . We define ξω
i = max ρi(si) ∩ [ξi, x

ω
i ] < xω

i [ρi(si) is closed].
By the previous argument, ψi(x

ω
−i) ≤ ψi(x

k
−i) for all k; because xk → xω, ξω

i < xk
i

for all k large enough; by the monotonicity of ρi, xk
i /∈ ρi(ψi(x

k
−i)) 3 ξk

i < xk
i .

Thus, ψi(x
k
−i) /∈ S+

i (xk
i ), hence i /∈ K(xk) for all k large enough, contradicting our

assumption.

Lemma 5.3.8. Let xk → xω and xk+1 Â xk for all k = 0, 1, . . . ; then xω Â x0.

Proof. Obviously, there must be xk+1 Â′ xk for an infinite number of k; without
restricting generality, we may assume that the condition holds for all k. Moreover,
we may assume that K(xk) = K(x0), L(xk) = L(x0), and K+(xk) = K+(x0) [hence
L0(xk) = L0(x0)] for all k. Since we can start the sequence {xk}k from k = 1, it is
sufficient to prove xω º′ x0.
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Now let us show that τ+(xω) ≤ τ+(x0). Let i /∈ K(xω) and xω
i > τ+(x0); then

xk
i > τ+(x0) for all k large enough because xk → xω. Now i /∈ K(xk) is incompatible

with τ+(xk) ≤ τ+(x0) following from xk Â′ x0, whereas i ∈ K(xk) would imply
i ∈ K+(xk), hence i ∈ K(xω) by Lemma 5.3.7.

Let i /∈ L(xω) and τi(x
ω
i ) > τ+(x0); then Lemma 5.3.6 implies τi(x

k
i ) > τ+(x0)

for all k large enough. If i /∈ L(xk), or i ∈ L(xk) and τ+(xk) ≥ τi(x
k
i ) for some k,

we have τ+(xk) > τ+(x0) contradicting xk Â′ x0. Let i ∈ L(xk) and τ+(xk) < τi(x
k
i )

for all k; then τ+(xk) < τi(x
k
i ) ≤ ψi(x

k
−i), hence there is j ∈ I(i) ∩ K+(xk), hence

i ∈ L0(xk). Now i /∈ L(xω) means that τi(x
ω
i ) > ψi(x

ω
−i); by Lemmas 5.3.6 and 5.3.7,

τi(x
k
i ) > ψi(x

ω
−i) ≥ ψi(x

k
−i) for all k large enough, hence i /∈ L(xk): a contradiction.

Finally, if i ∈ K+(x0), then i ∈ K(xω) by Lemma 5.3.7; besides, xω
i ≥ x0

i ≥
τ+(x0) ≥ τ+(xω), hence i ∈ K+(xω).

Now we define V (x) = K+(x) ∪ L0(x) for x ∈ XK, V (x) = M(x) for x ∈ XM,
and V (x) = M∗(x) for x ∈ X∗. Lemmas 5.3.4, 5.3.5, and 5.3.8 show that º is a
quasipotential. We only have to show its consistency.

Lemma 5.3.9. Let x, y ∈ X, C = V (x), xC = yC, and º−C denote the quasipotential
for the reduced system defined by xC = yC. Then (5.1) holds.

Proof. When the above constructions are developed for the only reduced system we
have to consider throughout the proof, we add −C somewhere, most often, as a
subscript. It is easy to see that τ−C

i (xi) ≤ τi(xi); more precisely, τ−C
i (xi) = min Ψ−C

i

if τi(xi) ≤ maxj∈I(i)∩C xj and τ−C
i (xi) = τi(xi) otherwise. It follows immediately that

i ∈ L−C(x−C) ⇐⇒ i ∈ L(x) \ C; quite similarly, i ∈ K−C(x−C) ⇐⇒ i ∈ K(x) \ C.

If i ∈ N \ C \ L(y) and τi(yi) ≥ τ+(x), then τ−C
i (yi) = τi(yi). Therefore, τ+(x) <

τ+(y) would imply τ+
−C(y−C) > τ+

−C(x−C), contradicting y−C º−C x−C .

If K+(x) 6= ∅, then C = [K+(x) ∪ L0(x)] ⊆ [K+(y) ∪ L0(y)] and xj = yj for
every j ∈ K+(x) ∪ L0(x) imply that y º x and either y Â x or V (y) = V (x). If
K+(x) = ∅, we have y º′ x at least; moreover, τ+

−C(y−C) < τ+(x) implies that either
y Â x [if K+(y) 6= ∅] or y ∼ x and V (y) = V (x) regardless of whether V (x) = M(x)
or V (x) = M∗(x).

Let us assume τ+(y) = τ+(x) and K+(y) = ∅. Let x ∈ XM, i.e., C = M(x) 6= ∅.
If yi = τ+(x) for i ∈ N \ C \ K(y), then M−C(y−C) 6= ∅ = M−C(x−C), which is
incompatible with y−C º−C x−C ; therefore, M(y) = M(x) and y ∼ x. Finally,
let x ∈ X∗, i.e., ∅ 6= C = M∗(x) ⊆ M∗(y); then τ+

−C(x−C) < τ+(x). Now if
y ∈ XM or M∗(x) ⊂ M∗(y), then τ+

−C(x−C) < τ+
−C(y−C), which is incompatible with

y−C º−C x−C .

A reference to Theorem 5.4 of Kukushkin (2000) completes the proof.
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5.4 Discussion

If we redefine ψi(x−i) as minj∈I(i) xj, retaining all other assumptions, Theorems 7
and 8 remain valid: to prove this, it is sufficient to replace each Xi with −Xi.

Let N be the set of players in a strategic game, Xi ⊆ IR (i ∈ N) be the set of
strategies, and let the utility functions be of the form ui(x) = Ui(xi, maxj∈I(j) xj) for
all i ∈ N [or ui(x) = Ui(xi, minj∈I(j) xj) for all i ∈ N ]. If we assume that each Xi is
compact and each Ui is upper semicontinuous in the first argument, the best reply
correspondences Ri(·) will have nonempty and closed values for each x−i ∈ X−i. If
each function Ui(xi, si) satisfies the ordinal strategic complements (single crossing,
Milgrom and Shannon, 1994) condition:

sign(Ui(xi + δ, si + ∆)− Ui(xi, si + ∆)) ≥ sign(Ui(xi + δ, si)− Ui(xi, si)) (5.7)

for each xi ∈ Xi, si ∈ Ψi, and δ, ∆ ≥ 0, then the correspondences are increasing in the
appropriate sense. If each function Ui(xi, si) satisfies the ordinal strategic substitutes
condition:

sign(Ui(xi + δ, si −∆)− Ui(xi, si −∆)) ≥ sign(Ui(xi + δ, si)− Ui(xi, si)) (5.8)

for each xi ∈ Xi, si ∈ Ψi, and δ, ∆ ≥ 0, the correspondences are decreasing in
the appropriate sense. Thus, the conditions of Theorems 7 and 8 have a reasonable
interpretation.

Games with the maximum (minimum) aggregation are considered in the literature
now and then (Bliss and Nalebuff, 1984; Hirshleifer, 1983), although they cannot
match in importance, for instance, games with additive aggregation. The acyclicity
of systems of increasing (decreasing) singleton reactions with additive aggregation was
established in Kukushkin (2000). Multiple reactions were considered in Kukushkin
(2001), but only under the finiteness assumption; the case of decreasing reactions
could only be handled under a stronger monotonicity condition, and the validity of
the result when monotonicity is interpreted exactly as here remains an open question.
Taking into account that the maximum aggregate is a coarsening of the leximax one,
and the latter is separable exactly like the sum, Theorems 7 and 8 can be regarded
as bridgeheads into the area.

The restriction of the maximum to the “neighbouring” indices I(i) destroys the
separability (and even the “partial separability” of Segal and Sobel, 2002); one cannot
help wondering whether maxj∈I(i) could be replaced with

∑
j∈I(i). A positive answer

for the case of singleton reactions on finite sets can be easily obtained with the
technique developed by Dubey et al. (2002) for different purposes. Unfortunately, the
technique resists application to a more general situation.

The closedness of each Ri(x−i) is much weaker than a closed graph of each corre-
spondence Ri(·). However, the assumption is not innocuous: it precludes the applica-
tion of the theorems to games with compact Xi, bounded (but not necessarily upper
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semicontinuous) utilities, and cardinal strategic complements (substitutes) if each
Ri(x−i) is the set of ε-optimal responses. Without the assumption, Lemmas 5.2.6
and 5.2.7 (as well as 5.3.6, 5.3.7, and 5.3.8) are just wrong; however, no counter-
example to either theorem itself is known.

Finally, instead of Xi ⊆ IR, we could assume that ψi(x−i) = maxj∈I(i) ϕj(xj),
where each ϕj : Xj → IR (j ∈ N) is continuous, and that each Ri is monotonic
w.r.t. the orderings defined by ψi and ϕi. The scheme of the proofs would remain
principally the same, but become even more cumbersome.
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