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Abstract

On a partially ordered set a preference relation is given, which depends on an exogenous parame-
ter, the choices of other agents. Various definitions of monotonicity of optimal choices are considered,
and restrictions on preferences that ensure monotonicity in one sense or other are obtained. The
problem of the existence of monotone selections and fixed points (Nash equilibria) is also studied.
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1 Introduction

Two distinct reasons for the existence of Nash equilibrium were discovered in the 1920s: combinatorial
structures of strategy sets, as in games with perfect information, and the concavity of preferences
with convex strategy sets, as in mixed extensions of finite games. In recent decades, monotonicity has
attracted ever growing attention and become, at least, a successful rival of both predecessors.

McManus (1962, 1964) obtained the existence of Cournot equilibrium in symmetric oligopoly from
the “cumulative monotonicity” of the best responses. Topkis (1979) described a class of strategic games
where the existence of Nash equilibrium is derivable from Tarski’s (1955) fixed point theorem. Novshek
(1985) showed that the existence of Cournot equilibrium most often hinges on decreasing best responses
even though there was no general fixed point theorem for such mappings at the moment. Bulow et
al. (1985) considered the effect of strategy increments on utilities, and coined the terms “strategic
substitutes and complements.” Impressive advances in the study of the latter property followed (Vives,
1990; Shannon, 1990; Milgrom and Roberts, 1990; Li Calzi and Veinott, 1991). A detailed presentation
and a review of relevant economic models can be found, e.g., in Tirole (1988), Fudenberg and Tirole
(1991), Topkis (1998).

Milgrom and Shannon (1994) were the first to raise a natural, but very difficult, question: exactly
what should be assumed to obtain those results? Their Theorem 4 gave a precise answer concerning
comparative statics properties. This paper addresses another version of the same question: what should
be assumed about strategy sets and preferences in a game to have increasing best responses (and the
existence of a Nash equilibrium to boot)? The very fact that we do not compare optimal choices from
different sets makes Milgrom and Shannon’s necessity proof irrelevant. A few more differences are
worth mentioning.

Their implicit position that the only reasonable way to define an increasing correspondence is with
the Veinott order on sublattices is not shared here. We consider quite a number of extensions of an
order from a set to its nonempty subsets, including even non-transitive ones, for instance, the “weak
Veinott” relation. A particular version of monotonicity for correspondences is worth considering if the
existence of a monotone selection can be derived therefrom. Monotone selections are not necessary for
the existence of a fixed point of an increasing correspondence, even though Tarski’s theorem cannot be
invoked otherwise. However, they become practically indispensable, e.g., when the best responses are
decreasing and one wants to derive the existence of a Nash equilibrium from the acyclicity of singleton
reactions (Kukushkin, 2000, 2003, 2004a, 2006, 2007).

Secondly, we explicitly consider various order structures. A difference between optimization on
chains and lattices is shown. In the former case, single crossing conditions (of which we consider four
basic versions including two “halves” of Milgrom and Shannon’s notion) are necessary and sufficient
for monotonicity of the best responses in a single parametric setting. For lattices, characterization
results are only obtainable when the same preference relation is put into a wide variety of parametric
settings. The quasisupermodularity property is partitioned into four independent constituent parts,
each of which is necessary and sufficient (in that sophisticated sense) for a kind (actually, two kinds)
of the monotonicity of optima.

We also make two steps beyond lattices. Considering semilattices, a condition on preference order-
ings is defined which can claim a role similar to that of quasisupermodularity on lattices; unfortunately,
its suitability for any interesting application remains unclear. Similar analysis of optimization on gen-
eral posets, or even directed posets, brings about only discouraging results. Loosely speaking, the
common view that lattices constitute the only order structure worth considering in such studies is
given some support, but not proven.
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Thirdly, we try to go beyond orderings in the description of preferences; the principal interpretation
is ε-optimization. The point is that the conventional treatment of relations between properties such as
single crossing or quasisupermodularity, on one hand, and the monotonicity of the best responses on the
other, heavily relies on the interchangeability of all best responses. If indifference may be intransitive,
new techniques are needed. To the best of my knowledge, the previous literature contains no existence
result for ε-Nash equilibria in games with strategic complementarities where the existence of the best
responses is not guaranteed. Such a result is given by Theorem 8.11 here. The final Theorem 8.12 gives
the most general sufficient condition for the existence of a Nash equilibrium because of increasing best
responses available at the moment.

The Appendix to Milgrom and Shannon (1994) contains an “almost topology-free” sufficient condi-
tion for a utility function on a complete lattice to attain its maximum. Unfortunately, their proof relies
on “Theorem A2,” ascribed to A.F. Veinott, whereas Example 6.1 from Kukushkin (2007) shows that
statement to be plainly wrong. Here we establish the sufficiency of even weaker conditions. However,
a plausible conjecture that a quasisupermodular ordering on a complete lattice attains its maximum if
it attains a maximum on every complete subchain remains neither proven nor disproved.

Monotonicity considerations also play an important part, e.g., in various incentive and fairness
problems (Moulin, 1988), but this topic is not touched on here.

Section 2 reproduces more or less standard definitions, results, and notation. Section 3 starts with
a review of various ways to extend an order given on a set to its nonempty subsets. Then a number
of sufficient conditions for the existence of a monotone selection are given; the most important are
Theorem 3.5 and Theorem 3.10 about weakly ascending, respectively, ascending, correspondences.

Sections 4–6 follow largely the same plan. Considering optimization on, respectively, complete
chains, complete lattices, or complete semilattices, we present sufficient conditions for the existence of
the best choices (on chains, they are also necessary) first, and then study restrictions on preferences
that will ensure the monotonicity of the set of optima in an exogenous factor. Theorems 5.14 and 6.8
provide conditions for the existence of a Nash equilibrium based on the monotonicity.

In Section 7, a similar analysis of monotonicity is attempted on poorer order structures. In the last
Section 8, “less rational” preferences are considered.

2 Basic Notions

2.1 Order structures

A binary relation on a set A is a Boolean function on A×A; as usual, we write y Â x when the relation
Â is true on a pair (y, x) and y 6Â x when it is false. An irreflexive and transitive binary relation
is called a strict order ; a partial order is the disjunction of a strict order and the equality relation.
A set with a given partial order is called a poset ; when the order is total, i.e., every two points are
comparable, the poset is called a chain. An obvious, but important, observation is that, whenever Â
is a strict order, its reverse, y ≺ x ­ x Â y, is a strict order as well; therefore, every notion and every
statement concerning orders admits a dual version.

The whole paper is about interrelationships between two orders. One, denoted by symbols like Â,
describes preferences of an agent over alternatives from a set A. The other, denoted > (or ≥ when
appropriate) refers to an internal structure on A, unrelated to preferences. Most attention is paid to
specific order structures: chains, lattices, semilattices.

Let A be a poset and x, y ∈ A. A lower bound of x and y is z ∈ A such that z ≤ x and z ≤ y. A
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poset A is directed downwards if a lower bound exists for every pair x and y. A greatest lower bound or
meet of x and y is a lower bound z ∈ A of theirs such that z ≥ z′ whenever z′ is also a lower bound of
x and y. Clearly, the meet is unique if exists at all; we denote it x∧ y. A poset A is a meet-semilattice
if x ∧ y exists for every pair x, y ∈ A; if X ⊆ A contains x ∧ y for every pair x, y ∈ X, it is called a
meet-subsemilattice of A.

An upper bound, a poset directed upwards, a least upper bound or join of x, y ∈ A, denoted x ∨ y,
a join-semilattice, and a join-subsemilattice are defined dually. In the following we view the “meet”
versions as basic, and use the words “semilattice” and “subsemilattice” accordingly.

A lattice is a poset A in which x ∨ y and x ∧ y exist for every pair x, y ∈ A. A sublattice of
A is X ⊆ A which contains both x ∨ y and x ∧ y for every pair x, y ∈ X. Given x, y ∈ A, we
denote L(x, y) := {x, y, x ∨ y, x ∧ y}, the minimal sublattice of A containing both x and y; clearly,
#L(x, y) ∈ {1, 2, 4}. A chain is the simplest example of a lattice, x ∨ y and x ∧ y being, respectively,
the maximum and minimum of x and y; every subset of a chain is a sublattice.

For every set A, we denote BA the lattice of all subsets of A and B
∅\
A := BA \ {∅}. Let A be a

poset and X ∈ BA. A lower bound of X is z ∈ A such that z ≤ x for every x ∈ X. A greatest lower
bound or meet of X is a lower bound z ∈ A of X such that z ≥ z′ whenever z′ is also a lower bound
of X. As in the case of two points, the meet is unique if exists at all; we denote it

∧
X. An upper

bound and join of X ⊆ A are defined dually; we use the notation
∨

X. Note that
∧ ∅ =

∨
A and∨ ∅ =

∧
A by definition. When X ∈ B

∅\
A is a chain, we use more conventional notation inf X :=

∧
X

and supX :=
∨

X.

A lattice is (relatively) complete if
∧

X and
∨

X exist for all (bounded below or above, respectively)
X ∈ B

∅\
A. If a chain is (relatively) complete as a lattice, we call it just a (relatively) complete chain. A

semilattice is (relatively) complete if
∧

X exists for every (bounded below) X ∈ B
∅\
A and supX exists

for every (bounded above) chain X ∈ B
∅\
A. If A is a relatively complete lattice, X ∈ B

∅\
A is a complete

sublattice of A if
∧

Y and
∨

Y exist and belong to X for all Y ∈ B
∅\
X . A complete subsemilattice is

defined similarly.

2.2 Preferences

The preference relation Â is always assumed to be a strict order. Usually, we also add a “rationality
requirement”; most often, the relation is an ordering, i.e., negatively transitive strict order, z 6Â y 6Â
x ⇒ z 6Â x. Every total order is an ordering. In Section 8, the preference relation is a semiorder or an
interval order ; the definitions are given there.

Orderings can also be defined in terms of representations in chains: Â is an ordering if and only
if there is a chain C and a mapping v : A → C such that y Â x ⇐⇒ v(y) > v(x) for all x, y ∈ A.
The most usual assumption in game theory is that the preferences of the player are described by a
utility function v : A → R. Here we work in a purely ordinal framework, so it is natural to replace R
with an arbitrary chain. If Â is an ordering, then the “non-strict preference” relation º defined by
y º x ­ x 6Â y is reflexive, transitive, and total.

Given X ∈ B
∅\
A, we denote

M(X,Â) := {x ∈ X | @ y ∈ X [y Â x]}, (2.1)

the set of maximizers of Â on X. The interpretation is that the agent has preferences over the whole
A, but may be faced with the necessity to choose from a subset X ∈ B

∅\
A, in which case any point from
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M(X,Â) will do. For such choice to be possible, we need M(X,Â) 6= ∅, at least, for “plausible” X. A
helpful observation is that every strict order admits a maximizer on every finite nonempty subset of A.
Another helpful observation is that y Â x whenever Â is an ordering, x, y ∈ X, and x /∈ M(X,Â) 3 y.

Of primary importance for us are parametric optimization problems. Let A and S be posets, and
an ordering on A× S be represented by a mapping u : A× S → C, where C is a chain. Given X ∈ B

∅\
A,

the best response correspondence RX : S → BX ⊆ BA is defined in the usual way:

RX(s) := Argmax
x∈X

u(x, s) = M(X,Âs), (2.2)

where Âs is the ordering on X represented by the mapping vs(·) := u(·, s). We are interested in
conditions on u ensuring monotonicity, in one sense or another, of RX . The monotonicity of a single
correspondence RX may happen just “by accident”; however, when a wide enough class of admissible
subsets is taken into account, necessity results become obtainable.

The simplest connection between preferences and order is monotonicity. An ordering Â on a poset
A is (strictly) increasing if y º x (y Â x) whenever y > x; dually, Â is (strictly) decreasing if y º x
(y Â x) whenever x > y. Naturally, we are interested in less straightforward connections.

Whenever Â is a strict order on a poset A, we consider two auxiliary strict orders:

y Â
> x ­ [y Â x & y > x]; (2.3a)

y Â
< x ­ [y Â x & y < x]. (2.3b)

If Â is an ordering, we also consider two “weak” versions:

y º
> x ­ [y º x & y > x]; (2.3c)

y º
< x ­ [y º x & y < x]. (2.3d)

2.3 Zorn’s Lemma and transfinite recursion

When it comes to the “existence” of something, we assume the Axiom of Choice in its strongest form.
If purists say that nothing more than the “impossibility of non-existence” is thus proven, so be it.
Technically, some well-known corollaries (or equivalent re-formulations) are more convenient to use
than the axiom itself.

Theorem A (Zorn’s Lemma). Let > be a strict order on a set X with the property that every chain
Y ∈ B

∅\
X has an upper bound in X. Then M(X,>) 6= ∅.

Zorn’s Lemma plays an important part in the proof of Theorem 3.5 below. The following useful
technical statement is easily derivable from it.

Theorem B (Szpilrajn’s Theorem). On every poset, there exists a strictly increasing total order.

Zorn’s Lemma is helpful in the presentation of various notions of completeness. A poset A is called
(relatively) chain-complete if supX and inf X exist for every (bounded below or above, respectively)
chain X ∈ B

∅\
A. If A is a relatively chain-complete poset and X ∈ B

∅\
A, we call X a chain-complete

subset if supY and inf Y exist and belong to X for every chain Y ∈ B
∅\
X ; if X itself is a chain, we call

it a complete subchain.

Proposition 2.1. If A is a chain-complete lattice, then
∨

A and
∧

A exist in A. If A is a chain-
complete semilattice, then

∧
A exists in A.
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Proof. Given x ∈ A, we denote X := {y ∈ A | y ≥ x}. Clearly, X is chain-complete, hence M(X, >) 6= ∅
by Zorn’ Lemma. By definition of X, we have y ≥ x for every y ∈ M(X,>). Moreover, M(X, >) ⊆
M(A,>). Now if x, y ∈ M(A,>) and x 6= y, then x ∨ y > x: a contradiction. Therefore, M(A,>) is a
singleton, {∨ A}. The existence of

∧
A is proven dually. The case of a semilattice is quite similar.

Proposition 2.2. Every [relatively] chain-complete (semi)lattice is a [relatively] complete (semi)lattice.

Proof. Let A be a relatively chain-complete lattice and X ∈ B
∅\
A be bounded above. We denote

X− := {y ∈ A | ∀x ∈ X [y ≤ x]}. Clearly, X− is chain-complete and is a sublattice. By Proposition 2.1,
there exists

∨
X−, which is obviously

∧
X. The existence of

∨
X for bounded below X ∈ B

∅\
A is proven

dually.

If A is chain-complete, every subset of A is bounded by
∨

A or
∧

A, existing by Proposition 2.1.
The case of a (relatively) chain-complete semilattice is treated similarly.

Proposition 2.3. Let A be a relatively complete (semi)lattice and X ∈ B
∅\
A be a sub(semi)lattice and

a chain-complete subset of A. Then X is a complete sub(semi)lattice of A.

Proof. By Proposition 2.1, X is a complete lattice. Therefore,
∧

X Y ∈ X exists for every Y ∈ B
∅\
X ; we

only have to show that
∧

X Y =
∧

A Y . By definition,
∧

X Y ≤ ∧
A Y . We denote Y − := {x ∈ X | x ≥∧

A Y & ∀y ∈ Y [y ≥ x]}. Clearly, Y − is chain-complete and is a sublattice. By Proposition 2.1, there
exists y∗ :=

∨
Y − ∈ Y −. Now we have y∗ ≥ ∧

A Y by the definition of Y −; simultaneously, y∗ ≤ ∧
X Y

because y∗ ∈ X and y∗ ≤ y for all y ∈ Y . Thus,
∧

X Y ≥ ∧
A Y , hence there is an equality. The

equality
∨

X Y =
∨

A Y is proven dually.

The case of a chain-complete subsemilattice X of a relatively complete semilattice A is treated
similarly.

In the light of Propositions 2.2 and 2.3, there is no point in distinguishing between completeness
and chain-completeness; in the following, we use the latter term only in formulations of the results.
The set of all complete subchains of a relatively complete poset A is denoted CA. Given a relatively
complete (semi)lattice A, the set of all complete sub(semi)lattices is denoted LA (SA).

Although it is possible to argue that every statement dependent on the Axiom of Choice could
be given a proof based on Zorn’s Lemma, the practical implementation of the idea could lead to
constructions unbearably artificial. A reasonable alternative may be Zermelo’s Theorem.

A poset is well ordered if every subset contains a least point (then the set obviously must be a
chain).

Theorem C (Zermelo’s Theorem). Every set can be well ordered.

This statement is indispensable in the proof of Theorem 3.10 below. The proofs of Theorems 4.2, 5.3,
etc. are based on a more powerful (and heavier) technique.

Zermelo’s Theorem implies the existence of an infinite well ordered set Λ with a cardinality greater
than that of A. For technical convenience, we assume that max Λ does not exist, hence, for each α ∈ Λ,
its successor, denoted α + 1, is uniquely defined as min{β ∈ Λ | β > α}. We denote 0 := min Λ and
[0, α[ := {β ∈ Λ | β < α}; note that α /∈ [0, α[.

The principle of transfinite recursion allows us to consider a mapping λ : Λ → X ∈ B
∅\
A well defined

if we have defined λ(0) ∈ X and described how λ(α) ∈ X should be constructed, given λ(β) ∈ X for
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all β ∈ [0, α[. Practically, the definition of λ(α + 1) is usually based on λ(α) alone, so all β < α are
only involved when α is a limit ordinal, i.e., not the successor to any β ∈ Λ.

When proving an existence theorem with this technique, we construct such a mapping λ with the
property that an equality λ(α′) = λ(α) with α′ > α is only possible when λ(α) is a point we need.
Since the cardinality of Λ is greater than that of X, the equality must occur at some stage.

3 Monotonicity

Let S and X be two posets. A mapping r : S → X is increasing if y > x ⇒ r(y) ≥ r(x). As is well
known, the property is conducive to the existence of fixed points.

Theorem D (Tarski, 1955). Let X be a complete lattice and r : X → X be increasing. Then there
exists a fixed point of r, i.e., x ∈ X such that r(x) = x. Moreover, the set of fixed points is a complete
lattice itself (although not necessarily a complete sublattice of X).

Theorem E (Abian and Brown, 1961). Let X be a chain-complete poset, r : X → X be increasing
and r(x̄) ≥ x̄ for an x̄ ∈ X. Then there exists a fixed point of r.

Theorem F (Markowsky, 1976). Let X be a chain-complete poset containing
∧

X and r : X → X
be increasing. Then there exists a fixed point of r. Moreover, the set of fixed points is chain-complete
and contains a smallest point itself (although it need not be a complete subset of X).

Remark. Here, those fixed point theorems are used to derive the existence of Nash equilibria in
strategic games; no attempt to describe the structure of the set of equilibria, cf. Zhou (1994), is made.

The existence of fixed points of decreasing mappings is a much trickier subject (Novshek, 1985;
Kukushkin, 1994, 2007; Dubey et al., 2006), which is not touched here at all. It is only worth mentioning
that the reversal of the order on S (or, equivalently, on X) transforms an increasing mapping r : S → X
into decreasing, and vice versa; therefore, there would be no need for a separate study of monotonicity
conditions.

When it comes to correspondences R : S → BX , it is not quite obvious exactly how their mono-
tonicity “should” be defined. In the next subsection, we consider various ways to extend an order given
on A to B

∅\
A. Then we study relationships between monotonicity w.r.t. those relations and the existence

of monotone selections.

3.1 Extensions of an order to subsets

Let Y, X ∈ B
∅\
A (the empty subset often behaves in a strange fashion). When A is a lattice, Veinott’s

order (Topkis, 1978) seems most popular. We define it as a conjunction of the “lower and upper halves,”
and also define a weak version:

Y ≥∧ X ­ ∀y ∈ Y ∀x ∈ X [y ∧ x ∈ X]; (3.1a)

Y ≥∨ X ­ ∀y ∈ Y ∀x ∈ X [y ∨ x ∈ Y ]; (3.1b)

Y ≥Vt X ­ [Y ≥∨ X & Y ≥∧ X]; (3.1c)

Y ≥wV X ­ ∀y ∈ Y ∀x ∈ X [y ∨ x ∈ Y or y ∧ x ∈ X]. (3.1d)

8



The relation ≥Vt is antisymmetric and transitive on B
∅\
A, hence its reflexive closure is a partial order;

actually, it is reflexive on sublattices. Neither ≥wV, nor ≥∧ or ≥∨ need even be transitive although
the last two are transitive when A is a chain. It is worth noting that ≥∧ (≥∨) is defined when A is a
(join-)semilattice.

These relations can be defined when A is just a poset:

Y ≥Inf X ­ ∀y ∈ Y ∀x ∈ X ∃x′ ∈ X [y ≥ x′ & x ≥ x′]; (3.1e)

Y ≥inf X ­ ∀y ∈ Y ∃x ∈ X [y ≥ x]; (3.1f)

Y ≥Sup X ­ ∀y ∈ Y ∀x ∈ X ∃y′ ∈ Y [y′ ≥ x & y′ ≥ y]; (3.1g)

Y ≥sup X ­ ∀x ∈ X ∃y ∈ Y [y ≥ x]; (3.1h)

Y ≥pV X ­ [Y ≥Inf X & Y ≥Sup X]; (3.1i)

Y ≥RS X ­ [Y ≥inf X & Y ≥sup X]. (3.1j)

All of them are transitive. ≥inf and ≥sup are reflexive; ≥Inf and ≥Sup are reflexive on directed (upwards
or downwards, respectively) subsets. Obviously, Y ≥∧ X ⇒ Y ≥Inf X ⇒ Y ≥inf X and Y ≥∨ X ⇒
Y ≥Sup X ⇒ Y ≥sup X, hence Y ≥Vt X ⇒ Y ≥pV X ⇒ Y ≥RS X; the converse implications are wrong.
If A is a chain, then ≥Inf is equivalent to ≥inf , while ≥Sup to ≥sup, and both are orderings; A itself is
then a greatest point in B

∅\
A for ≥Sup and a least for ≥Inf . An analogue of “weak Veinott’s” relation can

also be defined on an arbitrary poset A:

Y ≥pwV X ­ ∀y ∈ Y ∀x ∈ X
[∃x′ ∈ X [y ≥ x′ & x ≥ x′] or ∃y′ ∈ Y [y′ ≥ x & y′ ≥ y]

]
. (3.1k)

Another relation is much stronger:

Y >> X ­ ∀y ∈ Y ∀x ∈ X [y ≥ x]. (3.1l)

The relation >> is transitive and antisymmetric; it is reflexive on singletons. Clearly, Y >> X implies
every other relation (3.1) that can be defined on A.

Given posets A and S, a definition of an increasing mapping R : S → B
∅\
A can be based on each

relation (3.1) (perhaps assuming the appropriate structure on A). For instance, a correspondence
R : S → B

∅\
A, where S is a poset and A is a lattice, is ascending (Topkis, 1978, 1998) if it increases

w.r.t. ≥Vt while every R(s) is a sublattice of A. Our definition of monotonicity contains a strict
inequality in the left hand side, so the reflexivity on individual values is not required; not that this is
of much importance for anything, but a greater flexibility is allowed. For Roddy and Schröder (2005),
the “most natural” notion of an increasing correspondence was that based on the relation ≥RS.

3.2 Monotone selections

Let X and S be posets and R : S → BX . Then a monotone selection from R is an increasing mapping
r : S → X such that r(s) ∈ R(s) for every s ∈ S. An obvious necessary condition for the existence of
a monotone selection is R(s) 6= ∅ for every s ∈ S.

Proposition 3.1. Let X and S be posets and R : S → B
∅\
X . Then every single-valued selection r from

R is increasing if and only if R is increasing w.r.t. >>.
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A straightforward proof is omitted.

The best-known results on the existence of monotone selections (Topkis, 1998) are applicable to
ascending correspondences to complete lattices. Similar results hold under weaker monotonicity con-
ditions.

Proposition 3.2.a. A correspondence R from a poset S to a relatively chain-complete poset X admits
a monotone selection if it is increasing w.r.t. ≥Inf and every R(s) is a chain-complete subset of X.

Proof. For every s ∈ S, we denote R−(s) := {x ∈ R(s) | @y ∈ R(s) [y < x]}. Since R(s) is chain-
complete, Zorn’s Lemma immediately implies that R−(s) 6= ∅. Then we pick r(s) ∈ R−(s) arbitrarily.
If s′ > s, then, by (3.1e), there is x ∈ R(s) such that x ≤ r(s) and x ≤ r(s′). Since r(s) ∈ R−(s), we
must have x = r(s).

Corollary. A correspondence R from a poset S to a relatively complete semilattice X admits a mono-
tone selection if it is increasing w.r.t. ≥∧ and every R(s) is a chain-complete subset of X.

Proposition 3.2.b. A correspondence R from a poset S to a relatively chain-complete poset X admits
a monotone selection if it is increasing w.r.t. ≥Sup and every R(s) is a chain-complete subset of X.

Example 6.1 from Kukushkin (2007) shows that the chain-completeness of R(s) cannot be dropped
in Propositions 3.2 or their corollaries. The replacement of ≥Inf with ≥inf also makes Proposition 3.2.a
wrong; however, the existence of a fixed point may be provable even in the absence of monotone
selections.

Example 3.3. Let S = X := {(0, 0), (0, 1), (1, 0), (1, 1)} ⊂ R2; R(0, 0) := {(0, 1), (1, 0)}; R(0, 1) :=
{(0, 1)}; R(1, 0) := {(1, 0)}; R(1, 1) := {(1, 1)}. It is easy to see that R is increasing w.r.t. ≥inf , but
there is no monotone selection.

Proposition 3.4. Let X be a finite poset containing
∨

X and R : X → B
∅\
X be increasing w.r.t. ≥inf .

Then there exists a fixed point of R, i.e., x ∈ X such that x ∈ R(x).

Proof. If
∨

X ∈ R(
∨

X), we have a fixed point. Assuming the contrary, we define x0 :=
∨

X and
pick x1 ∈ R(x0) arbitrarily; clearly, x1 < x0. Then we recursively define a sequence xk ∈ X such that
xk+1 ∈ R(xk) and xk ≥ xk+1 for each k. Since X is finite, the sequence must stabilize at some stage;
but then we have a fixed point. Given xk+1 < xk and xk+1 ∈ R(xk), we have R(xk) ≥inf R(xk+1), hence
we can pick xk+2 ∈ R(xk+1) such that xk+2 ≤ xk+1.

When X is a lattice, Corollary to Proposition 3.2.a can be strengthened at the price of a lengthier
proof.

Theorem 3.5. Let X be a relatively complete lattice, S be a poset, R : S → B
∅\
X be increasing w.r.t.

≥wV, and every R(s) (s ∈ S) be a chain-complete subset of X. Then there exists a monotone selection
from R.

Remark. Probably, this result was proven by A.F. Veinott. Milgrom and Shannon (1994) ascribed to
him their “Theorem A2,” which is actually wrong, see Kukushkin (2007, Example 6.1). The chain-
completeness assumption was lacking there, while there was a superfluous assumption that S is a
net. Proposition 6.2 from Kukushkin (2007) established the existence of a monotone selection under
a superfluous assumption that every R(s) is a complete sublattice. Most likely, the replacement of the
references to “Theorem A2” with those to our Theorem 3.5 makes Milgrom and Shannon’s proof of
their Theorem A3 valid (actually, stronger existence results can be obtained in a more direct way, see
Theorems 5.3 below).
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Proof. For every s ∈ S, we denote R+(s) := {x ∈ R(s) | @y ∈ R(s) [y > x]} and R−(s) := {x ∈
R(s) | @y ∈ R(s) [y < x]}. Exactly as in the proof of Proposition 3.2.a, Zorn’s Lemma immediately
implies that R−(s) 6= ∅ 6= R+(s) for every s ∈ S. Moreover, for every s ∈ S and x ∈ R(s), there exists
x∗ ∈ R−(s) such that x∗ ≤ x.

Lemma 3.5.1. If s′ > s, y ∈ R+(s′) and x ∈ R−(s), then y ≥ x.

Proof. Otherwise, we would have y ∨ x > y and y ∧ x < x; therefore, y ∨ x /∈ R(s′) and y ∧ x /∈ R(s),
contradicting R(s′) ≥wV R(s).

We start with an arbitrary mapping r0 : S → X such that r0(s) ∈ R+(s) for every s ∈ S. We define
S as the set of pairs 〈S̄, r〉 such that S̄ ⊆ S, r : S → X is a selection from R, and two conditions hold:

∀s ∈ S \ S̄ [r(s) = r0(s)];

∀s ∈ S̄ ∀s′ ∈ S [s′ > s ⇒ r(s′) ≥ r(s)].

Clearly, 〈∅, r0〉 ∈ S 6= ∅. We define a partial order on S by

〈S̄, r〉 ≥ 〈S̄′, r′〉 ­
[
S̄ ⊇ S̄′ & ∀s ∈ S̄′ [r(s) ≥ r′(s)]

]
.

Applying Zorn’s Lemma (Theorem A in Subsection 2.3), we show the existence of a maximizer of
the order on S. Given a chain {〈S̄α, rα〉}α ⊆ S, we define S̄∞ :=

⋃
α S̄α; r∞(s) := r0(s) for s /∈ S̄∞;

r∞(s) := supα : s∈S̄α rα(s) for s ∈ S̄∞. Clearly, S 3 〈S̄∞, r∞〉 ≥ 〈S̄α, rα〉 for every α.

Let 〈S̄, r∗〉 be a maximizer. By definition, r∗ is a selection from R; if S̄ = S, it is increasing and
we are home. Supposing s∗ ∈ S \ S̄, we denote S+ := {s ∈ S | s > s∗}, S̄− := {s ∈ S̄ | s < s∗}, and
x− :=

∨
s∈S̄− r∗(s). If S̄− 6= ∅, then x− exists because r∗(s∗) ≥ r∗(s) for every s ∈ S̄− by the definition

of S; if S̄− = ∅, then x− is not needed at all in the following (technically, “x− := −∞”). Now we have
r∗(s) ≥ x− for every s ∈ S+ ∪ {s∗}; if we replace R(s) for all those s with {x ∈ R(s) | x ≥ x−}, then
both chain-completeness and the monotonicity w.r.t. ≥wV will obviously survive. In other words, we
henceforth assume that x ≥ x− for every s ∈ S+ ∪ {s∗} and x ∈ R(s).

Now we pick x∗ ∈ R−(s∗) such that x∗ ≤ r∗(s∗). We denote Z+ := {s ∈ S+ | r∗(s) ≥ x∗} and
Z− := S+ \ Z+. If Z− = ∅, we may define r∗∗(s) := r∗(s) for all s 6= s∗ and r∗∗(s∗) := x∗; clearly,
S 3 〈S̄ ∪ {s∗}, r∗∗〉 > 〈S̄, r∗〉, contradicting the maximality of the latter. Let Z− 6= ∅; then Z− ⊆ S̄ by
Lemma 3.5.1 since r0(s) ∈ R+(s) for every s ∈ S̄. We define r∗∗(s) := r∗(s) for s ∈ S \ (Z− ∪ {s∗}),
r∗∗(s∗) := x∗, and r∗∗(s) := r∗(s) ∨ x∗ for s ∈ Z−. Again, S 3 〈S̄ ∪ {s∗}, r∗∗〉 > 〈S̄, r∗〉, contradicting
the maximality of the latter.

Corollary. Let X be a finite lattice, S be a poset, and R : S → B
∅\
X be increasing w.r.t. ≥wV. Then

there exists a monotone selection from R.

Without topological restrictions on values R(s), the existence of a monotone selection can be ob-
tained either for a weakly ascending correspondence from a finite poset, or for an ascending correspon-
dence.

Proposition 3.6. Let X be a lattice, S be a finite poset, and R : S → B
∅\
X be increasing w.r.t. ≥wV.

Then there exists a monotone selection from R.

Proof. For every s ∈ S and x∗ ∈ X, we denote R(s; x∗) := {x ∈ R(s) | x ≤ x∗}.
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Lemma 3.6.1. Let s∗ ∈ M(S, >). Then there exists x∗ ∈ R(s∗) for which R(s; x∗) 6= ∅ for every
s ∈ S− := {s ∈ S | s < s∗}.

Proof. For every x ∈ R(s∗), we denote Z+(x) := {s ∈ S− | R(s;x∗) 6= ∅} and Z−(x) := S− \ Z+(x).
Then we pick x0 ∈ R(s∗) arbitrarily and define a sequence x0, x1, . . . by recursion. Let xk ∈ R(s∗) have
been defined; if Z+(xk) = S−, we take xk as x∗ and finish the process. Otherwise, we pick s ∈ Z−(xk)
arbitrarily; we have R(s∗) ≥wV R(s). Picking x ∈ R(s) arbitrarily, we apply (3.1d) with y = xk.
Since R(s;xk) = ∅, we have x ∧ xk /∈ R(s), hence x ∨ xk ∈ R(s∗). Defining xk+1 := x ∨ xk > xk, we
obtain Z+(xk) ⊂ Z+(xk+1). Since S is finite, the sequence must stabilize at some stage, i.e., reach the
situation Z+(xk) = S−.

Now the proposition is proven with straightforward recursion: we pick an undominated s∗ ∈ S;
define r(s∗) := x∗, taking x∗ from Lemma 3.6.1; replace R(s) with R(s; x∗) for each s ∈ S− – the
modified correspondence remains increasing w.r.t. ≥wV; and then apply the same procedure to S \
{s∗}.

Proposition 3.7. Let X be a poset, S be a finite chain, and R : S → B
∅\
X be increasing w.r.t. ≥inf .

Then there exists a monotone selection from R.

A straightforward proof (somewhat similar to that of Proposition 3.6) is omitted. On the other
hand, the replacement of ≥wV with ≥pwV defined by (3.1k) makes Proposition 3.6 wrong.

Example 3.8. Let S = X := {0, 1, 2} ⊂ R; R(0) := {1}; R(1) := {0, 2}; R(2) := {1}. It is easy to see
that R is increasing w.r.t. ≥pwV, but there is neither monotone selection, nor fixed point.

Proposition 3.9 (Danilov, 2007). Let X be a lattice, S be a countable poset, and R : S → B
∅\
X be

increasing w.r.t. ≥Vt; then there exists a monotone selection from R.

Theorem 3.10. Let X be a sublattice of the Cartesian product of a finite number of chains, X ⊆∏
m∈M Cm; let S be a poset and R : S → B

∅\
X be increasing w.r.t. ≥Vt. Then there exists a monotone

selection from R.

Remark. Theorem 6 of Kukushkin (2007) established the existence of a monotone selection under the
assumption that X is just a chain. To the best of my knowledge, there is no example of a correspondence
increasing w.r.t. ≥Vt, but admitting no monotone selection.

Proof. First, we assume M totally ordered, say, M = {0, 1, . . . , m̄}; then, invoking Theorem C from
Subsection 2.3, we assume each Cm well ordered with an order Àm (having nothing to do with the
basic order on Cm). Then X ⊆ ∏

m∈M Cm is well ordered by the lexicographic combination: Given
y 6= x, we denote D(y, x) := {m ∈ M | ym 6= xm}, d := minD, and y À x ­ yd Àd xd.

We define r(s) := minR(s) (w.r.t. À); it exists and is unique. Now r is a selection from R by
definition; let us show it is increasing. Let s′ > s, y = r(s′) and x = r(s); since R is increasing w.r.t.
≥Vt, we have y ∧ x ∈ R(s) and y ∨ x ∈ R(s′). The set D(y, x) := {m ∈ M | ym 6= xm} is partitioned
into D+ := {m ∈ M | ym > xm} and D− := {m ∈ M | ym < xm}. If D− = ∅, then y ≥ x and we are
home. Supposing the contrary, we notice that D− = D(y, y ∨ x) = D(x, y ∧ x); let d := min D−. Since
y ∨ x À y by the definition of r, we have xd Àd yd, but then x À y ∧ x: a contradiction.

The replacement of ≥Vt with the “pseudo-Veinott” order ≥pV defined by (3.1i) makes Theorem 3.10
wrong even if X is a chain, unless S is a finite chain hence Proposition 3.7 applies. The fact is
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demonstrated by Example 2.3 from Roddy and Schröder (2005), where S = X and there is no fixed
point either; the example is countable, which fact proves that ≥Vt cannot be replaced with ≥pV in
Proposition 3.9 as well.

4 Optimization on Chains

4.1 Existence

Given a relatively chain-complete poset A and X ∈ CA, we denote X↓ := X \ {inf X} and X↑ := X \
{supX}. We consider two rather weak versions of Milgrom and Shannon’s (1994) upper semicontinuity
on chains, assuming Â a strict order on A:

∀X ∈ CA

[(
inf X↓ = inf X & ∀x, y ∈ X↓ [x > y ⇒ y Â x]

) ⇒ ∀x ∈ X↓ [inf X Â x]
]
; (4.1a)

∀X ∈ CA

[(
supX↑ = supX & ∀x, y ∈ X↑ [y > x ⇒ y Â x]

) ⇒ ∀x ∈ X↑ [supX Â x]
]
. (4.1b)

Proposition 4.1.a. Let Y be a chain-complete poset and Â be a strict order on Y satisfying (4.1a).
Then for every x ∈ Y \M(Y, Â< ) (where Â

< is defined by (2.3b)), there is y ∈ M(Y, Â< ) such that y Â
< x.

Remark. The statement obviously implies M(Y, Â< ) 6= ∅.

Proof. Let Λ be a well ordered set with a cardinality greater than that of Y . We construct, by
(transfinite) recursion, a mapping λ : Λ → Y such that:

∀α, β ∈ Λ
[
α > β ⇒ [λ(α) = λ(β) or λ(α) Â

< λ(β)]
]
; (4.2a)

∀α ∈ Λ
[
λ([0, α]) ∈ CY

]
. (4.2b)

First, we define λ(0) := x. Let λ(α) have been defined. If λ(α) ∈ M(Y, Â< ), we define λ(α + 1) :=
λ(α); actually, λ(α′) = λ(α) for all α′ > α in this case. Otherwise, we pick λ(α+1) Â

< λ(α) arbitrarily.
Both requirements (4.2) continue to hold for α + 1.

If α ∈ Λ is a limit ordinal and λ(β) has been defined for all β < α, we define λ(α) := infβ<α λ(β),
ensuring λ([0, α]) ∈ CY . Now (4.1a) implies λ(α) Â

< λ(β) for every β < α unless λ(α) = λ(β).

The final argument is straightforward. An equality λ(α′) = λ(α) with α′ > α is only possible when
λ(α) ∈ M(Y, Â< ). Since the cardinality of Λ is greater than that of X, the equality must occur at some
stage. Since λ(α) Â

< λ(0) = x, we are home.

Proposition 4.1.b. Let Y be a chain-complete poset and Â be a strict order on Y satisfying (4.1b).
Then for every x ∈ Y \M(Y, Â> ) (where Â

> is defined by (2.3a)), there is y ∈ M(Y, Â> ) such that y Â
> x.

The proof is dual to that of Proposition 4.1.a.

Theorem 4.2. Let A be a relatively chain-complete poset and Â be a strict order on A satisfying both
conditions (4.1). Then M(X,Â) 6= ∅ for every X ∈ CA.

Proof. The basic construction is similar to that from the proof of Proposition 4.1.a. We use both
auxiliary strict orders Â

> and Â
< defined by (2.3). Let Λ be a well ordered set with a cardinality greater

than that of A. Given X, we construct, by (transfinite) recursion, a mapping λ : Λ → X such that:

∀α ∈ Λ
[
λ(α) ∈ M(X, Â< )

]
;
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∀α, β ∈ Λ
[
α > β ⇒ [λ(α) = λ(β) or λ(α) Â

> λ(β)]
]
;

∀α ∈ Λ
[
λ([0, α]) ∈ CX

]
.

First, we define λ(0) := minX ∈ M(X, Â< ). Let λ(α) have been defined. If λ(α) ∈ M(X,Â),
we define λ(α + 1) := λ(α); actually, λ(α′) = λ(α) for all α′ > α in this case. Otherwise, we must
have x ∈ X such that x Â

> λ(α). We denote Y := {y ∈ X | y ≤ x} 3 x. If x ∈ M(Y, Â< ), we
define λ(α + 1) := x; otherwise, we apply Proposition 4.1.a, obtaining λ(α + 1) ∈ M(Y, Â< ) such that
λ(α+1) Â

< x. In either case, we have λ(α+1) Â λ(α), hence λ(α+1) > λ(α) because λ(α) ∈ M(X, Â< ),
and λ(α + 1) ∈ M(X, Â< ) because y Â

< λ(α + 1) would imply y ∈ Y .

Let α ∈ Λ be a limit ordinal and λ(β) have been defined for all β < α. Defining λ(α) := supβ<α λ(β),
we ensure λ([0, α]) ∈ CX . Now (4.1b) implies λ(α) Â

> λ(β) for every β < α unless λ(α) = λ(β), so
we only have to show that λ(α) ∈ M(X, Â< ). The existence of y ∈ X such that y Â

< λ(α) would
imply y < λ(β) for some β < α. Since λ(α) Â λ(β) or λ(α) = λ(β), we have a contradiction with
λ(β) ∈ M(X, Â< ).

The final argument is again straightforward. An equality λ(α′) = λ(α) with α′ > α is only possible
when λ(α) ∈ M(X,Â). Since the cardinality of Λ is greater than that of X, the equality must occur
at some stage.

Remark. Arguing similarly to the proof of Theorem 1 from Kukushkin (2008), it is easy to show that
conditions (4.1) are necessary and sufficient for the choice function M(·,Â) to be nonempty-valued and
path independent on CA.

Corollary. Let Â be an ordering on a relatively chain-complete poset A. Then M(X,Â) 6= ∅ for every
X ∈ CA if and only if both conditions (4.1) hold.

Proof. Sufficiency immediately follows from Theorem 4.2. If (4.1a) or (4.1b) is violated for X ∈ CA,
then M(X,Â) = ∅.
Remark. Actually, the corollary holds when Â is a semiorder. Example 3 from Kukushkin (2008)
shows that the necessity does not hold even for interval orders.

Assuming Â an ordering, we introduce two more versions of upper semicontinuity on chains.

∀X ∈ CA

[(
inf X↓ = inf X & ∀x, y ∈ X↓ [x > y ⇒ y º x]

) ⇒ ∀x ∈ X [inf X º x]
]
; (4.3a)

∀X ∈ CA

[(
supX↑ = supX & ∀x, y ∈ X↑ [y > x ⇒ y º x]

) ⇒ ∀x ∈ X [supX º x]
]
. (4.3b)

It is easy to see that (4.3a)⇒(4.1a) while (4.3b)⇒(4.1b).

Proposition 4.3.a. Let Y be a chain-complete poset and Â be an ordering on Y satisfying (4.3a).
Then for every x ∈ Y \M(Y, º< ) (where º

< is defined by (2.3d)), there is y ∈ M(Y, º< ) such that y º
< x.

Proposition 4.3.b. Let Y be a chain-complete poset and Â be an ordering on Y satisfying (4.3b).
Then for every x ∈ Y \M(Y, º> ) (where º

> is defined by (2.3c)), there is y ∈ M(Y, º> ) such that y º
> x.

Straightforward modifications of the proof of Proposition 4.1.a suffice. The remark after that
proposition is relevant here as well.

Theorem 4.4. Let Â be an ordering on a relatively chain-complete poset A. Then M(X,Â) ∈ CA for
every X ∈ CA if and only if both conditions (4.3) hold.
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Proof. Let (4.3a) hold, X ∈ CA and Y ∈ B
∅\
X ; we have to show that inf Y ∈ M(X,Â). We denote

Z := {x ∈ X | x ≥ inf Y }; since Y ⊆ M(X,Â), we have Z ∩M(X,Â) 6= ∅; since X ∈ CA, we have
inf Y ∈ Z ∈ CA. By Proposition 4.3.a, there exists y ∈ M(Z, º< ) ∩ M(X,Â). If y = inf Y , we are
home; otherwise, y > inf Y , hence there is z ∈ Z ∩M(X,Â) such that z < y, which contradicts the
assumption about y.

Conversely, let (4.3a) be violated for X ∈ CA. If, for every x ∈ X, there is y ∈ X such that y Â
< x,

then we can easily produce Y ∈ CA violating (4.1a), hence M(Y,Â) = ∅. Otherwise, without restricting
generality, x ∼ y for all x, y ∈ X \ {inf X}, hence M(X,Â) = X \ {inf X} /∈ CA.

Both sufficiency and necessity of (4.3b) are shown in a dual way.

Remark. Corollary to Theorem 4.2 [Theorem 4.4] remains valid if the condition (4.1b) [(4.3b)] is
restricted to well ordered chains, while condition (4.1a) [(4.3a)] to “reversed” well ordered chains.
Moreover, in each case it is sufficient only to consider chains of the minimal length in their cardinality.
The similarity with Smith’s (1974) Theorems 4.1 and 4.2 is manifest.

Proposition 4.5. Let Â be an ordering on a relatively chain-complete poset A satisfying both conditions
(4.3); let X be a chain-complete subset of A such that M(X,Â) 6= ∅. Then M(X,Â) is a chain-complete
subset of X, hence of A as well.

A straightforward proof is omitted.

Given a relatively chain-complete poset A, a poset S, and a chain C, we call a mapping u : A×S → C
regular if every ordering Âs on A represented by u(·, s), s ∈ S, satisfies both conditions (4.1). We call u
strongly regular if every ordering Âs on A represented by u(·, s), s ∈ S, satisfies both conditions (4.3).
Theorems 4.2 and 4.4, respectively, immediately imply that RX(s) 6= ∅ [RX(s) ∈ CA] for all s ∈ S
whenever u is [strongly] regular, A is relatively chain-complete, and X ∈ CA.

4.2 Monotonicity

It is well known that the monotonicity of best responses hinges on “single crossing” conditions of
various kinds (Milgrom and Shannon, 1994). As Savvateev (2007) observed, those conditions are
most conveniently presented with the help of a ternary relation on the set of binary relations on a
given set: “B1 is closer to B0 than B2 is.” In the following, the role of B0 is always played by (the
asymmetric component of) the basic order on A, while B1 and B2 are preferences under different
exogenous parameters.

Let Â and Â′ be orderings on a poset A. We consider four conditions:

∀x, y ∈ A
[
y Â

> x ⇒ y Â′ x]
; (4.4a)

∀x, y ∈ A
[
y º

> x ⇒ y º′ x]
; (4.4b)

∀x, y ∈ A
[
y º

> x ⇒ y Â′ x]
; (4.4c)

∀x, y ∈ A
[
y Â

> x ⇒ y º′ x]
. (4.4d)

Each condition defines a binary relation on the set of orderings on A. The first two are preorders. The
third is transitive, but generally not reflexive. The last relation need not even be transitive.

Given two posets A and S and a chain C, we say that u : A×S → C satisfies the lower single crossing
condition if (4.4a) is satisfied whenever s, s′ ∈ S, s′ > s, u(·, s) represents Â, and u(·, s′) represents Â′.
Similarly, u satisfies the upper [strict or weak ] single crossing condition if (4.4b) [(4.4c) or (4.4d)] is
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satisfied under the same circumstances. Clearly, u satisfies the single crossing condition (Milgrom and
Shannon, 1994) if both upper and lower single crossing conditions hold.

For more convenience in further referencing, we consider four “dual” versions of conditions (4.4):

∀x, y ∈ A
[
y º

< x ⇒ y º′ x]
; (4.5a)

∀x, y ∈ A
[
y Â

< x ⇒ y Â′ x]
; (4.5b)

∀x, y ∈ A
[
y º

< x ⇒ y Â′ x]
; (4.5c)

∀x, y ∈ A
[
y Â

< x ⇒ y º′ x]
. (4.5d)

It is easily checked that each condition (4.5) is equivalent to the corresponding condition (4.4) after
the exchange of the roles of Â and Â′. Therefore, the (upper, lower, strict, or weak) single crossing
conditions could be defined with references to (4.5) as well.

For C = R, the single crossing condition can be expressed as a single formula with the help of the
function sign(t) on R, which is −1 if t < 0, 0 if t = 0, and 1 if t > 0:

[s′ > s & y > x] ⇒ sign
(
u(y, s′)− u(x, s′)

) ≥ sign
(
u(y, s)− u(x, s)

)
; (4.6)

although subtraction is used in the formulation, the property itself is purely ordinal. Obviously, (4.6)
is implied by Topkis’s (1979) cardinal increasing differences condition:

[s′ > s & y > x] ⇒ u(y, s′)− u(x, s′) ≥ u(y, s)− u(x, s), (4.7)

while the strict single crossing condition is implied by a version of (4.7) with a strict inequality in the
right hand side. As is well known, (4.7) is symmetric w.r.t. both arguments of u(·, ·), while (4.6) is
not. The weak single crossing condition holds when the differences may decrease, but not “too much.”
Note that both (4.7) and its strict version are invariant under increasing affine transformations, i.e.,
relate to an NM utility function u.

Proposition 4.6. Let A and S be posets, C be a chain, and u be a mapping A × S → C. Then the
following statements are equivalent.

1. u satisfies the lower single crossing condition.

2. There holds RX(s′) ≥∧ RX(s) whenever s′, s ∈ S, s′ > s, and X ∈ B
∅\
A is a chain such that

RX(s′) 6= ∅ 6= RX(s).

3. There holds RX(s′) ≥inf RX(s) whenever s′, s ∈ S, s′ > s, and X ∈ B
∅\
A is a finite chain.

Proof. Let Statement 1 hold, s′, s ∈ S, s′ > s, and RX(s′) 6= ∅ 6= RX(s). We have to show RX(s′) ≥∧
RX(s); let y ∈ RX(s′) and x ∈ RX(s). If y ≥ x, we are home immediately; let x > y. If y ∈ RX(s), we
are home again. If y /∈ RX(s), then u(x, s) > u(y, s), hence u(x, s′) > u(y, s′) by (4.4a), contradicting
the assumption y ∈ RX(s′).

Let Statement 1 be violated: there are s′, s ∈ S and x, y ∈ A such that s′ > s, y > x, u(y, s) >
u(x, s), but u(x, s′) ≥ u(y, s′). Then we define X := {x, y} and immediately obtain x ∈ RX(s′)\RX(s),
hence RX(s′) ≥inf RX(s) does not hold, i.e., Statement 3 is invalid.

Proposition 4.7. Let A and S be posets, C be a chain, and u be a mapping A × S → C. Then the
following statements are equivalent.
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1. u satisfies the upper single crossing condition.

2. There holds RX(s′) ≥∨ RX(s) whenever s′, s ∈ S, s′ > s, and X ∈ B
∅\
A is a chain such that

RX(s′) 6= ∅ 6= RX(s).

3. There holds RX(s′) ≥sup RX(s) whenever s′, s ∈ S, s′ > s, and X ∈ B
∅\
A is a finite chain.

The proof is dual to that of Proposition 4.6.

Corollary. Let A and S be posets, C be a chain, and u be a mapping A× S → C. Then the following
statements are equivalent.

1. u satisfies the single crossing condition.

2. There holds RX(s′) ≥Vt RX(s) whenever s′, s ∈ S, s′ > s, and X ∈ B
∅\
A is a chain such that

RX(s′) 6= ∅ 6= RX(s).

3. There hold RX(s′) ≥inf RX(s) and RX(s′) ≥sup RX(s) whenever s′, s ∈ S, s′ > s, and X ∈ B
∅\
A is

a finite chain.

Theorem 4.8. Let A be a relatively chain-complete poset, S be a poset, C be a chain, and u be a regular
mapping A × S → C satisfying the single crossing condition. Then there exists a monotone selection
from RX on S for every X ∈ CA.

Proof. For every X ∈ CA and s ∈ S, we have RX(s) 6= ∅ by Theorem 4.2 while RX is increasing w.r.t.
≥Vt by the previous Corollary; therefore, a monotone selection exists by Theorem 3.10.

Remark. Example 6.1 from Kukushkin (2007) shows that the lower (or upper) single crossing condition
is not enough here; however, there is no clear prospect for a necessity result.

Proposition 4.9. Let A and S be posets, C be a chain, and u be a mapping A × S → C. Then the
following statements are equivalent.

1. u satisfies the strict single crossing condition.

2. There holds RX(s′) >> RX(s) whenever s′, s ∈ S, s′ > s, and X ∈ B
∅\
A is a chain such that

RX(s′) 6= ∅ 6= RX(s).

3. There holds RX(s′) >> RX(s) whenever s′, s ∈ S, s′ > s, and X ∈ B
∅\
A is a finite chain.

Proof. Let the strict single crossing condition hold, s′, s ∈ S, s′ > s, and RX(s′) 6= ∅ 6= RX(s). We
have to show RX(s′) >> RX(s); let y ∈ RX(s′) and x ∈ RX(s). If y ≥ x, we are home; let x > y. We
have u(x, s) ≥ u(y, s) since x ∈ RX(s); applying (4.4c), we obtain u(x, s′) > u(y, s′), which contradicts
y ∈ RX(s′).

Let the strict single crossing condition be violated: there are s′, s ∈ S and x, y ∈ A such that s′ > s,
y > x, u(y, s) ≥ u(x, s), but u(x, s′) ≥ u(y, s′). Then we define X := {x, y} and immediately obtain
y ∈ RX(s) while x ∈ RX(s′), hence RX(s′) >> RX(s) does not hold.

Proposition 4.10. Let A and S be posets, C be a chain, and u be a mapping A × S → C. Then the
following statements are equivalent.

1. u satisfies the weak single crossing condition.
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2. There holds RX(s′) ≥wV RX(s) whenever s′, s ∈ S, s′ > s, and X ∈ B
∅\
A is a chain such that

RX(s′) 6= ∅ 6= RX(s).

3. There holds RX(s′) ≥wV RX(s) whenever s′, s ∈ S, s′ > s, and X ∈ B
∅\
A is a finite chain.

Proof. Let the weak single crossing condition hold, s′, s ∈ S, s′ > s, and RX(s′) 6= ∅ 6= RX(s). We
have to show RX(s′) ≥wV RX(s); let y ∈ RX(s′) and x ∈ RX(s). If y ≥ x, we are home; let x > y.
We have to show that either y ∈ RX(s) or x ∈ RX(s′). Since x ∈ RX(s), we have u(x, s) ≥ u(y, s). If
u(x, s) = u(y, s), we are home; otherwise, we apply (4.4d), obtaining u(x, s′) ≥ u(y, s′), which implies
x ∈ RX(s′).

Let the weak single crossing condition be violated: there are s′, s ∈ S and x, y ∈ A such that s′ > s,
y > x, u(y, s) > u(x, s), but u(x, s′) > u(y, s′). Then we define X := {x, y} and immediately obtain
RX(s) = {y} while RX(s′) = {x}, hence RX(s′) ≥wV RX(s) does not hold.

Theorem 4.11. Let A be a relatively chain-complete poset, S be a poset, C be a chain, and u be a
strongly regular mapping A× S → C. Then u satisfies the weak single crossing condition if and only if
there exists a monotone selection from RX on S for every X ∈ CA.

Proof. If u satisfies the weak single crossing condition, then RX is increasing w.r.t. ≥wV by Proposi-
tion 4.10; RX(s) ∈ CA for every s ∈ S by Proposition 4.5. Therefore, a monotone selection exists
by Theorem 3.5. If (4.4d) is violated, we argue in exactly the same way as in the necessity proof in
Proposition 4.10 and see that no monotone selection is possible even on {s, s′} ⊆ S.

Naturally, one does not have to be satisfied with maximization on chains, although scalar strategies
are met in economics models most often. The necessity of single crossing conditions, obviously, holds
on any class of admissible subsets that contains all finite chains. The sufficiency is not so robust.

Example 4.12. Let A := {(0, 0), (0, 1), (1, 0), (1, 1)} ⊂ R2, S := {0, 1}, and a function u : A× S → R
be defined by the following matrices (the axes are directed upwards and rightwards):

s = 0[
4 0
0 3

] s = 1[
5 4
0 6

]

Clearly, u satisfies the strict single crossing condition, actually, even the strict version of (4.7). However,
R(0) = {(0, 1)}, while R(1) = {(1, 0)}. Therefore, even R(1) ≥pwV R(0) does not hold (and neither
R(1) ≥inf R(0), nor R(1) ≥sup R(0) for that matter); there is no monotone selection either.

5 Optimization on Lattices

5.1 Existence

A function v on a lattice A is supermodular if

∀x, y ∈ A
[
v(x ∨ y)− v(x) ≥ v(y)− v(x ∧ y)

]
. (5.1)

Milgrom and Shannon (1994) called a function v on a lattice A quasisupermodular if

∀x, y ∈ A
[
sign

(
v(x ∨ y)− v(y)

) ≥ sign
(
v(x)− v(x ∧ y)

)]
. (5.2)

18



Clearly, (5.1) implies (5.2). The former condition is cardinal (refers to an NM utility), while the latter
is purely ordinal and can easily be reformulated in terms of binary relations (Savvateev, 2007):

∀x, y ∈ A
[
x Â y ∧ x ⇒ y ∨ x Â y

]
; (5.3a)

∀x, y ∈ A
[
y Â y ∨ x ⇒ y ∧ x Â x

]
. (5.3b)

We replace conditions (5.3) with a conjunction of four independent conditions:

∀x, y ∈ A
[
x Â y ∧ x ⇒ [(y ∨ x Â y) or (y ∨ x Â x)]

]
; (5.4a)

∀x, y ∈ A
[
y º y ∨ x ⇒ [(y ∧ x º x) or (y ∧ x º y)]

]
; (5.4b)

∀x, y ∈ A
[
x º y ∧ x ⇒ [(y ∨ x º y) or (y ∨ x º x)]

]
; (5.4c)

∀x, y ∈ A
[
y Â y ∨ x ⇒ [(y ∧ x Â x) or (y ∧ x Â y)]

]
. (5.4d)

Remark. Each condition (5.4) holds trivially when x and y are comparable in the basic order.

Proposition 5.1. An ordering on a lattice satisfies both conditions (5.3) if and only if it satisfies all
conditions (5.4).

Proof. The necessity is obvious. To prove the sufficiency, we suppose the contrary. Let x Â y ∧ x, but
y º y ∨ x; then y ∨ x Â x by (5.4a), hence y Â y ∧ x by transitivity, which contradicts (5.4b). The
proof of the equivalence (5.3b) ≡ [(5.4c) & (5.4d)] is dual.

Example 5.2. Let A := {(0, 0), (0, 1), (1, 0), (1, 1)} ⊂ R2; we consider four orderings on A represented
by these matrices (the axes are directed upwards and rightwards):

a.

[
0 0
1 2

]
b.

[
2 2
0 1

]
c.

[
1 0
2 2

]
d.

[
2 1
0 0

]
.

The ordering represented by the matrix “a” satisfies all conditions (5.4) except (5.4a), and similarly
with other matrices.

Theorem 5.3.a. Let A be a relatively complete lattice and Â be an ordering on A satisfying (5.4d),
(4.1a), and (4.3b). Then M(X,Â) 6= ∅ for every X ∈ LA (where LA denotes the set of all nonempty
complete sublattices X ⊆ A ).

Proof. The basic construction is similar to that in the proof of Theorem 4.2. We again use both
auxiliary strict orders Â

> and Â
< defined by (2.3).

Lemma 5.3.1. If X is a sublattice of A, x ∈ M(X, Â< ) and X 3 y Â x, then y ∨ x º y [Â x].

Proof. If y Â y ∨ x, then condition (5.4d) applies. The second disjunctive term in the right hand side
would imply the first one, and the latter is impossible under the condition x ∈ M(X, Â< ).

Let Λ be a well ordered set with a cardinality greater than that of A. Given X, we construct, by
(transfinite) recursion, a mapping λ : Λ → X such that:

∀α ∈ Λ
[
λ(α) ∈ M(X, Â< )

]
; (5.5a)

∀α, β ∈ Λ
[
α > β ⇒ [λ(α) = λ(β) or λ(α) Â

> λ(β)]
]
; (5.5b)
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∀α ∈ Λ
[
λ([0, α]) ∈ CX

]
. (5.5c)

First, we define λ(0) :=
∧

X ∈ M(X, Â< ). Let λ(α) have been defined. If λ(α) ∈ M(X,Â), we
define λ(α + 1) := λ(α); actually, λ(α′) = λ(α) for all α′ > α in this case. Otherwise, Lemma 5.3.1
implies the existence of x∗ ∈ X such that x∗ Â

> λ(α). We denote Y := {y ∈ X | λ(α) ≤ y ≤ x∗} 3 x∗.
If x∗ ∈ M(Y, Â< ), we define λ(α+1) := x∗; otherwise, we apply Proposition 4.1.a, obtaining λ(α+1) ∈
M(Y, Â< ) such that λ(α + 1) Â

< x∗. In either case, we have λ(α + 1) Â λ(α), hence λ(α + 1) Â
> λ(α).

Let us show λ(α + 1) ∈ M(X, Â< ). Supposing the contrary, y Â
< λ(α + 1), we apply Lemma 5.3.1 to

x = λ(α) and y, obtaining λ(α) ∨ y º y Â λ(α + 1); since λ(α + 1) > λ(α) and λ(α + 1) > y, we have
λ(α + 1) ≥ λ(α)∨ y > λ(α), hence λ(α)∨ y ∈ Y and λ(α)∨ y Â

< λ(α + 1), which contradicts the choice
of λ(α + 1).

Let α ∈ Λ be a limit ordinal and λ(β) have been defined for all β < α. Then we define λ(α) :=
supβ<α λ(β), ensuring that λ([0, α]) ∈ CX . Now (4.1b) implies λ(α) Â

> λ(β) for every β < α unless
λ(α) = λ(β), so we only have to show that λ(α) ∈ M(X, Â< ).

If λ(α) = λ(β) for some β < α, we are home immediately. Otherwise, we suppose the contrary,
y Â

< λ(α), and recursively construct a mapping µ : [0, α] → X such that µ(β) = µ(γ) or µ(β) º
> µ(γ)

whenever β > γ. We define µ(0) := y; whenever µ(β) has been defined, µ(β + 1) := µ(β) ∨ λ(β);
whenever β is a limit ordinal and µ(γ) have been defined for all γ < β, we define µ(β) := supγ<β µ(γ).
Both monotonicity requirements are easily checked by Lemma 5.3.1 and (4.3b).

Now we have µ(α) º µ(0) = y Â λ(α). On the other hand, λ(α) > y and λ(α) > λ(β) for all
β < α; straightforward induction shows that λ(α) ≥ µ(β) for all β < α, hence λ(α) ≥ µ(α). Besides,
we have µ(β) ≥ λ(β) for all β < α, hence µ(α) ≥ λ(α). Therefore, λ(α) = µ(α), hence λ(α) Â λ(α).
The contradiction proves that λ(α) ∈ M(X, Â< ) indeed.

The final argument is standard. An equality λ(α′) = λ(α) with α′ > α is only possible when
λ(α) ∈ M(X,Â). Since the cardinality of Λ is greater than that of X, the equality must occur at some
stage.

Remark. If X is a complete chain, all conditions (5.4) become vacuous when restricted to x, y ∈ X,
while (4.3b) can be replaced with (4.1b) (Theorem 4.2 above). If X is not a chain, (4.1b) is not sufficient
for the above proof to remain valid, but no counterexample to the statement itself is known.

Theorem 5.3.b. Let A be a relatively complete lattice and Â be an ordering on A satisfying (5.4a),
(4.1b), and (4.3a). Then M(X,Â) 6= ∅ for every X ∈ LA.

The proof is dual to that of Theorem 5.3.a.

Theorem 5.3.c. Let A be a relatively complete lattice and Â be an ordering on A satisfying (5.4c)
and both conditions (4.3). Then M(X,Â) 6= ∅ for every X ∈ LA.

Proof. The general scheme of the proof is the same as in Theorem 5.3.a. We replace (5.5a) with λ(α) ∈
M(X, º< ), and make an appropriate modification of Lemma 5.3.1. The reference to Proposition 4.1.a
is replaced with that to Proposition 4.3.a; (4.3a) is needed here rather than (4.1a); (4.3b) is needed for
the same reasons.

Theorem 5.3.d. Let A be a relatively complete lattice and Â be an ordering on A satisfying (5.4b)
and both conditions (4.3). Then M(X,Â) 6= ∅ for every X ∈ LA.

The proof is dual to that of Theorem 5.3.c.
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Example 5.4. Let X := [{n/(n + 1)}n∈N ∪ {1}] × [{0} ∪ {1/(n + 1)}n∈N] ⊂ R2 and v : X → R be as
follows: v(1, x2) = v(x1, 0) := 0; v(n1/(n1 + 1), 1/(n2 + 1)) := min{n1, n2}. Viewing X as a complete
sublattice of R2, it is easy to check that the ordering represented by v satisfies (5.4c), (5.4b), and
both (4.1); conditions (4.3b) and (4.3a) are violated by chains {n1/(n1 + 1)}n1≥n2 × {1/(n2 + 1)} and
{n1/(n1 + 1)} × {1/(n2 + 1)}n2≥n1 , respectively. Obviously, supx∈X v(x) = +∞, hence there is no
maximizer.

Remark. Conditions (5.3) are meaningful for an arbitrary binary relation Â; conditions (5.4) can
easily be modified to the same effect. It remains unclear whether an analogue of Theorems 5.3 could
be obtained for an interval order or, at least, a semiorder.

Proposition 5.5. Let X be a lattice and Â be an ordering on X such that M(X,Â) 6= ∅. Then
M(X,Â) is a subsemilattice of X if Â satisfies (5.4a) or (5.4b); M(X,Â) is a join-subsemilattice of
X if Â satisfies (5.4c) or (5.4d).

A straightforward proof is omitted.

Theorem 5.6. Let A be a relatively complete lattice and Â be an ordering on A satisfying [(5.4a) or
(5.4b)], [(5.4c) or (5.4d)], and both conditions (4.3). Then M(X,Â) ∈ LA for every X ∈ LA.

Proof. Given X ∈ LA, we have M(X,Â) 6= ∅ by an appropriate version of Theorem 5.3. By Proposi-
tion 5.5, M(X,Â) is a sublattice of X, hence of A as well. By Proposition 4.5, it is chain-complete.
Now M(X,Â) ∈ LA by Proposition 2.2.

Remark. When A is not a chain, the very possibility to replace one condition with another shows that
there is no clear prospect for a necessity result in the style of Corollary to Theorem 4.2 or Theorem 4.4.

5.2 Monotonicity

To obtain characterization results for preferences ensuring monotonicity of RX for sublattices X ∈ B
∅\
A,

we have to consider variations of the problem itself. The sufficiency parts of Propositions 4.6–4.10 can
be interpreted as the monotonicity of the correspondence M(X, ·) w.r.t. relations (4.4) on the set of
orderings when X is a chain. Here, each condition (5.4) is shown to be necessary and sufficient for a
kind of such monotonicity on sublattices.

Proposition 5.7. Let A be a lattice and Â be an ordering on A. Then the following statements are
equivalent.

1. Â satisfies (5.4a).

2. There holds M(X,Â′) ≥∧ M(X,Â) whenever X is a sublattice of A and Â′ is an ordering on X
such that M(X,Â′) 6= ∅ 6= M(X,Â) and (4.4a) holds on X.

3. There holds M(X,Â′) ≥wV M(X,Â) whenever X is a sublattice of A and Â′ is an ordering on X
such that M(X,Â′) 6= ∅ 6= M(X,Â) and (4.4d) holds on X.

4. There holds M(X,Â′) ≥Inf M(X,Â) whenever X is a finite sublattice of A and Â′ is an ordering
on A such that (4.4a) and (4.4b) hold on A.

5. There holds M(X,Â′) ≥pwV M(X,Â) whenever X is a finite sublattice of A and Â′ is an ordering
on A such that (4.4a) holds on A.
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Proof. The implications Statement 2 ⇒ Statement 4 and Statement 3 ⇒ Statement 5 are obvious.

Statement 1 ⇒ Statement 2. Let M(X,Â) 6= ∅ 6= M(X,Â′), and (5.4a) and (4.4a) hold. We have
to show that y ∧ x ∈ M(X,Â) whenever y ∈ M(X,Â′) and x ∈ M(X,Â). Supposing the contrary, we
have x Â y ∧ x, hence y ∨ x Â y by (5.4a) and the optimality of x. Therefore, y ∨ x Â′ y by (4.4a),
contradicting the optimality of y.

Statement 1 ⇒ Statement 3. Let M(X,Â) 6= ∅ 6= M(X,Â′), and (5.4a) and (4.4d) hold. We have
to show M(X,Â′) ≥wV M(X,Â); let y ∈ M(X,Â′) and x ∈ M(X,Â). If y ∧ x ∈ M(X,Â), we are home;
otherwise, x Â y∧x, hence y∨x Â y by (5.4a) and the optimality of x. Therefore, y∨x º′ y by (4.4d),
hence y ∨ x ∈ M(X,Â′).

Statement 4 ⇒ Statement 1. Let (5.4a) be violated: there are x, y ∈ A such that x Â y ∧ x,
but y º y ∨ x and x º y ∨ x. Without restricting generality, x º y. We define X := L(x, y), so
y ∧ x /∈ M(X,Â) 3 x, and Y := {z ∈ A | z ≥ y}; our assumption implies x /∈ Y . Then we define
an ordering Â′ on A: it coincides with Â on A \ Y and on Y , whereas z′ Â′ z whenever z /∈ Y 3 z′.
Both (4.4a) and (4.4b) are obvious: Whenever z′ º> z and z ∈ Y , we have z′ ∈ Y as well. Meanwhile,
y ∈ M(X,Â′), hence M(X,Â′) ≥Inf M(X,Â) does not hold, i.e., Statement 4 is invalid.

Statement 5 ⇒ Statement 1. Let (5.4a) be violated. We pick x and y as in the previous paragraph,
define X := L(x, y), so y ∧ x /∈ M(X,Â) 3 x again, and then define Â′ in the same manner, but with
Y := {z ∈ A | z Â

> y} ∪ {y}. Clearly, M(X,Â′) = {y}, hence M(X,Â′) ≥pwV M(X,Â) does not hold.
Since Â′ and Â satisfy (4.4a), Statement 5 is invalid.

Proposition 5.8. Let A be a lattice and Â be an ordering on A. Then the following statements are
equivalent.

1. Â satisfies (5.4b).

2. There holds M(X,Â) ≥∧ M(X,Â′) whenever X is a sublattice of A and Â′ is an ordering on X
such that M(X,Â′) 6= ∅ 6= M(X,Â) and (4.5a) holds on X.

3. There holds M(X,Â) >> M(X,Â′) whenever X is a sublattice of A and Â′ is an ordering on X
such that M(X,Â′) 6= ∅ 6= M(X,Â) and (4.5c) holds on X.

4. There holds M(X,Â) ≥inf M(X,Â′) whenever X is a finite sublattice of A and Â′ is an ordering
on A such that (4.5c) holds on A.

Proof. Let (5.4b) hold, x ∈ M(X,Â′) and y ∈ M(X,Â). Let us show that y ∧ x ∈ M(X,Â′) if (4.5a)
holds. Supposing the contrary, we have x Â′ y ∧ x, hence x Â y ∧ x by (4.5a). Since y º x, (5.4b)
implies that y ∨ x Â y, which contradicts the optimality of y. Let us show that y ≥ x if (4.5c) holds.
Supposing the contrary, we have x > y ∧ x; since y º y ∨ x and y º x, we have y ∧ x º x by (5.4b).
Therefore, y ∧ x Â′ x by (4.5c), which contradicts the optimality of x.

Let (5.4b) be violated: there are x, y ∈ A such that x Â y∧x and y Â y∧x, but y º y∨x. Without
restricting generality, y º x; we define X := L(x, y), so y ∈ M(X,Â). Then we define an ordering
Â′ on A in the same manner as in the proof of Proposition 5.7, but with Y := {z ∈ A | z ≤ x}. On
every equivalence class E of º′, we pick a strictly increasing total order ÀE , existing by the Szpilrajn
theorem (Theorem B in Subsection 2.3). Then we define Â′′ as a lexicography: z′ Â′′ z if z′ Â′ z, or
if they belong to the same equivalence class E and z ÀE z′. Clearly, Â′′ is a total order, and both
z′ > z and z′ º′′ z can only hold together when z′ Â z; therefore, (4.5c) holds for Â′′ and Â. Meanwhile,
M(X,Â′′) = {x}, hence M(X,Â) ≥inf M(X,Â′′) does not hold.
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Proposition 5.9. Let A be a lattice and Â be an ordering on A. Then the following statements are
equivalent.

1. Â satisfies (5.4c).

2. There holds M(X,Â′) ≥∨ M(X,Â) whenever X is a sublattice of A and Â′ is an ordering on X
such that M(X,Â′) 6= ∅ 6= M(X,Â) and (4.4b) holds on X.

3. There holds M(X,Â′) >> M(X,Â) whenever X is a sublattice of A and Â′ is an ordering on X
such that M(X,Â′) 6= ∅ 6= M(X,Â) and (4.4c) holds on X.

4. There holds M(X,Â′) ≥sup M(X,Â) whenever X is a finite sublattice of A and Â′ is an ordering
on A such that (4.4c) holds on A.

Proof. Let (5.4c) hold, y ∈ M(X,Â′) and x ∈ M(X,Â). We have x º y ∧ x, hence y ∨ x º y by (5.4c)
and the optimality of x. Now (4.4b) implies y∨x º′ y, hence y∨x ∈ M(X,Â′). If (4.4c) holds, we have
either y ≥ x or y ∨ x Â′ y, but the latter would contradict the optimality of y.

Let (5.4c) be violated: there are x, y ∈ A such that y Â y ∨ x and x Â y ∨ x, but x º y ∧ x.
Without restricting generality, x º y. We define X := L(x, y), so x ∈ M(X,Â), and then define an
ordering Â′ exactly as in the proof of Proposition 5.7, with Y := {z ∈ A | z ≥ y}. On every equivalence
class E of º′, we pick a strictly increasing total order ÀE , existing by the Szpilrajn theorem. Then
we define Â′′ as a lexicography: z′ Â′′ z if z′ Â′ z, or if they belong to the same equivalence class E and
z′ ÀE z. Clearly, Â′′ is a total order, and z′ Â′′ z whenever z′ º> z; therefore, (4.4c) holds for Â′′ and Â.
Meanwhile, M(X,Â′′) = {y}, hence M(X,Â′′) ≥sup M(X,Â) does not hold.

Proposition 5.10. Let A be a lattice and Â be an ordering on A. Then the following statements are
equivalent.

1. Â satisfies (5.4d).

2. There holds M(X,Â) ≥∨ M(X,Â′) whenever X is a sublattice of A and Â′ is an ordering on X
such that M(X,Â′) 6= ∅ 6= M(X,Â) and (4.5b) holds on X.

3. There holds M(X,Â) ≥wV M(X,Â′) whenever X is a sublattice of A and Â′ is an ordering on X
such that M(X,Â′) 6= ∅ 6= M(X,Â) and (4.5d) holds on X.

4. There holds M(X,Â) ≥Sup M(X,Â′) whenever X is a finite sublattice of A and Â′ is an ordering
on A such that (4.5a) and (4.5b) hold on A.

5. There holds M(X,Â) ≥pwV M(X,Â′) whenever X is a finite sublattice of A and Â′ is an ordering
on A such that (4.5a) holds on A.

Proof. Let (5.4d) hold, x ∈ M(X,Â′) and y ∈ M(X,Â). If y ∨ x ∈ M(X,Â), this is sufficient for both
Statements 2 and 3. Supposing the contrary, we have y Â y ∨ x, hence y ∧ x Â x by (5.4d) and the
optimality of y. If (4.5b) holds, we have y ∧ x Â′ x, contradicting the optimality of x. If (4.5d) holds,
we have y ∧ x º′ x, hence y ∧ x ∈ M(X,Â′).

Let (5.4d) be violated: there are x, y ∈ A such that y Â y ∨ x, but x º y ∧ x and y º y ∧ x.
Without restricting generality, y º x. We define X := L(x, y), so y ∨ x /∈ M(X,Â) 3 y. Then we
define an ordering Â′ on A in exactly the same manner as in the proof of Proposition 5.8. Both (4.5a)
and (4.5b) are obvious, but x ∈ M(X,Â′), hence M(X,Â) ≥Sup M(X,Â′) does not hold. If we define Â′
in the same manner, but with Y := {z ∈ A | z < x & z Â x} ∪ {x}, we have M(X,Â′) = {x}, hence
M(X,Â) ≥pwV M(X,Â′) does not hold whereas Â′ and Â satisfy (4.5a).
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Proposition 5.11. Let A be a lattice and Â be an ordering on A. Then the following statements are
equivalent.

1. Both conditions (5.4a) and (5.4c) hold.

2. There holds M(X,Â′) ≥Vt M(X,Â) whenever X is a sublattice of A and Â′ is an ordering on X
such that M(X,Â′) 6= ∅ 6= M(X,Â) and (4.4a) and (4.4b) hold on X.

3. There holds M(X,Â′) ≥Vt M(X,Â) whenever X is a finite sublattice of A and Â′ is an ordering
on A such that (4.4a) and (4.4b) hold on A.

The equivalence immediately follows from Propositions 5.7 and 5.9.

Proposition 5.12. Let A be a lattice and Â be an ordering on A. Then the following statements are
equivalent.

1. Both conditions (5.4b) and (5.4d) hold.

2. There holds M(X,Â) ≥Vt M(X,Â′) whenever X is a sublattice of A and Â′ is an ordering on X
such that M(X,Â′) 6= ∅ 6= M(X,Â) and (4.5a) and (4.5b) hold on X.

3. There holds M(X,Â) ≥Vt M(X,Â′) whenever X is a finite sublattice of A and Â′ is an ordering
on A such that (4.5a) and (4.5b) hold on A.

The equivalence immediately follows from Propositions 5.8 and 5.10.

Theorem 5.13. Let A be a lattice and Â be an ordering on A. Then each of the two following lists of
requirements is equivalent to the quasisupermodularity of Â.

1. (a) There holds M(X,Â′) ≥Vt M(X,Â) whenever X is a sublattice of A and Â′ is an ordering on
X such that M(X,Â′) 6= ∅ 6= M(X,Â) and (4.4a) and (4.4b) hold on X;

(b) there holds M(X,Â) ≥Vt M(X,Â′) whenever X is a sublattice of A and Â′ is an ordering on
X such that M(X,Â′) 6= ∅ 6= M(X,Â) and (4.5a) and (4.5b) hold on X.

2. (a) There holds M(X,Â′) >> M(X,Â) whenever X is a sublattice of A and Â′ is an ordering on
X such that M(X,Â′) 6= ∅ 6= M(X,Â) and (4.4c) holds on X;

(b) there holds M(X,Â) >> M(X,Â′) whenever X is a sublattice of A and Â′ is an ordering on
X such that M(X,Â′) 6= ∅ 6= M(X,Â) and (4.5c) holds on X;

(c) there holds M(X,Â′) ≥wV M(X,Â) whenever X is a sublattice of A and Â′ is an ordering on
X such that M(X,Â′) 6= ∅ 6= M(X,Â) and (4.4d) holds on X;

(d) there holds M(X,Â) ≥wV M(X,Â′) whenever X is a sublattice of A and Â′ is an ordering on
X such that M(X,Â′) 6= ∅ 6= M(X,Â) and (4.5d) holds on X.

Remark. In contrast to Theorem 4 of Milgrom and Shannon (1994), here we obtained a character-
ization result without comparing optimization problems with different choice sets. An ordering on a
lattice is quasisupermodular if and only if it cannot destroy the monotonicity of best responses in any
parametric optimization problem satisfying (strong or weak) single crossing conditions.

Proof. The first equivalence immediately follows from Propositions 5.11 and 5.12; the second, from
Propositions 5.7–5.10.
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5.3 Implications for strategic games

A strategic game (with ordinal preferences) is defined by a finite set of players N , and strategy sets Xi

and preferences on XN :=
∏

i∈N Xi for all i ∈ N . We assume each player’s preference relation to be
an ordering represented by a mapping ui : Xi × X−i → Ci, where X−i :=

∏
j 6=i Xj and Ci is a chain;

“less rational” preferences are only considered in Section 8. Defining the best response correspondence
in the usual way,

Ri(x−i) := Argmax
xi∈Xi

ui(xi, x−i), (5.6)

a Nash equilibrium is xN ∈ XN such that xi ∈ Ri(x−i) for each i ∈ N .

Given a poset S, a monotonic pseudopartition of S consists of two subsets S−, S+ ⊆ S such that
S− ∩ S+ = ∅ and ∀s′, s ∈ S

[
s′ > s ⇒ [s ∈ S− or s′ ∈ S+]

]
. Clearly, any two points outside S− ∪ S+

must be incomparable.

Given a strategic game Γ and i ∈ N , we consider these four requirements.

Xi is a complete chain; ui is regular and satisfies the single crossing condition. (5.7a)

Xi is a complete chain; ui is strongly regular and satisfies the weak single crossing condition. (5.7b)

Xi is a complete sublattice of the Cartesian product of a finite number of complete chains;
ui satisfies the single crossing condition;

there is a monotonic pseudopartition 〈S−, S+〉 of X−i such that
the ordering Â on Xi represented by v(·) := u(·, x−i)

satisfies (4.1b), (4.3a), (5.4a), and (5.4c) for x−i ∈ S−,
(4.1a), (4.3b), (5.4b), and (5.4d) for x−i ∈ S+,

and all conditions of one of Theorems 5.3 for x−i ∈ X−i \ (S− ∪ S+). (5.7c)

Xi is a complete lattice;
ui is strongly regular and satisfies the weak single crossing condition;

there is a monotonic pseudopartition 〈S−, S+〉 of X−i such that
the ordering Â on Xi represented by v(·) := u(·, x−i)

satisfies (5.4a) for x−i ∈ S−, (5.4d) for x−i ∈ S+,
and one of conditions (5.4) for x−i ∈ X−i \ (S− ∪ S+). (5.7d)

Remark. It is easy to see that (5.7a) ⇒ (5.7c), while (5.7b) ⇒ (5.7d). However, it seems more
convenient to have those simpler versions written down explicitly.

Theorem 5.14. Let Γ be a strategic game such that, for each i ∈ N , at least one of the conditions
(5.7) holds. Then Γ possesses a Nash equilibrium.

Proof. Let us show the existence a monotone selection ri from the best response correspondence Ri

for each i ∈ N . If (5.7a) or (5.7b) holds, we apply either Theorem 4.8 or Theorem 4.11.

Let (5.7c) hold. We have Ri(x−i) 6= ∅ for every x−i ∈ X−i by one of Theorems 5.3. The correspon-
dence Ri is increasing w.r.t. ≥Vt by Propositions 5.11 or 5.12. Therefore, ri exists by Theorem 3.10.
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Let (5.7d) hold. ThenRi(x−i) is nonempty by one of Theorems 5.3 and complete by Proposition 4.5.
The correspondence Ri is increasing w.r.t. ≥wV by Propositions 5.7 or 5.10. Therefore, ri exists by
Theorem 3.5.

Now Tarski’s fixed point theorem (Theorem D in Section 3) can be applied to the Cartesian product
of the monotone selections.

Remark. Agliardi (2000) called a function v on a lattice A pseudosupermodular if the ordering rep-
resented by v satisfies (5.4a) and (5.4c). Lemma 3.1 from Kukushkin et al. (2005) showed that the
best response correspondence is increasing if the utility function is pseudosupermodular and satisfies
the single crossing condition. Obviously, (5.7) provide weaker sufficient conditions for increasing best
responses. It might be appropriate to call an ordering pseudosupermodular upwards [downwards] if it
satisfies (5.4a) and (5.4c) [(5.4b) and (5.4d)].

Proposition 3.6 can be applied to strategic games where all strategy sets but one are finite; Propo-
sition 3.9, to games where all strategy sets but one are countable. However, both conditions seem too
exotic to dwell on them. An extension of Theorem 3.10 to “infinite-dimensional” lattices would be of
much greater interest. Unfortunately, there is no idea so far about how this could be done.

6 Optimization on Semilattices

6.1 Existence

Assuming Â an ordering on a semilattice A, we consider three conditions somewhat reminiscent of
quasisupermodularity.

∀x, y ∈ A
[
[y 6≥ x & x 6≥ y] ⇒ y ∧ x Â x

]
; (6.1a)

∀x, y ∈ A
[
[y 6≥ x & x 6≥ y] ⇒ y ∧ x º x

]
; (6.1b)

∀x, y ∈ A
[
x Â y ∧ x ⇒ y ∧ x º y

]
. (6.1c)

Obviously, (6.1a) ⇒ (6.1b) ⇒ (6.1c); the first two conditions are very close to the (anti)monotonicity
of preferences in the basic order (though do not coincide with it). The third is not that stringent; a
term like semiquasisupermodularity might be appropriate.

Proposition 6.1. Let A be a semilattice, Â be an ordering on A satisfying (6.1c), and Â′ an ordering
on A satisfying (4.5a). Then Â′ satisfies (6.1c).

Proof. Let x Â′ y ∧ x. Then x Â y ∧ x by (4.5a) [or rather by (4.4a) with the reversed roles of Â and
Â′ ], hence y ∧ x º y by (6.1c), hence y ∧ x º

< y, hence y ∧ x º′ y by (4.5a). We see that (6.1c) holds for
Â′ as well.

Remark. There seems to be no analog of Proposition 6.1 for conditions (5.4) on lattices, or conditions
(4.1) or (4.3) for that matter.

Theorem 6.2. Let A be a relatively complete semilattice and Â be an ordering on A satisfying (6.1c),
(4.1b), and (4.3a). Then M(X,Â) 6= ∅ for every X ∈ SA (where SA denotes the set of all nonempty
complete subsemilattices X ⊆ A ).

Proof. The basic construction is similar to that from the proof of Theorem 5.3.a. We again use auxiliary
strict orders Â

> and º
< defined by (2.3).
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Lemma 6.2.1. If X is a subsemilattice of A, x ∈ M(X, º< ) and X 3 y Â x, then y Â
> x.

Proof. If y 6> x, then y ∧ x < x, hence x Â y ∧ x because x ∈ M(X, º< ). Now (6.1c) applies, hence
x Â y ∧ x º y, which contradicts the condition of the lemma.

Let Λ be a well ordered set with a cardinality greater than that of A. Given X, we construct, by
(transfinite) recursion, a mapping λ : Λ → X such that:

∀α ∈ Λ
[
λ(α) ∈ M(X, º< )

]
; (6.2a)

∀α, β ∈ Λ
[
α > β ⇒ [λ(α) = λ(β) or λ(α) Â

> λ(β)]
]
; (6.2b)

∀α ∈ Λ
[
λ([0, α]) ∈ CX

]
. (6.2c)

First, we define λ(0) :=
∧

X ∈ M(X, º< ). Let λ(α) have been defined. If λ(α) ∈ M(X,Â), we
define λ(α + 1) := λ(α); actually, λ(α′) = λ(α) for all α′ > α in this case. Otherwise, Lemma 6.2.1
implies the existence of x∗ ∈ X such that x∗ Â

> λ(α). We denote Y := {y ∈ X | λ(α) ≤ y ≤ x∗} 3 x∗.
If x∗ ∈ M(Y, º< ), we define λ(α+1) := x∗; otherwise, we apply Proposition 4.3.a, obtaining λ(α+1) ∈
M(Y, º< ) such that λ(α + 1) º

< x∗. In either case, we have λ(α + 1) Â λ(α), hence λ(α + 1) Â
> λ(α).

Let us show λ(α + 1) ∈ M(X, º< ). Supposing the contrary, y º
< λ(α + 1), we apply Lemma 6.2.1 to

x = λ(α) and y, obtaining y > λ(α), hence y ∈ Y , which is incompatible with λ(α + 1) ∈ M(Y, º< ).

Let α ∈ Λ be a limit ordinal and λ(β) have been defined for all β < α. Then we define λ(α) :=
supβ<α λ(β), ensuring that λ([0, α]) ∈ CX . Now (4.1b) implies λ(α) Â

> λ(β) for every β < α unless
λ(α) = λ(β), so we only have to show that λ(α) ∈ M(X, º< ).

If λ(α) = λ(β) for some β < α, we are home immediately. Otherwise, λ(α) Â
> λ(β) for every β < α,

hence y º
< λ(α) would imply y Â λ(β), hence y > λ(β) by Lemma 6.2.1. Since β is arbitrary, we would

have y ≥ λ(α), contradicting the assumption about y.

The final argument is again standard.

Remark. The preference relation in Example 5.4 above satisfies (6.1c) as well as both (4.1), but not
(4.3a). Therefore, the replacement of (4.3a) in Theorem 6.2 with (4.1a) would make it wrong.

Proposition 6.3. Let A be a relatively complete semilattice and Â be an ordering on A satisfying
(6.1c) and (4.3). Then M(X,Â) ∈ SA for every X ∈ SA.

The proof is essentially the same as in Theorem 5.6.

Proposition 6.4. Let A be a relatively complete semilattice and Â be an ordering on A. Then
M(X,Â′) ∈ SA for every X ∈ SA and every ordering Â′ on A satisfying (4.3) and (4.5a) if and
only if Â satisfies (6.1c).

Proof. If (6.1c) and (4.5a) hold, then Â′ satisfies (6.1c) by Proposition 6.1. If Â′ satisfies (4.3) as well,
then Proposition 6.3 applies.

Conversely, let (6.1c) be violated: there are x, y ∈ A such that x Â y ∧ x and y Â y ∧ x (hence
x and y are incomparable in the basic order); without restricting generality, x º y. We denote
X := {x, y, y ∧ x} ∈ SA, Y := {z ∈ A | y ≥ z & z º y}. Then we define Â′: it coincides with Â on
A \ Y ∗ and on Y ; whenever z /∈ Y 3 z′, z Â′ z′ never holds while z′ Â′ z ­ [z′ Â y or x Â z]. It is
easily checked that Â′ is an ordering too. Now (4.5a) is obvious, while M(X,Â′) = {x, y} /∈ SA.
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6.2 Monotonicity

Proposition 6.5. Let A be a semilattice and Â be an ordering on A. Then the following statements
are equivalent.

1. Â satisfies (6.1c).

2. There holds M(X,Â) ≥∧ M(X,Â′) whenever X is a subsemilattice of A and Â′ is an ordering on
X such that M(X,Â) 6= ∅ 6= M(X,Â′) and (4.5a) holds on X.

3. There holds M(X,Â) >> M(X,Â′) whenever X is a subsemilattice of A and Â′ is an ordering on
X such that M(X,Â) 6= ∅ 6= M(X,Â′) and (4.5c) holds on X.

4. There holds M(X,Â) ≥inf M(X,Â′) whenever X is a finite subsemilattice of A and Â′ is an
ordering on X such that (4.5c) holds on A.

Proof. Let (6.1c) hold, y ∈ M(X,Â) and x ∈ M(X,Â′). If (4.5a) holds, we have to show y ∧ x ∈
M(X,Â′). Supposing the contrary, x Â′ y ∧ x, we have x Â y ∧ x by (4.5a), hence y ∧ x º y by (6.1c),
hence x Â y, contradicting the optimality of y. Similarly, if (4.5c) holds, we have to show y ≥ x.
Otherwise, we would have y ∧ x < x; since x º′ y ∧ x, we have x Â y ∧ x by (4.5c), hence y ∧ x º y by
(6.1c) with the same contradiction.

Let (6.1c) be violated: there are x, y ∈ A such that y Â y ∧ x and x Â y ∧ x. Without restricting
generality, y º x. Then we define X := {x, y, y ∧ x}, so y ∈ M(X,Â). Defining an ordering Â′′ on A
in exactly the same manner as in the proof of Proposition 5.8, we see that (4.5c) holds for Â′′ and Â.
Meanwhile, M(X,Â′′) = {x}, hence M(X,Â) ≥inf M(X,Â′′) does not hold.

Remark. When A is a lattice, (6.1c) obviously implies (5.4b). In this sense, Proposition 6.5 is in
perfect accord with Proposition 5.8.

Proposition 6.6. Let A be a semilattice and Â be an ordering on A. Then the following statements
are equivalent.

1. Â satisfies (6.1b).

2. There holds M(X,Â′) ≥∧ M(X,Â) whenever X is a subsemilattice of A and Â′ is an ordering on
X such that M(X,Â′) 6= ∅ 6= M(X,Â) and (4.4a) holds on X.

3. There holds M(X,Â′) ≥Inf M(X,Â) whenever X is a finite subsemilattice of A and Â′ is an
ordering on A such that (4.4c) hold on A.

Proof. Let (6.1b) and (4.4a) hold, y ∈ M(X,Â′) and x ∈ M(X,Â). If x and y are incomparable in the
basic order, we have y ∧ x º x by (6.1b), hence y ∧ x ∈ M(X,Â). If they are comparable and y ≥ x or
y ∼ x, we are home too. Finally, if x Â

> y, we have x Â′ y by (4.4a), which contradicts the optimality
of y.

Let (6.1b) be violated: there are x, y ∈ A such that x and y are incomparable in the basic order, but
x Â y∧x. Without restricting generality, x º y. We define X := {x, y, y∧x}, so y∧x /∈ M(X,Â) 3 x.
Defining an ordering Â′′ on A in exactly the same manner as in the proof of Proposition 5.9, we see
that (4.4c) holds for Â′′ and Â. Meanwhile, M(X,Â′′) = {y}, hence M(X,Â′′) ≥Inf M(X,Â) does not
hold.
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Proposition 6.7. Let A be a semilattice and Â be an ordering on A. Then the following statements
are equivalent.

1. Â satisfies (6.1a).

2. There holds M(X,Â′) >> M(X,Â) whenever X is a subsemilattice of A and Â′ is an ordering on
X such that M(X,Â′) 6= ∅ 6= M(X,Â) and (4.4c) holds on X.

3. There holds M(X,Â′) >> M(X,Â) whenever X is a finite subsemilattice of A and Â′ is an ordering
on A such that (4.4c) holds on A.

Proof. Let (6.1a) and (4.4c) hold, y ∈ M(X,Â′) and x ∈ M(X,Â). If x and y are incomparable in the
basic order, we have y ∧ x Â x by (6.1a), which contradicts the optimality of x. If x > y, we have
x º

> y, hence x Â′ y by (4.4c), which contradicts the optimality of y.

Let (6.1a) be violated: there are x, y ∈ A such that x and y are incomparable in the basic order,
but x º y ∧ x. Without restricting generality, x º y. We define X := {x, y, y ∧ x}, so x ∈ M(X,Â).
Defining an ordering Â′′ on A in exactly the same manner as in the proof of Proposition 5.9 (or 6.6),
we see that (4.4c) holds for Â′′ and Â. Meanwhile, M(X,Â′′) = {y}, hence M(X,Â′′) >> M(X,Â) does
not hold.

6.3 Implications for strategic games

Theorem 6.8. Theorem 5.14 remains valid if one more condition is added to the list (5.7):

Xi is a complete semilattice;
ui is strongly regular and satisfies the lower single crossing condition;

the ordering Â on Xi represented by v(·) := u(·, x−i)
satisfies (6.1c) for every x−i ∈ X−i. (6.3)

Proof. Let (6.3) hold for an i ∈ N . By Proposition 6.3, we have Ri(x−i) ∈ SXi for every x−i ∈ X−i;
by Proposition 6.5, the correspondence Ri is increasing w.r.t. ≥∧. Therefore, there exists a monotone
selection ri from Ri by Corollary to Propositions 3.2.a.

Now XN is a complete semilattice, hence a Nash equilibrium exists by Abian and Brown’s fixed point
theorem (Theorem E in Section 3) applied to the Cartesian product of the monotone selections.

Obviously, (6.1c) holds when the preferences are decreasing, in which case
∧

Xi is among the best
responses to any x−i and Theorem 6.8 becomes trivial. In the rest of the subsection, we describe a
class of preferences satisfying (6.3) in a not-so-trivial way.

Let an agent allocate a single resource (money or time, effort, etc.) among m “needs,” each need
k receiving xk ≥ 0. There is a function vk(xk, s), dependent also on an exogenous parameter s (the
choices of other agents); we assume each vk (k ∈ {1, . . . m}) increasing in xk. Denoting x0 the amount
of the resource that is left undistributed, we assume an increasing function v0(x0); it reflects “personal
consumption” and is independent of any externality. The set of strategies is X := {(x0, x1, . . . xm) ∈
Rm+1 | ∑m

k=0 xk = K}. An order on X is given by y ≥ x ­ ∀k ∈ {1, . . . , m} [yk ≥ xk]; clearly, X is
a complete semilattice. The overall preferences of the agent on X (depending on the parameter s) are
represented by the function

u(x, s) := min{v0(x0), min
1≤k≤m

vk(xk, s)}. (6.4)
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Proposition 6.9. The ordering on X represented by (6.4) with v0 increasing in x0 and each vk in-
creasing in xk satisfies (6.1c) for every s ∈ S.

Proof. Since s is fixed throughout, we drop it from the arguments of each vk to simplify notations.
Given x, y ∈ X, we denote M+ := {k ∈ {1, . . . m} | xk > yk} and M− := {k ∈ {1, . . . m} | xk < yk}.
If x and y are comparable in the basic order, then (6.1c) obviously holds; therefore, we may assume
that M+ 6= ∅ 6= M− and x > z := y ∧ x and y > z, hence v0(x0) ≤ v0(z0) ≥ v0(y0). Let x Â z; then
Argmin0≤k≤m vk(zk) ⊆ M+. Since yk = zk for each k ∈ M+, we have Argmin0≤k≤m vk(yk) ⊆ M+∪{0},
hence z º y.

Proposition 6.10. If S is a poset and there are increasing functions v̄ : S → R and v̄k : R+ → R such
that vk(xk, s) = v̄k(xk)− v̄(s) for all k, xk, and s, then u(x, s) defined by (6.4) satisfies the lower single
crossing condition.

Proof. Let y > x, s′ > s, and u(y, s) > u(x, s). Since x0 > y0, we have 0 /∈ Argmin0≤k≤m vk(xk, s),
i.e., v0(x0) ≥ v0(y0) > vk(xk, s) for a k ∈ {1, . . . ,m}. Therefore, v0(x0) ≥ v0(y0) > vk(xk, s

′), hence
Argmin0≤k≤m vk(xk, s

′) = Argmin0≤k≤m vk(xk, s) and u(y, s′) > u(x, s′).

The minimum aggregation in a utility function, i.e., the “absolute complementarity” of components,
is not met in economic models very often; however, it is not exceptionally rare either. Galbraith (1958,
Chapter XVIII) effectively viewed the rule as most natural in the evaluation of tradeoffs between
public and private consumption (“social balance”). The model of Germeier and Vatel’ (1974) employed
utility functions like (6.4) with an additional assumption that, roughly speaking, all players have the
same functions vk. Later research (Kukushkin et al., 1985; Kukushkin, 2004b) showed that this form
of utilities is sufficient by itself, without any monotonicity assumptions, for quite a number of nice
properties of the game. Here, on the contrary, we see that the existence of a Nash equilibrium, at
least, can be derived from (6.4) without the “common intermediate objectives” assumption. It is also
worthwhile to note that increasing, or decreasing, best responses to the minimum of the partners’
choices (when strategies are scalar) ensure the acyclicity of Cournot tatonnement (Kukushkin, 2003,
Theorems 7 and 8)

7 Optimization on Poorer Order Structures

Proposition 7.1. Let A be a poset and Â be an ordering on A. Then the following statements are
equivalent.

1. There holds x ∼ y whenever x and y are incomparable in the basic order.

2. There holds M(X,Â′) ≥inf M(X,Â) whenever X ∈ B
∅\
A and Â′ is an ordering on X such that

M(X,Â) 6= ∅ 6= M(X,Â′) and (4.4a) holds on X.

3. There holds M(X,Â′) ≥inf M(X,Â) whenever X is a finite subset of A and Â′ is an ordering on
A such that (4.4c) holds on A.

Proof. Let Statement 1 and (4.4a) hold, and y ∈ M(X,Â′); we need x ∈ M(X,Â) such that y ≥ x. If
y ∈ M(X,Â), we are home; otherwise, there is x ∈ M(X,Â) such that x Â y. By Statement 1, x and
y are comparable in the basic order; if y > x, we are home again. If x > y, then (4.4a) implies x Â′ y,
contradicting the optimality of y.
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Let Statement 1 not hold: there are incomparable x and y such that x Â y. Denoting X := {x, y},
we have M(X,Â) = {x}. Then we define an ordering Â′′ in exactly the same manner as in the
proof of Proposition 5.9. Now we see that (4.4c) holds for Â′′ and Â, while M(X,Â′′) = {y}, hence
M(X,Â′′) ≥inf M(X,Â) does not hold.

Proposition 7.2. Let A be a poset and Â be an ordering on A such that M(X,Â) ≥inf M(X,Â′)
whenever X is a finite subset of A and Â′ is an ordering on A such that (4.5c) holds. Then A is a
chain.

Remark. The converse statement immediately follows from Proposition 4.9.

Proof. Indeed, if there are incomparable x, y ∈ A, we may, without restricting generality, assume y º x.
Denoting X := {x, y}, we have y ∈ M(X,Â). Then we define an ordering Â′′ on A in exactly the same
way as in the proof of Proposition 5.8, obtaining M(X,Â′′) = {x}, hence M(X,Â) ≥inf M(X,Â′′) does
not hold while (4.5c) holds for Â′′ and Â.

Dual statements concerning ≥sup are not worth writing explicit formulations.

Corollary. A poset A is a chain if there is an ordering Â on A such that M(X,Â′) ≥RS M(X,Â)
whenever X is a finite subset of A and Â′ is an ordering on A such that (4.4c) holds; or if there is
an ordering Â on A such that M(X,Â) ≥RS M(X,Â′) whenever X is a finite subset of A and Â′ is an
ordering on A such that (4.5c) holds.

In other words, monotonicity w.r.t. ≥RS does not look promising from the viewpoint of parametric
optimization on general posets. In the light of Proposition 3.2, one could wonder whether monotonicity
w.r.t. ≥Inf or ≥Sup on directed subsets could lead to something interesting. Unfortunately, we have to
impose restrictions even closer to the (anti)monotonicity of preferences than (6.1) even though we do
not have to restrict ourselves to chains.

A triple x, y, z ∈ A is called a downward triad if x > z and y > z while x and y are incomparable.
An ordering Â on A is almost (strictly) decreasing if z º x (z Â x) whenever there is y ∈ A such that
(x, y, z) is a downward triad. An upward triad and an almost (strictly) increasing ordering on A are
defined dually.

Proposition 7.3. Let A be a poset and Â be an ordering on A. Then the following statements are
equivalent.

1. Â is almost decreasing.

2. There holds M(X,Â′) ≥Inf M(X,Â) whenever X is a downwards directed subset of A and Â′ is an
ordering on X such that M(X,Â) 6= ∅ 6= M(X,Â′) and (4.4a) holds on X.

3. There holds M(X,Â) >> M(X,Â′) whenever X is a downwards directed subset of A and Â′ is an
ordering on X such that M(X,Â) 6= ∅ 6= M(X,Â′) and (4.5c) holds on X.

4. There holds M(X,Â′) ≥Inf M(X,Â) whenever X is a finite downwards directed subset of A and Â′
is an ordering on A such that (4.4c) holds on A.

5. There holds M(X,Â) ≥inf M(X,Â′) whenever X is a finite downwards directed subset of A and Â′
is an ordering on A such that (4.5c) holds on A.
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Proof. Let Â be almost decreasing, y ∈ M(X,Â′), and x ∈ M(X,Â). If x and y are comparable
in the basic order, then both Statements 2 and 3 immediately follow from the sufficiency parts of
Propositions 4.6 and 4.9, respectively. Otherwise, let z ∈ X be a lower bound of x and y in X. Since
Â is almost decreasing, we have z º x and z º y. The first relation implies that z ∈ M(X,Â), which
is exactly what is needed for Statement 2. If (4.5c) holds, we have z Â′ y, contradicting the optimality
of y.

Let Â not be almost decreasing: there is a downward triad (x, y, z) such that x Â z. Without
restricting generality, x º y. Then we define X := {x, y, z}, so z /∈ M(X,Â) 3 x. Defining an ordering
Â′′ on A in exactly the same manner as in the proof of Proposition 5.9, we see that (4.4c) holds for Â′′
and Â whereas M(X,Â′′) = {y}, hence M(X,Â′′) ≥Inf M(X,Â) does not hold. Defining an ordering Â′′
on A in exactly the same manner as in the proof of Proposition 5.8, but with Y := {z ∈ A | z ≤ y},
we see that (4.5c) holds for Â′′ and Â. Meanwhile, M(X,Â′′) = {y}, hence M(X,Â) ≥inf M(X,Â′′) does
not hold.

Proposition 7.4. Let A be a poset and Â be an ordering on A. Then the following statements are
equivalent.

1. There holds z º y whenever (x, y, z) is a downward triad and x Â z.

2. There holds M(X,Â) ≥Inf M(X,Â′) whenever X is a downwards directed subset of A and Â′ is an
ordering on X such that M(X,Â) 6= ∅ 6= M(X,Â′) and (4.5a) holds on X.

3. There holds M(X,Â) ≥inf M(X,Â′) whenever X is a finite downwards directed subset of A and Â′
is an ordering on A such that (4.5c) holds on A.

Remark. Statement 1 looks very similar to condition (6.1c), but is much stronger. It need not hold
even for preferences (6.4).

Proof. Let Statement 1 and (4.5a) hold, y ∈ M(X,Â), and x ∈ M(X,Â′). If x and y are comparable
in the basic order, then again the sufficiency part of Proposition 4.6 suffices. Otherwise, let z ∈ X be
a lower bound of x and y in X; if z ∈ M(X,Â′), we are home. Otherwise, we have x Â′ z, hence x Â z
by (4.5a), hence z º y by Statement 1, hence x Â y, contradicting the optimality of y.

Let Statement 1 not hold: there is a downward triad (x, y, z) such that y Â z and x Â z. Without
restricting generality, y º x. Then we define X := {x, y, z}, so y ∈ M(X,Â). Defining an ordering Â′′
on A in exactly the same manner as in the proof of Proposition 5.8, we see that (4.5c) holds for Â′′ and
Â, while M(X,Â′′) = {x}, hence M(X,Â) ≥inf M(X,Â′′) does not hold.

Proposition 7.5. Let A be a poset and Â be an ordering on A. Then the following statements are
equivalent.

1. Â is almost strictly decreasing.

2. There holds M(X,Â′) >> M(X,Â) whenever X is a downwards directed subset of A and Â′ is an
ordering on X such that M(X,Â) 6= ∅ 6= M(X,Â′) and (4.4c) holds on X.

3. There holds M(X,Â′) ≥sup M(X,Â) whenever X is a finite downwards directed subset of A and
Â′ is an ordering on A such that (4.4c) holds on A.

Proof. Let Â be almost strictly decreasing, y ∈ M(X,Â′), and x ∈ M(X,Â). If x and y are comparable
in the basic order, then again the sufficiency part of Proposition 4.9 suffices. Otherwise, let z ∈ X be
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a lower bound of x and y in X. Since Â is almost strictly decreasing, we have z Â x, which contradicts
the optimality of x.

Let Â not be almost strictly decreasing: there is a downward triad (x, y, z) such that x º z. Without
restricting generality, x º y. Then we define X := {x, y, z}, so x ∈ M(X,Â). Defining an ordering Â′′
on A in exactly the same manner as in the proof of Proposition 5.9, we see that (4.4c) holds for Â′′ and
Â. Meanwhile, M(X,Â′′) = {y}, hence M(X,Â′′) ≥sup M(X,Â) does not hold.

8 ε-Optimization

A binary relation Â is strongly acyclic if there exists no infinite improvement path, i.e., no sequence
〈xk〉k∈N such that xk+1 Â xk for all k. It is well known, and easy to check anyway, that a binary
relation Â on A is strongly acyclic if and only if M(X,Â) 6= ∅ for every X ∈ B

∅\
A. A strongly acyclic

strict order always satisfies both (4.1) by default.

Proposition 8.1. Let Â be a strongly acyclic strict order on a set X and X 3 x /∈ M(X,Â). Then
there is y ∈ M(X,Â) such that y Â x.

A straightforward proof is omitted.

An ordering represented by a mapping v : A → C, where C is a chain, is strongly acyclic if and only
if v(A) ⊆ C is well ordered in the reversed order. With the exception of a finite v(A), there is something
exotic in such orderings. However, the property may be quite natural for “less rational” preferences.
Let v : A → R be bounded above and ε > 0; let the preference relation be

y Â x ­ v(y) > v(x) + ε. (8.1)

It is easily seen that Â is strongly acyclic. Maximizers for Â are exactly ε-maxima of v.

Let us reproduce standard definitions, see, e.g., Fishburn (1985). An interval order is a strict order
Â such that

∀x, y, a, b ∈ A
[
[y Â x & a Â b] ⇒ [y Â b or a Â x]

]
. (8.2)

A semiorder is an interval order such that

∀x, y, z ∈ A
[
z Â y Â x ⇒ ∀a ∈ A [z Â a or a Â x]

]
. (8.3)

Every ordering is a semiorder. It is also easily checked that Â defined by (8.1) satisfies both (8.2) and
(8.3), i.e., is a semiorder.

Proposition 8.2. Let Â be a semiorder on a set X and X 3 x /∈ M(X,Â) 6= ∅. Then there is
y ∈ M(X,Â) such that y Â x.

A straightforward proof is omitted. Note that Proposition 8.2 would be wrong for an interval order
(see, e.g., Example 3 from Kukushkin, 2008).

Like orderings, interval orders and semiorders can also be defined in terms of representations in
chains. An interval representation of a binary relation Â on a set A consists of a chain C and two
mappings v+, v− : A → C such that:

∀x ∈ A [v+(x) ≥ v−(x)]; (8.4a)

∀x, y ∈ A [y Â x ⇐⇒ v−(y) > v+(x)]. (8.4b)
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A semiorder representation of a binary relation Â on a set A consists of a chain C and two mappings
v : A → C and δ : v(A) → C such that:

∀x, y ∈ A [v(y) > v(x) ⇒ δ ◦ v(y) ≥ δ ◦ v(x)]; (8.5a)

∀x ∈ A [v(x) ≥ δ ◦ v(x)]; (8.5b)

∀x, y ∈ A [y Â x ⇐⇒ δ ◦ v(y) > v(x)]. (8.5c)

Clearly, if 〈v, δ〉 is a semiorder representation of Â, then 〈v, δ ◦ v〉 is an interval representation of Â.

Proposition 8.3. Let Â be a binary relation on a set A. Then Â is an interval order if and only if
it admits an interval representation.

Proposition 8.4. Let Â be a binary relation on a set A. Then Â is a semiorder if and only if it
admits a semiorder representation.

The proofs are not quite trivial, but both statements are well known.

A strong semiorder representation of a binary relation Â on a set A consists of a complete chain C
and two mappings v : A → C and δ : C → C such that, for all x, y ∈ A and w′, w ∈ C:

∀w′, w ∈ C [w′ > w ⇒ δ(w′) ≥ δ(w)]; (8.6a)

∀w ∈ C [w ≥ δ(w)]; (8.6b)

∀w ∈ C [w = δ(w) ⇒ w = min C]; (8.6c)

∀x, y ∈ A [y Â x ⇐⇒ δ ◦ v(y) > v(x)]. (8.6d)

Proposition 8.5. Let Â be a binary relation on a set A. Then Â is a strongly acyclic semiorder if
and only if it admits a strong semiorder representation.

Proof. Let (8.6) hold; by the sufficiency part of Proposition 8.4, Â is a semiorder. Suppose there is
an infinite improvement path x0, x1, . . . ; then v(xk+1) > v(xk) for all k. We denote w+ := supk v(xk)
and w− := supk δ ◦ v(xk); by (8.6b) and (8.6c), w+ > δ(w+) ≥ w−. Therefore, there is k such that
v(xk) > w− ≥ δ ◦ v(xk+1), but this contradicts the supposed dominance xk+1 Â xk.

Let Â be a strongly acyclic semiorder. Applying the necessity part of Proposition 8.4, we obtain a
semiorder representation. Then we move from (8.5) to (8.6) in two steps, the first being the standard
Dedekind construction.

We define C∗ := {V ⊆ C | ∀w′, w ∈ C [
[w ∈ V & w > w′] ⇒ w′ ∈ V

]}. C∗ with the set inclusion
is a complete chain, supC for C ⊆ C∗ being the set union of C. Then we define v∗ : A → C∗ by
v∗(x) := {w ∈ C | v(x) ≥ w} and δ∗ : v∗(A) → C∗ by δ∗ ◦ v∗(x) := {w ∈ C | δ ◦ v(x) > w}. It is easy to
see that v∗ and δ∗ define a semiorder representation of Â with a strict inequality in (8.5b).

As the next step, denoting C := v∗(A) ∪ δ∗ ◦ v∗(A) ⊆ C∗, we define C∗∗ as the intersection of all
complete subchains of C∗ containing C, i.e., C∗∗ consists of the least upper bounds of all nonempty
subsets of C. For every w ∈ C∗∗, we define Φ(w) := {w′ ∈ v∗(A) | w′ ≤ w} ⊆ C, δ∗∗(w) := min C∗∗ if
Φ(w) = ∅, and δ∗∗(w) := supw′∈Φ(w) δ∗(w′) ∈ C∗∗ otherwise.

Let us show that the mappings v∗ : A → C∗∗ and δ∗∗ : C∗∗ → C∗∗ satisfy conditions (8.6). Mono-
tonicity (8.6a) immediately follows from the definition of δ∗∗; (8.6b), from the same definition and
(8.5b). Proper representation condition (8.6d) follows from (8.5c) because δ∗∗ coincides with δ∗ on
v∗(A): if x ∈ A, then v∗(x) = maxΦ(v∗(x)), hence δ∗∗ ◦ v∗(x) = δ∗ ◦ v∗(x).
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Finally, let us check (8.6c). When w = v∗(x), a strict inequality follows from the equality δ∗∗(w) =
δ∗(w) and the strict inequality in (8.5b). If Φ(w) = ∅, then δ∗∗(w) = min C∗∗, hence (8.6c) holds
trivially. Let w = supΦ(w) > min C∗∗ and w /∈ v∗(A); if δ∗∗(w) = w, we pick x0 ∈ (v∗)−1 Φ(w)
arbitrarily, and then define an infinite sequence of xk ∈ (v∗)−1 Φ(w) inductively, in the following
way. Since v∗(xk) ∈ Φ(w) and δ∗∗(w) = w, there must be xk+1 ∈ A such that v∗(xk+1) ∈ Φ(w) and
δ∗∗◦v∗(xk+1) > v∗(xk). Now we have xk+1 Â xk for all k, i.e., a contradiction with the strong acyclicity
of Â. Finally, if w > w∗ := supΦ(w), then δ∗∗(w) = δ∗∗(w∗) < w∗ < w.

A strong semiorder representation of Â defined by (8.1) is obtained if we define C := [−∞, w̄], where
w̄ is an upper bound for v, and δ(w) := w − ε.

Remark. The first paragraph in the necessity proof of Proposition 8.5 shows that Proposition 8.4
remains valid if we modify conditions (8.5) adding the completeness of C and a strict inequality in
(8.5b). Then the only characteristic feature of strongly acyclic semiorders will be the fact that δ can
be defined on the whole C.
Proposition 8.6. Let Â be a binary relation on a set A. Then Â is a strongly acyclic interval order
if and only if it admits an interval representation v+, v− : A → C and there is a strong semiorder
representation v : A → C and δ : C → C such that v+(x) = v(x) and v−(x) ≤ δ ◦ v(x) for all x ∈ A.

The sufficiency proof is the same as in Proposition 8.5; the necessity proof is only slightly different.

Interval (or semiorder) representations also help in studying monotonicity. To achieve uniformity
with the previous sections, we say that an interval order Â is upper semi-represented on A by an
ordering ÂÂ if there is an interval representation 〈v+, v−〉 of Â such that v+ represents ÂÂ. It is worth
noting that every ordering is upper semi-represented by itself (and only itself).

Proposition 8.7. Let Â be an interval order on a set X, upper semi-represented by an ordering ÂÂ;
let X 3 x /∈ M(X,Â) 3 y. Then y ÂÂ x.

A straightforward proof is omitted. Note that y Â x cannot be asserted unless Â itself is an
ordering.

Proposition 8.8. Let A be a lattice and ÂÂ be an ordering on A. Then the following statements are
equivalent.

1. ÂÂ satisfies (5.3a).

2. There holds M(X,Â′) ≥wV M(X,Â) whenever X is a sublattice of A, and Â and Â′ are interval
orders on X for which M(X,Â′) 6= ∅ 6= M(X,Â) and there is an ordering ÂÂ′ on X such that Â
and Â′ are upper semi-represented by ÂÂ and ÂÂ′, respectively, and (4.4d) holds on X for ÂÂ′ and
ÂÂ.

3. There holds M(X,Â′) ≥pwV M(X,Â) whenever X is a finite sublattice of A, and an ordering ÂÂ′
and semiorders Â and Â′ on A are such that (4.4a) holds on A for ÂÂ′ and ÂÂ, while Â and Â′
are upper semi-represented by ÂÂ and ÂÂ′, respectively.

Proof. Let y ∈ M(X,Â′) and x ∈ M(X,Â). If y ∧ x ∈ M(X,Â), we are home; otherwise, x ÂÂ y ∧ x,
by Proposition 8.7, hence y ∨ x ÂÂ y by (5.3a). Therefore, y ∨ x ºº′ y by (4.4d), hence y ∨ x ∈ M(X,Â′)
again by Proposition 8.7.
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Let (5.3a) not hold: there are x, y ∈ A such that x ÂÂ y∧x, but y ºº y∨x. We define X := L(x, y),
and an ordering Â′ exactly as in the proof of implication [Statement 5⇒ Statement 1] in Proposition 5.7.
Exactly as in that proof, we have M(X,Â′) = {y} while (4.4a) holds for Â′ and ÂÂ. In simpler words, we
pick Â′ as ÂÂ′. Let C be a chain and v : A → C represent ÂÂ. We define δ : v(A) → C by δ ◦ v(z) = v(x)
if v(z) ≥ v(x) and δ ◦ v(z) = v(z) otherwise; let Â be the semiorder represented by 〈v, δ〉. Obviously,
y ∧ x /∈ M(X,Â) 3 x. Therefore, M(X,Â′) ≥pwV M(X,Â) does not hold and we are home.

Remark. When compared to Proposition 5.7, Proposition 8.8 states that (5.4b) must be added to
(5.4a) if we want to retain the monotonicity w.r.t. ≥wV for “ε-optimization” of the ordering.

Corollary. Let X be a lattice, S be a poset, u : X × S → R be supermodular and bounded above in the
first argument, and satisfy the increasing differences condition (4.7); let R(s) for every s ∈ S consist
of ε-maxima of u(·, s) (ε > 0) on X. Then R : S → X is increasing w.r.t. ≥wV.

Proposition 8.9. Let A be a lattice and ÂÂ be an ordering on A. Then the following statements are
equivalent.

1. ÂÂ satisfies (5.3b).

2. There holds M(X,Â′) ≥wV M(X,Â) whenever X is a sublattice of A, and Â and Â′ are interval
orders on X for which M(X,Â′) 6= ∅ 6= M(X,Â) and there is an ordering ÂÂ′ on X such that Â
and Â′ are upper semi-represented by ÂÂ and ÂÂ′, respectively, and (4.5d) holds on X for ÂÂ′ and
ÂÂ.

3. There holds M(X,Â′) ≥pwV M(X,Â) whenever X is a finite sublattice of A, and an ordering ÂÂ′
and semiorders Â and Â′ on A are such that (4.5a) holds on A for ÂÂ′ and ÂÂ, while Â and Â′
are upper semi-represented by ÂÂ and ÂÂ′, respectively.

The proof is dual to that of Proposition 8.8.

As usual, we finish the section with implications for strategic games. Were “Theorem A2” of
Milgrom and Shannon (1994) true, Corollary to Proposition 8.8 would give us a nice existence result
for ε-Nash equilibria. Probably, this accounts for the absence of interest to ε-equilibria in the literature
on games with strategic complementarities. Theorem 3.5 is a poor substitute for “Theorem A2” in this
respect because ε-optimization is most natural when there is no topological restriction on preferences,
but then there is no ground to expect the completeness of the set of ε-best responses. Although none of
the known counterexamples to “Theorem A2” can be interpreted as an ε-best response correspondence
of this kind, there is no result on the existence of monotone selections in this situation either. It should
be noted that even the replacement of (4.7) in Corollary to Proposition 8.8 with its strict analogue
would not give us monotonicity w.r.t. ≥Vt.

Example 8.10. Let X := {0, 1, 2}, S := {0, 1}, u : X ×S → R be represented by the matrix (the axes
are directed upwards and rightwards)

1 3
0 1
3 0

and ε := 2. Since X is a chain, u(·, s) satisfies (5.1) trivially for either s; the strict analogue of (4.7) is
obvious. However, 1 /∈ R(0) 3 2 and 1 ∈ R(1), so even R(1) ≥∧ R(0) does not hold.

Once the preferences of a player i are described by a strict order Âi on XN rather than an ordering,
the notion of the best response correspondence (5.6) becomes inadequate. For every x−i ∈ X−i, we
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denote Âx−i

i the “restriction” of Âi to Xi given x−i, i.e.,

yi Âx−i

i xi ­ (yi, x−i) Âi (xi, x−i).

The “best” (rather, undominated) response correspondence is now defined as

Ri(x−i) := M(Xi,Âx−i

i ), (8.7)

while a Nash equilibrium is still xN ∈ XN such that xi ∈ Ri(x−i) for each i ∈ N .

For the reader’s convenience, the principal way to obtain the existence of an ε-Nash equilibrium
is demonstrated in Theorem 8.11 below. Then Theorem 8.12 gives the most general existence result
available at the moment. In both cases, we have to assume that strategy sets are chains; both proofs
bypass the problem of monotone selections.

Theorem 8.11. Let Γ be a strategic game where each player i’s strategy set Xi is a complete chain
and preference relation is a strict order on XN such that: (i) every relation Âx−i

i is strongly acyclic;

(ii) whenever x′−i > x−i, the relations Âx′−i

i and Âx−i

i satisfy (4.4a) and (4.4b). Then Γ possesses a
Nash equilibrium.

Proof. The key role is played by the following recursive definition of a sequence xk
N ∈ XN (k ∈ N) such

that xk+1
N ≥ xk

N and xk+1
i ∈ Ri(xk

−i) for all k ∈ N and i ∈ N . By the latter condition, xk
N is a Nash

equilibrium if xk+1
N = xk

N . On the other hand, the sequence must stabilize at some stage because of
the strong acyclicity assumption.

We define x0
i := minXi for each i ∈ N . Given xk

N , we, for each i ∈ N independently, check
whether xk

i ∈ Ri(xk
−i) holds. If it does, we define xk+1

i := xk
i ; otherwise, we pick xk+1

i ∈ Ri(xk
−i)

such that xk+1
i Âxk

−i

i xk
i (it exists by Proposition 8.1). Supposing xk+1

i < xk
i , hence k > 0, we obtain

xk+1
i Âxk−1

−i

i xk
i by (4.4b), contradicting the induction hypothesis xk

i ∈ Ri(xk−1
−i ). Therefore, xk+1

i > xk
i ,

hence xk+1
N ≥ xk

N .

Supposing that xk+1
N > xk

N for all k ∈ N, we denote xω
i := supk xk

i for each i ∈ N ; the completeness

of Xi is essential here. Whenever xk+1
i 6= xk

i , we have xk+1
i Âxk

−i

i xk
i and xk+1

i > xk
i as was shown in

the previous paragraph; since xω
−i ≥ xk

−i, we have xk+1
i Âxω

−i

i xk
i by (4.4a). Since N is finite, there must

be i ∈ N such that xk+1
i > xk

i for an infinite number of k. Clearly, the elimination of repetitions in

the sequence {xk
i }k makes it an infinite improvement path for the relation Âxω

−i

i , which contradicts the
supposed strong acyclicity.

Corollary. Let Γ be a strategic game where each player i’s strategy set Xi is a complete chain and
utility function ui : XN → R is bounded above in own strategy and satisfies the increasing differences
condition (4.7). Then Γ possesses an ε-Nash equilibrium for every ε > 0.

Remark. The proof of Theorem 8.11 is invalid for multi-dimensional strategy sets because xk+1
i ex-

tracted from Proposition 8.1 may be incomparable with xk
i : arguments like Lemma 5.3.1 are only valid

for orderings. No counterexample to such an extension of the theorem is known, however.

Theorem 8.12. Theorem 5.14 remains valid if two more conditions are added to the list (5.7) and
(6.3):

Xi is a complete chain;
the relation Âi is a strict order satisfying both conditions

(i) and (ii) from Theorem 8.11. (8.8a)
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Xi is a complete chain;
the relation Âi satisfies condition (ii) from Theorem 8.11;

every relation Âx−i

i is a semiorder satisfying both conditions (4.1). (8.8b)

Proof. We combine the basic ideas from the proofs of Theorems 5.3, 5.14, and 8.11. Let N0 denote the
set of i ∈ N for which either one of (5.7) or (6.3) holds; let N ε := N \N0. For each i ∈ N0, we fix a
monotone selection ri from the best response correspondence Ri.

Let Λ be a well ordered set with a cardinality greater than that of XN . By (transfinite) recursion,
we construct a mapping λN : Λ → XN such that:

∀i ∈ N ∀α ∈ Λ
[
λi(α + 1) ∈ Ri(λ−i(α))

]
; (8.9a)

∀i ∈ N0 ∀α ∈ Λ
[
λi(α + 1) = ri(λ−i(α))

]
; (8.9b)

∀α, β ∈ Λ
[
α > β ⇒ [λN (α) ≥ λN (β)]

]
; (8.9c)

∀i ∈ N ε ∀α, β ∈ Λ
[
α > β ⇒ [λi(α) = λi(β) or λi(α) Âλ−i(α)

i λi(β)]
]
; (8.9d)

∀i ∈ N ∀α ∈ Λ
[
λi([0, α]) ∈ CXi

]
. (8.9e)

First, we define λi(0) := minXi for each i ∈ N . Let λN (α) have been defined. For i ∈ N0, we
define λi(α+1) := ri(λ−i(α)), thus ensuring (8.9a) and (8.9b). For i ∈ N ε, we define λi(α+1) := λi(α)
if λi(α) ∈ Ri(λ−i(α)), ensuring (8.9a) again as well as the continuation of (8.9d). Otherwise, we pick
λi(α + 1) ∈ Ri(λ−i(α)) such that λi(α + 1) Âλ−i(α)

i λi(α)) [it exists by Proposition 8.1 under (8.8a),
or by Proposition 8.2 under (8.8b)], thus ensuring (8.9d) for λi(α + 1) and λi(α). Since at most one
point is added to λi([0, α]), (8.9e) continues to hold. The check of (8.9c), as well as (8.9d) for β < α,
is postponed till after the definition of λi(α) for limit ordinals.

Let α be a limit ordinal, and λN (β) have been defined for all β < α. Then we define λi(α) :=
supβ<α λi(β) for each i ∈ N , ensuring (8.9c) and (8.9e). By (4.4a), (8.9c) and (8.9d), we have

λi(β′) Âλ−i(α)
i λi(β) whenever β′, β < α and λi(β′) > λi(β). If λi(α) = λi(β) for some β < α,

which holds, in particular, under (8.8a), then (8.9d) is valid; otherwise, the chain λi([0, α]) satisfies the
“left-hand-side” condition in (4.1b), hence λi(α) Âλ−i(α)

i λi(β) for all β < α, i.e., (8.9d) holds again.

Now let us return to a “successor step.” If α itself is a successor ordinal, then condition (4.4b),
exactly as in the proof of Theorem 8.11, ensures that λi(α+1) > λi(α), hence (8.9c) continues to hold.
If α is a limit ordinal, the assumption λi(α+1) < λi(α) would imply λi(α+1) < λi(β) for some β < α,
hence λi(α + 1) < λi(β + 1), and a contradiction with the optimality of λi(β + 1) obtained in exactly
the same way. In either case, (8.9d) for λi(α + 1) and λi(β) with β < α holds by (4.4a).

The final argument is again standard. We must have λN (α) = λN (β) for some β < α. Then we
have λN (β + 1) = λN (β) by (8.9c); therefore, λN (β) is a Nash equilibrium by (8.9a).

9 Acknowledgments

Financial support from a Presidential Grant for the State Support of the Leading Scientific Schools
(NSh-2982.2008.1), the Russian Foundation for Basic Research (project 08-07-00158), the Russian
Foundation for Humanities (project 08-02-00347), and the Spanish Ministry of Education and Science
(project SEJ 2007-67135) is acknowledged. I have benefitted from a visit to U.S. universities; I thank
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