Maximizing a preference relation on complete chains and lattices

Nikolai S. Kukushkin

Russian Academy of Sciences,
Dorodnicyn Computing Center
ququns@inbox.ru
http://www.ccas.ru/mmes/perstaff/Kukushkin.html

MSC2010 Classifications: 91A10; 49J27 JEL Classifications: C 61; D 11

Key words:

preference relation; choice function; complete chain; complete lattice; quasisupermodularity

Introduction

Need existence results be boring?

Weierstrass Theorem

Theorem.

(... Bergstrom, 1973; Bondareva, 1973; Walker, 1977; ...)

An acyclic binary relation with open lower contour sets admits a maximizer in every compact subset of its domain.

Unapplicable to Pareto dominance, lexicography, ...

Smith (1974)

Lattice Programming

Veinott, A.F., Jr. (1934–2012)

Milgrom & Roberts (1990); Milgrom & Shannon (1994): weaker theorems with bizarre proofs.

Plan of Presentation

Preferences and choice
Optimization on compact subsets
Optimization on chains
Countability assumptions
Optimization on lattices
QSM conditions
Veinott's conditions
An impossibility result

Preferences and choice

A: alternatives;

 \succ : preference relation on A;

 \mathfrak{B}_A : nonempty subsets of A.

For
$$X \in \mathfrak{B}_A$$
,

$$M(X,\succ) := \{ x \in X \mid \nexists y \in X [y \succ x] \}. \tag{1}$$

non-strict preference relation on A:

$$y \succeq x \rightleftharpoons x \not\succ y;$$

$$M(X,\succ) = \{x \in X \mid \forall y \in X [x \succeq y]\}.$$

A choice function
$$M(\cdot,\succ): \mathfrak{B}_A \to 2^A$$
.

Basic properties

$$(X \in \mathfrak{B}_A)$$

$$M(X,\succ) \neq \emptyset.$$
 (2)

The *NM-property*:

$$\forall x \in X \setminus M(X, \succ) \exists y \in M(X, \succ) [y \succ x]. \tag{3}$$

$$(3) \Rightarrow (2).$$

Easy cases:

 $M(X,\succ) \neq \emptyset$ for all finite $X \in \mathfrak{B}_A$ if and only \succ is acyclic.

 \succ has the NM-property on every finite $X \in \mathfrak{B}_A$ if and only if it is irreflexive and transitive.

 $M(X,\succ) \neq \emptyset$ for all $X \in \mathfrak{B}_A$ if and only if \succ is *strictly acyclic*, i.e., admits no infinite improvement path.

 \succ has the NM-property on every $X \in \mathfrak{B}_A$ if and only if it is strictly acyclic and transitive.

Path Independence; Outcast Axiom.

"Rationality" restrictions

An ordering:

C is a chain; $u: A \to C$

$$y \succ x \iff u(y) > u(x).$$
 (4)

An interval order:

C is a chain; $u^+, u^- : A \to C$

$$u^+(x) \ge u^-(x); \tag{5a}$$

$$y \succ x \iff u^{-}(y) > u^{+}(x). \tag{5b}$$

A semiorder:

a representation (5) with $u^-(x) = \lambda \circ u^+(x)$

[$\lambda: u^+(A) \to \mathcal{C}$ is increasing].

$$(3) \equiv (2).$$

Topological case

A: a metric space; \mathfrak{C}_A : nonempty compact subsets of A.

ω-transitivity:

$$\left[\forall k \in \mathbb{N}\left[x^{k+1} \succ x^k\right] \& x^{\omega} = \lim_{k \to \infty} x^k\right] \Rightarrow x^{\omega} \succ x^0. \tag{6}$$

Theorem (Smith, 1974).

Let \succ be an ordering [semiorder] on a metric space A. Then $M(X, \succ) \neq \emptyset$ for all $X \in \mathfrak{C}_A$ if and only if \succ is ω -transitive.

Theorem (Kukushkin, 2008).

Let \succ be a binary relation on a metric space A. Then \succ has the NM-property on every $X \in \mathfrak{C}_A$ if and only if \succ is irreflexive and ω -transitive.

Topological case (continued)

ω-acyclicity (Mukherji, 1977):

$$\left[\forall k \in \mathbb{N}\left[x^{k+1} \succ x^k\right] \& x^{\omega} = \lim_{k \to \infty} x^k\right] \Rightarrow x^{\omega} \neq x^0 \left[x^{\omega} \succeq x^0\right]. \quad (7)$$

Theorem (Kukushkin, 2008).

Let \succ be an interval order on a metric space A. Then $M(X, \succ) \neq \emptyset$ for all $X \in \mathfrak{C}_A$ if and only if \succ is ω -acyclic.

Example (Kukushkin, 2008).

Let A = [0, 1] and $y \succ x \rightleftharpoons 1 > y > x$ for all $y, x \in A$. \succ is an ω -acyclic, but not ω -transitive, interval order.

$$M(X,\succ) \neq \emptyset$$
 for all $X \in \mathfrak{C}_A$,

but there is no NM-property on *A* itself [$M(A, \succ) = \{1\}$].

Topological case (continued further)

Theorem (Smith, 1974).

Let \succ be an ordering on a metric space A. Then $M(X, \succ) \in \mathfrak{C}_A$ for all $X \in \mathfrak{C}_A$ if and only if \succeq is ω -transitive.

$$\left[\forall k, h \in \mathbb{N}\left[x^k \succeq x^h\right] \& x^\omega = \lim_{k \to \infty} x^k\right] \Rightarrow x^\omega \succeq x^0. \tag{8}$$

Theorem (Kukushkin, 2008).

Let \succ be an interval order on a metric space A. Then $M(X, \succ) \in \mathfrak{C}_A$ for all $X \in \mathfrak{C}_A$ if and only if \succeq satisfies (8).

Henceforth, A is a poset

 $X \in \mathfrak{B}_A$ is (chain-)subcomplete if $\sup Y$ and $\inf Y$ exist in A and belong to Xfor every chain $Y \in \mathfrak{B}_X$.

"Upper semicontinuity" in posets: All *upper contour sets*, $\{y \in X \mid y \succeq x\}$, are subcomplete.

Admissible subsets

 \mathfrak{C}_A : nonempty subcomplete chains in A; \mathfrak{L}_A : nonempty subcomplete sublattices in A.

Optimization on chains

$$\forall X \in \mathfrak{C}_A \left[\left(\sup X^{\to} = \sup X \& \forall x, y \in X^{\to} [y > x \Rightarrow y \succ x] \right) \\ \Rightarrow \forall x \in X^{\to} \left[\sup X \succ x \right] \right]; (9a)$$

$$\forall X \in \mathfrak{C}_{A} \left[\left(\inf X^{\leftarrow} = \inf X \& \forall x, y \in X^{\leftarrow} \left[y < x \Rightarrow y \succ x \right] \right) \\ \Rightarrow \forall x \in X^{\leftarrow} \left[\inf X \succ x \right] \right]. \tag{9b}$$
$$\left[X^{\rightarrow} := X \setminus \left\{ \sup X \right\}; X^{\leftarrow} := X \setminus \left\{ \inf X \right\} \right].$$

Let \succ be a binary relation on a poset A. Then \succ has the NM-property on every $X \in \mathfrak{C}_A$ if and only if \succ is irreflexive and chain-transitive.

> Not necessary for mere existence even if ≻ is an interval order (the same example as above).

Let \succ be an ordering on a poset A. Then $M(X, \succ) \in \mathfrak{C}_A$ for all $X \in \mathfrak{C}_A$ if and only if \succeq is chain-transitive.

Example.

$$A := \{0\} \cup [1,2] (\subset \mathbb{R});$$

 $0 \succ 1$ and $y \succeq x$ for all $(x,y) \neq (0,1).$
 \succ is a semiorder; \succeq satisfies (9).
However, $M(A,\succ) = \{0\} \cup [1,2] \notin \mathfrak{C}_A.$
!!!

$$\forall X \in \mathfrak{C}_A \left[\left(\sup X^{\to} = \sup X \& \forall x, y \in X^{\to} [y > x \Rightarrow y \succ x] \right) \\ \Rightarrow \forall x \in X^{\to} \left[\sup X \succeq x \right] \right]; (10a)$$

$$\forall X \in \mathfrak{C}_A \left[\left(\inf X^{\leftarrow} = \inf X \& \forall x, y \in X^{\leftarrow} \left[y < x \Rightarrow y \succ x \right] \right) \\ \Rightarrow \forall x \in X^{\leftarrow} \left[\inf X \succeq x \right] \right]. \tag{10b}$$

(Follows from the subcompleteness of upper contour sets.)

Proposition.

If a binary relation \succ on a poset A has the property that $M(X, \succ) \neq \emptyset$ for every $X \in \mathfrak{C}_A$, then \succ is acyclic on every chain and satisfies both conditions (10).

Insufficient for existence even if \succ is an interval order.

Countability assumptions

A "regular" poset: every chain contains a countable *cofinal* and *coinitial* subset.

A "regular" interval order \succ : for every $X \in \mathfrak{B}_A$, either $M(X, \succ) \neq \emptyset$, or there exists an *optimizing sequence* in X, i.e., (i) $\forall k [x^{k+1} \succ x^k];$ (ii) $\forall x \in X \exists k [x^k \succ x].$

mono-ω-transitivity:

$$[\forall k \in \mathbb{N} [x^{k+1} \succ x^k \& x^{k+1} > x^k] \& x^{\omega} = \sup\{x^k\}_k]$$

$$\Rightarrow x^{\omega} \succ x^0; \quad (11a)$$

$$[\forall k \in \mathbb{N} [x^{k+1} \succ x^k \& x^{k+1} < x^k] \& x^{\omega} = \inf\{x^k\}_k]$$

$$\Rightarrow x^{\omega} \succ x^0. \quad (11b)$$

Theorem (\sim Kukushkin, 2012).

Let \succ be a regular semiorder on a poset A. Then $M(X, \succ) \neq \emptyset$ for every $X \in \mathfrak{C}_A$ if and only if it is mono- ω -transitive.

Theorem.

Let \succ be a binary relation on a regular poset A. Then \succ has the NM-property on every $X \in \mathfrak{C}_A$ if and only if it is irreflexive and mono- ω -transitive. *weak mono-ω-transitivity:*

$$\left[\forall k \in \mathbb{N} \left[x^{k+1} \succ x^k \& x^{k+1} > x^k\right] \& x^{\omega} = \sup\{x^k\}_k\right]$$

$$\Rightarrow x^{\omega} \succeq x^0; \quad (12a)$$

$$\left[\forall k \in \mathbb{N} \left[x^{k+1} \succ x^k \& x^{k+1} < x^k\right] \& x^{\omega} = \inf\{x^k\}_k\right]$$

$$\Rightarrow x^{\omega} \succeq x^0. \quad (12b)$$

Theorem.

Let \succ be a regular interval order on a poset A. Then $M(X, \succ) \neq \emptyset$ for every $X \in \mathfrak{C}_A$ if and only if it is weakly mono- ω -transitive.

Theorem.

Let \succ be an interval order on a regular poset A. Then $M(X, \succ) \neq \emptyset$ for every $X \in \mathfrak{C}_A$ if and only if it is weakly mono- ω -transitive.

111

Optimization on lattices

 $\mathfrak{C}_A \subseteq \mathfrak{L}_A$, hence the necessity results remain valid.

Example.

(~Milgrom and Roberts (1990) [M. Kandori])

 $A := [0,1] \times [0,1]$ with the natural order; $u: A \to \mathbb{R}$ as follows:

$$u(x_1, x_2) := \begin{cases} x_1, & x_1 + x_2 = 1 & x_2 > 0; \\ 0, & \text{otherwise.} \end{cases}$$

A is a complete lattice;

all upper contour sets are chain-complete.

$$M(X,\succ) \neq \emptyset$$
 for every $X \in \mathfrak{C}_A$.

However, $\sup_{x \in A} u(x) = 1$, hence $M(A, \succ) = \emptyset$.

meet quasisupermodularity (\land -*QSM*):

$$\forall x, y \in A \left[x \succ y \land x \Rightarrow y \lor x \succ y \right]; \tag{13a}$$

join quasisupermodularity (\lor *-QSM*):

$$\forall x, y \in A \left[y \succ y \lor x \Rightarrow y \land x \succ x \right]; \tag{13b}$$

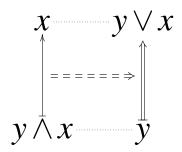
quasisupermodularity (QSM): both (13a) and (13b).

strict quasisupermodularity (SQSM):

$$\forall x, y \in A \left[[y \lor x > x > y \land x \& x \succeq y \land x] \Rightarrow y \lor x \succ y \right]; \quad (13c)$$

weak quasisupermodularity (wQSM):

$$\forall x, y \in A \left[x \succ y \land x \Rightarrow y \lor x \succeq y \right]. \tag{13d}$$



LiCalzi and Veinott (1992) Milgrom and Shannon (1994)

$$\frac{\partial^2 u}{\partial x_i \partial x_j} \ge 0 \, [>0]$$

$$\begin{array}{c} \bigvee\text{-QSM} \Longrightarrow wQSM \\ \uparrow & \uparrow \\ QSM \Longrightarrow \land\text{-QSM} \end{array}$$
 SQSM

 $QSM \equiv [\lor -QSM \land \land -QSM];$ $wQSM \Leftarrow [\lor -QSM \lor \land -QSM].$

"Upward-looking halves":

$$\forall y, x \in A \left[u(y) \lor u(x) > u(y \land x) \Rightarrow u(y \lor x) > u(y) \land u(x) \right];$$

$$\forall y, x \in A \left[u(y) \lor u(x) \geq u(y \land x) \Rightarrow u(y \lor x) \geq u(y) \land u(x) \right];$$

$$(\forall) y, x \in A \left[\left[u(y) \lor u(x) \geq u(y \land x) \Rightarrow u(y \lor x) > u(y) \land u(x) \right];$$

$$\forall y, x \in A \left[u(y) \lor u(x) > u(y \land x) \Rightarrow u(y \lor x) \geq u(y) \land u(x) \right].$$

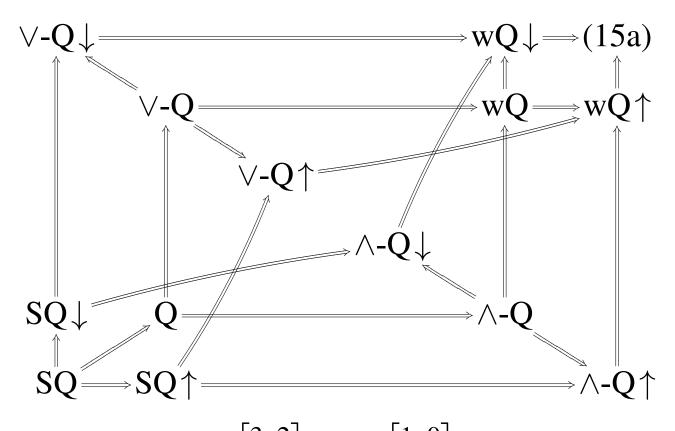
"Downward-looking halves":

$$\forall y, x \in A \left[u(y) \lor u(x) > u(y \lor x) \Rightarrow u(y \land x) > u(y) \land u(x) \right];$$

$$\forall y, x \in A \left[u(y) \lor u(x) \geq u(y \lor x) \Rightarrow u(y \land x) \geq u(y) \land u(x) \right];$$

$$(\forall) y, x \in A \left[\left[u(y) \lor u(x) \geq u(y \lor x) \Rightarrow u(y \land x) > u(y) \land u(x) \right];$$

$$\forall y, x \in A \left[u(y) \lor u(x) > u(y \lor x) \Rightarrow u(y \land x) \geq u(y) \land u(x) \right].$$



 $\mathbf{a}. \begin{bmatrix} 3 & 2 \\ 0 & 1 \end{bmatrix} \qquad \mathbf{b}. \begin{bmatrix} 1 & 0 \\ 2 & 3 \end{bmatrix}.$

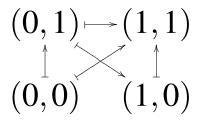
a: SQSM↑, but not even wQSM↓;

b: SQSM↓, but not even wQSM↑.

Let A be a lattice and \succ be an irreflexive, transitive, and chain-transitive binary relation on A which satisfies SQSM \uparrow or SQSM \downarrow . Then \succ has the NM-property on every $X \in \mathfrak{L}_A$.

Example.

Let $A := \{(0,0), (0,1), (1,0), (1,1)\} \subset \mathbb{R}^2$; let a binary relation \succ on A be as follows:



There is the NM-property on every sublattice (including A itself), but no transitivity since $(0,0) \succeq (1,0)$.

Let X be a complete sublattice of $\prod_{i \in I} C_i$, where I is a finite set and each C_i is a chain. Let \succ be a chain-transitive ordering on X satisfying \land -QSM \uparrow or \lor -QSM \downarrow . Then $M(X, \succ) \neq \emptyset$.

Theorem (Kukushkin, 2012).

Let \succ be a regular chain-transitive ordering on a complete lattice X. Let \succ satisfy \land -QSM \uparrow or \lor -QSM \downarrow . Then $M(X,\succ) \neq \emptyset$.

 $\forall X \in \mathfrak{L}_A [M(X,\succ) \neq \emptyset] \equiv \forall X \in \mathfrak{C}_A [M(X,\succ) \neq \emptyset]$ under the assumptions of either theorem.

Example (Kukushkin, 2012).

$$A := (\{n/(n+1)\}_{n \in \mathbb{N}} \cup \{1\}) \times (\{0\} \cup \{1/(n+1)\}_{n \in \mathbb{N}}) \subset \mathbb{R}^{2};$$

$$u: A \to \mathbb{R} \text{ as follows:}$$

$$u(1,x_{2}) = u(x_{1},0) := 0;$$

$$u(n_{1}/(n_{1}+1),1/(n_{2}+1)) := \min\{n_{1},n_{2}\}.$$

$$0 \ 0 \ 0 \ 0 \ \dots \ 0$$

$$0 \ 1 \ 1 \ 1 \ 1 \ \dots \ 0$$

$$0 \ 1 \ 2 \ 2 \ 2 \ \dots \ 0$$

$$0 \ 1 \ 2 \ 3 \ 3 \ \dots \ 0$$

$$0 \ 1 \ 2 \ 3 \ 4 \ \dots \ 0$$

$$\vdots \ \vdots \ \vdots \ \vdots \ \vdots \ \vdots \ \vdots \ \vdots$$

Both \land -QSM \downarrow and \lor -QSM \uparrow are satisfied, hence wQSM as well.

0 0 0 0 0 ... 0

 $M(X,\succ) \neq \emptyset$ for every $X \in \mathfrak{C}_A$; however, $\sup_{x \in A} u(x) = +\infty$, hence $M(A,\succ) = \emptyset$.
$$\forall X \in \mathfrak{C}_A \left[\left(\sup X^{\to} = \sup X \& \forall x, y \in X^{\to} [y > x \Rightarrow y \succeq x] \right) \\ \Rightarrow \forall x \in X^{\to} \left[\sup X \succeq x \right] \right]; (14a)$$

$$\forall X \in \mathfrak{C}_A \left[\left(\inf X^{\leftarrow} = \inf X \& \forall x, y \in X^{\leftarrow} \left[y < x \Rightarrow y \succeq x \right] \right) \\ \Rightarrow \forall x \in X^{\leftarrow} \left[\inf X \succeq x \right] \right]. \tag{14b}$$

Theorem.

If an ordering \succ on a complete lattice X satisfies (9b), (14a), and \land -QSM \uparrow , then $M(X, \succ) \neq \emptyset$.

Theorem.

If an ordering \succ on a complete lattice X satisfies (14b), (9a), and \lor -QSM \downarrow , then $M(X, \succ) \neq \emptyset$.

Let an ordering \succ on a lattice A satisfy wQSM \uparrow or wQSM \downarrow . Then \succ has the properties that $M(X, \succ) \neq \emptyset$ and $M(X, \succ)$ is chain-subcomplete for every $X \in \mathfrak{L}_A$ if and only if it is strongly chain-transitive.

Theorem.

Let X be a complete sublattice of $\prod_{i \in I} C_i$, where I is a finite set and each C_i is a chain. Let \succ be an ordering on X satisfying (9b), (14a), and wQSM \uparrow . Then $M(X, \succ) \neq \emptyset$.

Theorem.

Let X be a complete lattice. Let \succ be a regular ordering on X satisfying (11b), (14a), and wQSM \uparrow . Then $M(X, \succ) \neq \emptyset$.

Let X be a complete sublattice of $\prod_{i \in I} C_i$, where I is a finite set and each C_i is a chain. Let \succ be an ordering on X satisfying (14b), (9a), and wQSM \downarrow . Then $M(X, \succ) \neq \emptyset$.

Theorem.

Let X be a complete lattice. Let \succ be a regular ordering on X satisfying (14b), (11a), and wQSM \downarrow . Then $M(X, \succ) \neq \emptyset$.

Veinott's conditions

dual quasilattice mapping:

$$\forall y, x \in A \left[u(y \lor x) \lor u(y \land x) \ge u(y) \land u(x) \right]; \tag{15a}$$

meet supermorphism:

$$\forall y, x \in A \left[u(y \lor x) \ge u(y) \land u(x) \right]; \tag{15b}$$

superextremal mapping:

$$\forall y, x \in A \left[u(y \lor x) \lor u(y \land x) \ge u(y) \lor u(x) \right]$$
or $u(y \lor x) \land u(y \land x) \ge u(y) \land u(x)$. (15c)

In Theorems 6.2, 6.12, and 6.41 of Veinott (1992), u satisfied conditions (15a), (15b), and (15c), respectively; in each theorem, every upper contour set was subcomplete; besides, C in Theorem 6.2 was $\mathbb{R} \cup \{+\infty, -\infty\}$. Then the existence of a maximum was shown.

Proposition.

wQSM
$$\equiv$$
 (15c) \Rightarrow (15a).
(15b) \Rightarrow [(15a) & \vee -QSM \uparrow].

Example.

Let
$$A := \{(0,0), (0,1), (1,0), (1,1)\} \subset \mathbb{R}^2;$$

$$\mathbf{a}. \begin{bmatrix} 1 & 1 \\ 0 & 2 \end{bmatrix} \qquad \mathbf{b}. \begin{bmatrix} 1 & 0 \\ 2 & 1 \end{bmatrix}.$$

The matrix "a" satisfies (15b), hence (15a) and ∨-QSM↑, but none of the conditions ∧-QSM↑, wQSM↓, or (15c). The matrix "b" satisfies even SQSM, hence (15c) and (15a), but not (15b).

Let X be a complete join-semilattice and \succ be an ordering on X satisfying (9b), (14a), and (15b). Then $M(X, \succ) \neq \emptyset$.

Theorem (\sim Veinott, 1992).

Let X be a complete lattice and \succ be a regular ordering on X satisfying (15a) and such that every upper contour set is subcomplete. Then $M(X, \succ) \neq \emptyset$.

Example.

$$A := (\{n/(n+1)\}_{n \in \mathbb{N}} \cup \{1\}) \times (\{0\} \cup \{1/(n+1)\}_{n \in \mathbb{N}}) \subset \mathbb{R}^2;$$

$$u: A \to \mathbb{R} \text{ as follows:}$$

$$u(1,x_2) = u(x_1,0) := 0;$$

$$u(n_1/(n_1+1),1/(n_2+1)) := U(n_1,n_2),$$
where $U(k,k) := k$ while
$$U(k+h,k) = U(k,k+h) := k+1/(h+1) \ (h>0).$$

$$0 \quad 1/2 \quad 1/3 \quad 1/4 \quad 1/5 \quad \dots \quad 0$$

$$1/2 \quad 1 \quad 3/2 \quad 4/3 \quad 5/4 \quad \dots \quad 0$$

$$1/3 \quad 3/2 \quad 2 \quad 5/2 \quad 7/3 \quad \dots \quad 0$$

$$1/4 \quad 4/3 \quad 5/2 \quad 3 \quad 7/2 \quad \dots \quad 0$$

$$1/4 \quad 4/3 \quad 5/2 \quad 3 \quad 7/2 \quad \dots \quad 0$$

$$1/5 \quad 5/4 \quad 7/3 \quad 7/2 \quad 4 \quad \dots \quad 0$$

$$\vdots \quad \vdots \quad \vdots \quad \vdots \quad \ddots \quad \vdots$$

$$0 \quad 0 \quad 0 \quad 0 \quad 0 \quad \dots \quad 0$$

(15a) is satisfied.

The ordering is regular and strongly mono- ω -transitive, hence $M(X,\succ)\neq\emptyset$ for every $X\in\mathfrak{C}_A$. However, $\sup_{x\in A}u(x)=+\infty$, hence $M(A,\succ)=\emptyset$.

Impossibility results

Theorem (Kukushkin, 2008).

There is no "simple" condition such that a transitive binary relation \succ on a subset A of \mathbb{R}^n has the property that $M(X,\succ) \neq \emptyset$ for every compact $X \in \mathfrak{B}_A$ if and only if \succ satisfies the condition.

Convex (or convex and compact) subsets as admissible sets are even worse than that.

```
An abstract configuration C:
```

$$Dom C \subseteq \mathbb{N}$$
;

$$C_{=}, C_{\neq}, C_{>}, C_{\not>}, C_{\triangleright}, C_{\not>} \subseteq \mathrm{Dom}\,C \times \mathrm{Dom}\,C; \ C_{\wedge}, C_{\not \wedge}, C_{\lor}, C_{\lor} \subseteq \mathrm{Dom}\,C \times \mathrm{Dom}\,C \times \mathrm{Dom}\,C; \ C_{\wedge}, C_{\not \wedge}, C_{\lor}, C_{\lor}, C_{\lor} \subseteq (\mathrm{Dom}\,C)^{\mathbb{N}}.$$

A *realization* of C in A for \succ is

a mapping μ : Dom $C \rightarrow A$ such that:

$$\mu(k') = \mu(k) \text{ for } (k',k) \in C_{=}; \mu(k') \neq \mu(k) \text{ for } (k',k) \in C_{\neq}; \\ \mu(k') > \mu(k) \text{ for } (k',k) \in C_{>}; \mu(k') \not> \mu(k) \text{ for } (k',k) \in C_{\Rightarrow}; \\ \mu(k') \succ \mu(k) \text{ for } (k',k) \in C_{\triangleright}; \mu(k') \not\succ \mu(k) \text{ for } (k',k) \in C_{\triangleright}; \\ \mu(k'') = \mu(k') \land \mu(k) \text{ for } (k'',k',k) \in C_{\land}; \\ \mu(k'') \neq \mu(k') \land \mu(k) \text{ for } (k'',k',k) \in C_{\land}; \\ \mu(k'') = \mu(k') \lor \mu(k) \text{ for } (k'',k',k) \in C_{\lor}; \\ \mu(k'') \neq \mu(k') \lor \mu(k) \text{ for } (k'',k',k) \in C_{\lor}; \\ \mu(\nu(0)) = \bigwedge \{\mu(\nu(k))\}_{k>0} \text{ for } \nu \in C_{\land}; \\ \mu(\nu(0)) \neq \bigvee \{\mu(\nu(k))\}_{k>0} \text{ for } \nu \in C_{\lor}; \\ \mu(\nu(0)) \neq \bigvee \{\mu(\nu(k))\}_{k>0} \text{ for } \nu \in C_{\lor}; \\ \mu(\nu(0)) \neq \bigvee \{\mu(\nu(k))\}_{k>0} \text{ for } \nu \in C_{\lor}; \\ \mu(\nu(0)) \neq \bigvee \{\mu(\nu(k))\}_{k>0} \text{ for } \nu \in C_{\lor}; \\ \mu(\nu(0)) \neq \bigvee \{\mu(\nu(k))\}_{k>0} \text{ for } \nu \in C_{\lor}. \end{cases}$$

There exists no set $\mathcal N$ of abstract configurations such that a binary relation \succ on a subset A of $\mathbb R^n$ has the property that $M(X,\succ)\neq\emptyset$ for every $X\in\mathfrak C_A$ if and only if no configuration $C\in\mathcal N$ admits a realization in A for \succ .

Remark.

In the topological context, a broader class of conditions was shown to be insufficient (disjunctions were allowed too).

Moreover, an *a priori* restriction to transitive relations would not change the result.

That's all for now