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Introduction
Need existence results be boring?
Weierstrass Theorem

Theorem.
(...Bergstrom, 1973; Bondareva, 1973; Walker, 1977; ...)
An acyclic binary relation with open lower contour sets
admits a maximizer in every compact subset of its domain.

Unapplicable to Pareto dominance, lexicography, ...

Smith (1974)



Lattice Programming

Veinott, A.F., Jr| (1934-2012)

Milgrom & Roberts (1990); Milgrom & Shannon (1994):
weaker theorems with bizarre proofs.
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Preferences and choice

A: alternatives;
>—: preference relation on A;
B 4: nonempty subsets of A.

For X € By,

MX,=):={xecX|AyeX]y~x]}.

non-strict preference relation on A:
Y ZX=XFY;

MX,=)={xeX |VyeXx=yl}

(1)



A choice function
M(', >-) DB, — 24,

Basic properties

(X €B,)
M(X,>-) #0. (2)
The NM-property:
Vx e X\M(X,=)Iye M(X,>)[y > x|. 3)

3) = 2).



Easy cases:

M(X,>) # 0 for all finite X € B4
if and only > 1s acyclic.

> has the NM-property on every finite X € 54
if and only 1f it 1s irreflexive and transitive.

M(X,=)#0forall X € B,
if and only if > 1is strictly acyclic,
1.e., admits no infinite improvement path.

> has the NM-property on every X € ‘B,
if and only 1f 1t 1s strictly acyclic and transitive.

Path Independence; Outcast Axiom.



‘“Rationality” restrictions

An ordering:
Cisachain;u: A— C

y=x <= u(y) > u(x). 4)

An interval order:
Cisachain;u™,u :A— C

ut(x) > u(x); (5a)
y=x < u (y)>u(x). (5b)

A semiorder:
a representation (5) with u~ (x) = Aou™(x)
[A: ut(A) — C is increasing].

3) = (2).



Topological case
A: a metric space;

¢C4: nonempty compact subsets of A.
W-transitivity:

Wk € N - 5] & x® = lim x| = 1@ = X0

k—yoo

Theorem (Smith, 1974).

Let > be an ordering [semiorder] on a metric space A.

Then M(X,>) # 0 for all X € €4
if and only if > is w-transitive.

Theorem (Kukushkin, 2008).
Let > be a binary relation on a metric space A.
Then > has the NM-property on every X € €y
if and only 1f > 1s irreflexive and m-transitive.

(6)



Topological case (continued)

w-acyclicity (Mukherji, 1977):

Wk € N o ¥ &x° = l}imxk] = x££ 2 X =x". (7)
—>00
Theorem (Kukushkin, 2008).
Let > be an interval order on a metric space A.
Then M(X,>) # 0 for all X € €4
if and only if > 1s w-acyclic.

Example (Kukushkin, 2008).
LetA=10,1]andy = x=1>y > xforall y,x € A.
> 1s an ®-acyclic, but not ®-transitive, interval order.
M(X,>=)#0forall X € &4,
but there is no NM-property on A itself [M(A,>) = {1} ].

10



Topological case (continued further)

Theorem (Smith, 1974).
Let > be an ordering on a metric space A.
Then M(X,>~) € €4 forall X € €,
if and only if > is w-transitive.

Wk,h € Nx* = x"] & x° = lim x*| = x® = x".

k—oo

Theorem (Kukushkin, 2008).

Let > be an interval order on a metric space A.

Then M(X,>) € €4 forall X € €4
if and only if > satisfies (8).

11
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Henceforth, A 1s a poset

X €54 is (chain-)subcomplete
if supY and infY exist in A and belong to X
for every chain Y € By.

“Upper semicontinuity’ in posets:
All upper contour sets, {y € X | y = x},
are subcomplete.

Admissible subsets

C4: nonempty subcomplete chains in A;
£4: nonempty subcomplete sublattices in A.

12



Optimization on chains

>~ 18 chain-transitive if
it 1s transitive on every chain and:

VX € &, [(supX% =supX &Vx,y € X [y >x=y > x])
=VxeX” [supX»xH; (9a)
VX € &y [(ian% =infX &Vx,ye X" [y<x=y >x])
= Vx € X“ [infX = x]]. (9b)
[ X7 :=X\{supX}; X7 :=X\{infX}].

13



Theorem.
Let > be a binary relation on a poset A.
Then > has the NM-property on every X € €y
if and only 1f > is irreflexive and chain-transitive.

Not necessary for mere existence
even if > 1s an interval order
(the same example as above).

14



Theorem.
Let > be an ordering on a poset A.

Then M(X,>) € €4 forall X € €4
if and only 1f > is chain-transitive.

Example.
A:={0}U]1,2](C R);
0> 1andy > x for all (x,y) # (0,1).
> 18 a semiorder; > satisfies (9).

However, M(A,>) = {0}U]1,2] & &4.
"

15



VX € &y [(supXﬁ =supX &Vx,yeX ' [y>x=y >x])
= Vx € X [supX = x| |; (10a)

VX € &y [(ian% =infX &Vx,ye X" [y<x=y> x])
= Vx € X [infX = x]|. (10b)

(Follows from the subcompleteness of upper contour sets.)

Proposition.
If a binary relation > on a poset A
has the property that M (X, ) £ 0 for every X € €4,
then > 1s acyclic on every chain
and satisfies both conditions (10).

Insufficient for existence

even if > 1s an interval order.
1"y

16



Countability assumptions

A “regular” poset:
every chain contains
a countable cofinal and coinitial subset.

A “regular’” interval order >:
for every X € B, either M(X, ) # 0,
or there exists an optimizing sequence in X, 1.€.,
(1) Vk [x* 1 = x4
(i) Vx € X 3k [x* = x].

17



mono-m-transitivity:

Wk € N xF & > ¥ & x° = sup{x*}(]
= x® = x" (11a)

Wk € N[ o 2 & X < x4 & x° = inf{x"}]
= x? - x". (11b)

Theorem (~Kukushkin, 2012).
Let > be a regular semiorder on a poset A.
Then M(X,>) # 0 for every X € €4
if and only if it i1s mono-®-transitive.

Theorem.
Let > be a binary relation on a regular poset A.
Then > has the NM-property on every X € €y
if and only 1f it 1s 1rreflexive and mono-m-transitive.

18



weak mono-®-transitivity:

[‘v’k e N[ = X & > ¥ & x° = sup{xk}k}
= x® = x"; (12a)

Wk € N xF & X < ¥ & x© = inf{x*}]
= x® = x". (12b)

Theorem.
Let > be a regular interval order on a poset A.

Then M(X,>) # 0 for every X € €4
if and only 1f 1t 1s weakly mono-®-transitive.

Theorem.
Let > be an interval order on a regular poset A.
Then M(X,>) # 0 for every X € €,
if and only 1f it 1s weakly mono-m-transitive.
1"

19



Optimization on lattices
€4 C L4, hence the necessity results remain valid.

Example.
(~Milgrom and Roberts (1990) [M. Kandori])
A :=10,1] x [0, 1] with the natural order;
u: A — R as follows:

( ) X1, X1+x=1&x,>0;
u(xi,xo) = .
e 0, otherwise.

A 1s a complete lattice;
all upper contour sets are chain-complete.

M(X,>) # 0 for every X € €.
However, sup,, u(x) = 1, hence M(A,>) = 0.

20



meet quasisupermodularity (\-QSM):
Vx,yEA[x>y/\x:>y\/x>y]; (13a)
join quasisupermodularity (V-QSM):
Vx,yGA[y>y\/x:>y/\x>x]; (13b)
quasisupermodularity (QSM): both (13a) and (13b).
strict quasisupermodularity (SOQSM):
Vx,y €A Hy\/x >X>YAX&XZYAX] = yVx - y]; (13¢)
weak quasisupermodularity (WQSM):
Vx,yEA[x>y/\x:>y\/x§y]. (13d)

21



LiCalzi and Veinott (1992)
Milgrom and Shannon (1994)

0°u

Bx,- ij

> 0[> 0]
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V-QSM —wQSM
ﬂ ﬂ
QSM-——A-QSM
SQSM

QSM = [V-QSM A A-QSM |;
wQSM <= [ V-QSM \/ A-QSM .

23



“Upward-looking halves’:

24



V-Ql wQ | —(15a)

o —"
- AWwQ—w
N =
v-Qt
A-Q¢\

SQL™ Q- A-Q

/ ~
SQ~—SQ1 A-Q1

S

a: SQSMT, but not even wQSM ;
b: SQSMJ, but not even wQSM.
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Theorem.
Let A be a lattice and
— be an irreflexive, transitive, and

chain-transitive binary relation on A
which satisfies SQSM1 or SQSM,.
Then > has the NM-property on every X € £4.

Example.
let a binary relation > on A be as follows:
(07 1)%(17 1)

| >< 1
(0,0) (1,0)

There 1s the NM-property on every sublattice
(including A itself),
but no transitivity since (0,0) = (1,0).

26



Theorem.

Let X be a complete sublattice of [[,c; G,
where [/ 1s a finite set and each C, 1s a chain.
Let > be a chain-transitive ordering on X
satisfying A-QSM7 or V-QSM|.
Then M (X, ) # 0.

Theorem (Kukushkin, 2012).
Let > be a regular chain-transitive ordering
on a complete lattice X.
Let > satisfy A-QSMT or V-QSM,.
Then M(X,>) # 0.

VX € LA[M(X, ) £ 0| =VX € €, [M(X,>) # 0]

under the assumptions of either theorem.

27



Example (Kukushkin, 2012).

A= ({n/(n+1)}enU{1}) x ({0}U{1/(n+1)}nen) C R%;
u: A — R as follows:
u(1l,x) =u(x,0) :=0;
u(ny/(nj+1),1/(np+1)) := min{ny,n, }.

B~ W —= O
- OO OO O O

00000...0
Both A-QSMJ and V-QSM? are satisfied,
hence wQSM as well.
M(X,>) #£ 0 for every X € Cy;
however, sup, 4 u(x) = 400, hence M(A,>) = 0.
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>~ 18 strongly chain-transitive if
>~ 1S chain-transitive:

VX € €y [(supXﬁ =supX &Vx,ye X ' [y>x=y tx])
= Vx € X7 [supX ixH; (14a)

VX € €4 |(infX* =infX & Vx,y e X [y <x=y = x])
= Vx € X“ [infX = x]]. (14b)

Theorem.
If an ordering > on a complete lattice X
satisfies (9b), (14a), and A-QSMT,
then M(X,>) # 0.

Theorem.
If an ordering > on a complete lattice X
satisfies (14b), (9a), and V-QSM,
then M(X,>) # 0.
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Theorem.
Let an ordering > on a lattice A satisfy wQSM71 or wQSMJ.
Then > has the properties that M (X, >) # 0 and
M (X, ) is chain-subcomplete for every X € £4
if and only 1f it 1s strongly chain-transitive.

Theorem.

Let X be a complete sublattice of [],c; G,
where [/ 1s a finite set and each C, 1s a chain.
Let > be an ordering on X satisfying
(9b), (14a), and wQSM1.

Then M(X,>) # 0.

Theorem.
Let X be a complete lattice.
Let > be a regular ordering on X satisfying
(11b), (14a), and wQSMT.
Then M(X,>) # 0.

30



Theorem.

Let X be a complete sublattice of [[,c; G,
where [/ 1s a finite set and each C, 1s a chain.
Let > be an ordering on X satisfying
(14b), (9a), and wQSM,.

Then M (X, ) # 0.

Theorem.
Let X be a complete lattice.
Let > be a regular ordering on X satisfying
(14b), (11a), and wQSMJ.
Then M(X,>) # 0.
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Veinott’s conditions

dual quasilattice mapping:
Vy,x €Alu(yVx)Vu(yAx) > u(y) Au(x)]; (15a)
meet supermorphism:
Vy,x €Alu(yVx) > u(y) Au(x)]; (15b)
superextremal mapping:
Vy,x € Alu(yVx)Vu(y Ax) > u(y)Vu(x)
or u(yVx)Au(yAx) > u(y) Au(x)]. (15¢)

In Theorems 6.2, 6.12, and 6.41 of Veinott (1992),

u satisfied conditions (15a), (15b), and (15c¢), respectively;
in each theorem, every upper contour set was subcomplete;
besides, C in Theorem 6.2 was R U { oo, —oo}.

Then the existence of a maximum was shown.

32



Proposition.
wQSM = (15¢) = (15a).
(15b) = [(15a) & V-QSMT].

Example.
Let A :={(0,0),(0,1),(1,0),(1,1)} C R

11 10
J0 W
The matrix “a” satisfies (15b), hence (15a) and V-QSMT,
but none of the conditions A-QSM7, wQSMJ, or (15¢).

The matrix “b” satisfies even SQSM,
hence (15¢) and (15a), but not (15b).
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Theorem.

Let X be a complete join-semilattice
and > be an ordering on X satisfying
(9b), (14a), and (15b).

Then M(X,>) # 0.

Theorem (~Veinott, 1992).
Let X be a complete lattice and
> be a regular ordering on X satisfying (15a)

and such that every upper contour set is subcomplete.
Then M(X,>) # 0.
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Example.
A= ({n/(n+1)}enU{1}) x ({0}U{1/(n+1)},en) CR%:
u: A — R as follows:
u(l,x) = u(x,0) :=0;
u(ny/(n+1),1/(np+1)) :=U(ny,ny),
where U (k,k) := k while
Uk+hk)=Ukk+h)=k+1/(h+1) (h>0).

0 1/21/31/41/5 ...
1/2 1 3/24/35/4 ...
1/33/2 2 5/217/3 ...
1/4 4/35/2 3 7/2 ...
1/55/4 7/37/2 4

O O O O O

o 0 0 O 0 ...0
(15a) 1s satisfied.
The ordering 1s regular and strongly mono-®-transitive,

hence M (X, ) # 0 for every X € &,.
However, sup, ., u(x) = +oo, hence M(A, >) = 0.
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Impossibility results

Theorem (Kukushkin, 2008).
There 1s no “simple” condition such that
a transitive binary relation > on a subset A of R”
has the property that
M(X, ) # 0 for every compact X € B4
if and only 1f > satisfies the condition.

Convex (or convex and compact) subsets as admissible sets
are even worse than that.
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An abstract configuration C:

DomC C N;
C_,C4,C.,Cy,C,Cy € DomC X DomC;
Cn,Cy,Cy,Cy € DomC x DomC x DomC;

C/\,CM,C\/,CV C (DomC)N.
A realization of C in A for > is
a mapping u : DomC — A such that:
u(K') = (k) for (K',k) € Cs (k) # u(k) for (K',k) € C
p(k') > u(k) for (K'.k) € C=; u(k') # u(k) for (K',k) € Cy;
u(k') > u(k) for (k',k) € Cy; u(k'") # u(k) for (k',k) € Cy;
(k") = (k') A (k)
(k") 7 u(k’) A (k)
(k") = p(k') v u(k)
(k") 7 u(k’) V u(k)
u(v( k
(
(
(

(K", K, k) € Cp:
(K"K k) € Cy;

(K"K k) € Cy;
r (k" k/ ) = CW;

for
for
for
fo
) }k>() forv e C/\;
)

)
(v ) b0 for v € Cy;
)
)

=

(v(k)
(v(k)

<

beso for v € Cy.

=

0)) = Afu(v(
0)) # A{u(v(k
(v(0)) = V{u(v(
(v(0)) 7 VAu(v(

=
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Theorem.
There exists no set A/ of abstract configurations such that
a binary relation > on a subset A of R”
has the property that M(X,>) #£ 0 for every X € €,4
if and only if
no configuration C € A/ admits a realization in A for .

Remark.
In the topological context,
a broader class of conditions was shown to be insufficient
(disjunctions were allowed too).
Moreover, an a priori restriction to transitive relations
would not change the result.
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That’s all for now
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