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Abstract

The sets of maximal elements of a binary relation on compact subsets of a metric
space define a choice function. Possibilities to characterize natural properties of the
choice function (path independence, nonempty values, closed values, etc.) by algebraic
and topological conditions on the underlying relation are investigated. The latter are
formulated in terms of “configurations” realizable or not for the relation. The existence of
maximal elements on all compact subsets exceeds every other property in the complexity
of conditions needed for its characterization.
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1 Introduction

The notion of a choice function plays a central role in the decision theory (Fishburn, 1973; Sen,
1984; Aizerman and Aleskerov, 1995), the most important being the case of a choice function
defined by a binary relation. The subject of this paper are connections between properties of
such a choice function and properties of the underlying binary relation.

Our general framework is this. A binary relation is given on a metric space; undominated
points of every subset define a choice function. We only consider the behaviour of the choice
function on compact (nonempty) subsets. There is a more or less standard list of requirements,
which can be divided into two subclasses: “point-wise” (non-emptiness, closedness, etc.) and
“functional” ones (e.g., path independence). For each desirable property of the choice function,
we try to find an equivalent condition on the relation, expressed in algebraic and topological
terms. Some of the results obtained have a “heuristic” value as well, e.g., helping to establish
the existence of maximizers (fixed points or Nash equilibria) in certain classes of models
(Kukushkin 2003, 2005). However, here we concentrate on a purely formal aspect.

Were our attention focused on finite subsets, all our questions could be answered easily.
For compact subsets, there is a considerable literature studying conditions for the existence of
maximal elements (Smith, 1974; Bergstrom, 1975; Mukherji, 1977; Walker, 1977; Kiruta et al.,
1980; Danilov and Sotskov, 1985; Campbell and Walker, 1990); however, a characterization
result was only obtained by Smith (1974) under restriction to preference relations, which class
is too narrow for many purposes.

It turns out that the existence of maximal elements on every compact subset is the most
resistant to characterization among all properties from our list. In each of the other cases, a
necessary and sufficient condition is found in the form of prohibition of certain “configurations”
(e.g., a violation of transitivity can be viewed as a configuration consisting of three points,
not necessarily different). In the former case, however, no such condition exists.

To be more precise, we define a hierarchy of classes of “configurational properties” of
binary relations, which can be expressed in terms of possibility or impossibility to extend one
configuration to another (to another). The non-emptiness of choice is proven not to belong
to the simplest classes in the hierarchy. On the other hand, it can be characterized by a
combination of configurational tests involving, at most, two checks whether a configuration
could be extended to another; the equivalence is essentially tautological.

The next section contains necessary formal definitions. Section 3, main “positive” results:
Theorem 1 characterizes path independence plus nonempty values; Theorem 2, the possibility
to approximate the choice function from below with a path independent one having nonempty
values; Theorem 3 provides a condition for the sets of maximal elements on nonempty compact
subsets to be nonempty and compact themselves. The section ends with a modification of
our basic problem, when some a priori restrictions are imposed on the relation; Theorem 4
characterizes interval orders for which the non-emptiness of choice is ensured.

Section 4 contains “negative” results. We define an “abstract configuration” and its real-
ization in a metric space for a binary relation, and develop a formal theory of configurational
tests and properties. Theorems 5 and 6 show that simplest configurational tests cannot dis-
tinguish between binary relations for which the non-emptiness of choice is ensured, and for
which it is not. The last Section 5 contains a funny “positive” result, Theorem 7: a more
sophisticated configurational test is described which does the job.
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2 Basic Notions

A binary relation on a set A is a Boolean function on A×A; as usual, we write y . x whenever
the relation . is true on a pair (y, x). Henceforth, we assume that our binary relations are
defined on a metric space A (a first countable Hausdorff topological space would do as well:
what we actually need is that the topology on A be adequately described by convergent
sequences). We denote B the lattice of all subsets of A and C ⊂ B the set of all nonempty
compact subsets of A; when necessary, notation like C(A) is used.

A choice function on A is a mapping F : B → B satisfying F (X) ⊆ X for every X ∈ B.
Let X ⊆ A; a point x ∈ X is a maximizer for . on X if y . x does not hold for any y ∈ X.
The set of all maximizers for . on X is denoted M.(X); we omit the subscript when the
relation is clear from the context. M.(·) defines a choice function on B; we are interested in
the properties of this function on C. A choice function is path independent on C if

F (X ∪ Y ) = F (F (X) ∪ Y ) whenever X ∪ Y ∈ C. (1)

Remark. Plott’s (1973) original definition was a bit different from (1), but both are equiva-
lent. Theorems 1 and 2 below would remain valid if we restricted (1) to X, Y ∈ C.

A binary relation . is acyclic if there is no “finite improvement cycle”, i.e., x0, x1, . . . ,
xm+1 ∈ A such that xk+1 . xk for k = 0, . . . ,m and xm+1 = x0. When dealing with relations
on (infinite) topological spaces, more general notions of acyclicity, based on improvement
paths with well ordered sets of parameters, prove useful (Kukushkin, 2003).

A partially ordered set is well ordered if every subset contains a least point (then the
set obviously must be a chain). Actually, there exists a “universal” well ordered set such
that every countable, well ordered set is isomorphic to an initial segment of it (Natanson,
1974, Chapter XIV). To simplify the terminology, we will not refer to the concept without
necessity. Considering a well ordered set ∆, we will denote 0 the least point of the whole ∆,
and α + 1, for α ∈ ∆, the least point exceeding α (the latter exists unless α = max ∆). A
point α ∈ ∆ \ {0} is called isolated if α = β + 1 for some β ∈ ∆; otherwise, α is called a limit
point. It is sometimes convenient to consider a partial function α− 1 defined by the equality
α = (α− 1) + 1 for isolated α and not defined at all for limit points and for α = 0.

Let . be a binary relation on A. An improvement path for . (the relation will not be
mentioned when clear from the context) is a mapping π : ∆ → A, where ∆ is a countable,
well ordered set, satisfying these two conditions:

π(α + 1) . π(α) whenever α, α + 1 ∈ ∆; (2a)

whenever α ∈ ∆ is a limit point, there exists a sequence {βk}k ⊂ ∆ for which

βk+1 > βk for all k = 0, 1, . . . , α = sup
k

βk, and π(α) = lim
k→∞

π(βk). (2b)

An improvement path π is narrow if

π(α) = lim
k→∞

π(βk) whenever α ∈ ∆ is a limit point, and a sequence {βk}k ⊂ ∆

is such that α = sup
k

βk and βk+1 > βk for all k = 0, 1, . . . (2c)

Remark. By Theorem 4, Section 5, Chapter XIV of Natanson (1974), every limit point α ∈ ∆
is the least upper bound of a strictly increasing infinite sequence in ∆; therefore, (2c) implies
(2b).
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Thus, every point π(α) from an improvement path dominates the preceding point (if α is
isolated) or is a limit point of the preceding points (if α is a limit point). When π is narrow,
every π(α) with a limit α is the limit of the preceding points. An improvement sequence is an
improvement path parameterized with the set IN of natural numbers (or with a set isomorphic
to IN).

A (narrow) improvement cycle for . is a (narrow) improvement path π such that π(α) =
π(0) for an α > 0. A relation . is called (weakly) Ω-acyclic if there is no (narrow) improvement
cycle for ..

At the end of the section, we prove a purely technical lemma indispensable in some proofs
below.

Proposition 1. If π : ∆ → A is an improvement path and α ∈ ∆ is a limit point, then the
sequence {βk}k=0,1,... in (2b) can be picked so that each βk is isolated.

Proof. Supposing the contrary, we can pick the least limit point α ∈ ∆ for which there exists
no appropriate sequence. By (2b), there exists an infinite sequence γk such that γk+1 > γk for
all k = 0, 1, . . . , β = supk γk, and π(β) = limk→∞ π(γk). Now we may construct the sequence
{βk} by the following “algorithm”: fix a numeric sequence rh → 0 (e.g., rh = 1/h); pick
the first k1 for which ρ(π(β), π(γk1)) < r1; if γk1 is isolated, define β1 = γk1 ; otherwise, pick
β′ < γk1 which is isolated and satisfies ρ(π(β), π(β′)) < r1 (the statement of the lemma holds
for γk1 < α), and define β1 = β′. Then repeat the same procedure with just two additional
conditions: each new kh+1 must be greater than kh chosen on the previous step and, when
β′ is being chosen at the step h + 1, it must also satisfy β′ > γkh . Clearly, π(βk) → π(β),
β = supk βk, βk+1 > βk for all k, and each βk is isolated. Thus, having assumed our statement
wrong for α, we derived it, i.e., obtained a contradiction.

3 Characterization Results

3.1 Path Independence

A binary relation Â on A is called ω-transitive if it is transitive and the conditions xω =
limk→∞ xk and xk+1 Â xk for all k = 0, 1, . . . always imply xω Â x0.

Remark. It is worth noting that xω Â xk is valid for all k = 0, 1, . . . in the above situation,
once Â is ω-transitive.

The notion seems to have been first considered by Smith (1974) under the name of “σ-tran-
sitivity.” However, the prefix “σ” traditionally refers to the cardinal concept of a countable
set whereas what matters here is the order type of the set of natural numbers, usually referred
to as ω.

Theorem 1. Let Â be a binary relation on a metric space A. Then the operator MÂ is
nonempty-valued and path independent on C if and only if Â is irreflexive and ω-transitive.

Proof. Let us prove the necessity first. If x Â x, then M({x}) = ∅. If z Â y Â x, then
{z} = M({x, y, z}) = M({y, z} ∪ {x}) = M({x, z}), hence z Â x. Finally, let xk → xω and
xk+1 Â xk for each k. Denoting X = {xω}∪{xk}k=0,1,... and X ′ = X\{x0}, we have xk /∈ M(X)
for each k, hence M(X) = {xω}; similarly, M(X ′) = {xω}. Now {xω} = M(X ′ ∪ {x0}) =
M(M(X ′) ∪ {x0}) = M({xω, x0}), hence xω Â x0.
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The key role in the sufficiency proof is played by the following

Lemma 1.1. Let Â be an irreflexive and ω-transitive binary relation on a compact metric
space X and x∗ ∈ X. Then there is z ∈ MÂ(X) such that either z = x∗ or z Â x∗.

Remark. The statement immediately follows from Theorem 1 of Kukushkin (2003); however,
the current proof is much shorter and needs weaker topological assumptions.

Proof. For each x ∈ X, we denote G(x) = {y ∈ X| y Â x}. If x∗ is not a maximizer, then
G(x∗) 6= ∅; if we show that MÂ(G(x∗)) 6= ∅, then we are obviously home.

To apply Zorn’s Lemma (see, e.g., Kuratowski, 1966, p. 27), we have to consider an
arbitrary chain C ⊆ G(x∗) and show the existence of y ∈ X such that y Â x or y = x for
each x ∈ C (hence y ∈ G(x∗)). If C contains a greatest element, there is nothing to prove;
otherwise G(x) 6= ∅ for each x ∈ C. We denote F (x) = cl G(x) and F =

⋂
x∈C F (x). Since

C is a chain, all the sets G(x) (x ∈ C), hence F (x) too, contain each other; therefore, every
finite intersection of F (x) is not empty. Since X is compact, F 6= ∅.

Pick y ∈ F ; let us prove that y Â x for each x ∈ C. Supposing the contrary, we pick x0 ∈ C
for which y Â x0 does not hold and define a sequence xk ∈ G(x0) (k = 1, 2 . . . ) inductively
so that xk+1 Â xk and xk → y; then the ω-transitivity of Â implies y Â x0: a contradiction.
Having xk ∈ G(x0) already defined, we notice that y ∈ F (xk) \G(xk); therefore, we can pick
xk+1 ∈ G(xk) ⊂ G(x0) such that 0 < ρ(y, xk+1) < ρ(y, xk)/2. Obviously, xk+1 Â xk and
xk → y.

The inclusion M(X ∪ Y ) ⊆ M(M(X) ∪ Y ) holds for maximizers of every binary relation
and for all sets X and Y . Let x ∈ X ∪ Y \M(X ∪ Y ) and X ∪ Y ∈ C; by Lemma 1.1, there
is z ∈ M(X ∪ Y ) ⊆ M(M(X) ∪ Y ) such that z Â x. Therefore, even if x ∈ M(X) ∪ Y ,
x /∈ M(M(X) ∪ Y ).

Remark. It is not difficult to characterize the path independence of M. alone, without non-
emptiness; however, there is nothing interesting in that result.

3.2 Existence

Theorem 1 gives us a sufficient condition for the existence of maximizers. A potential for .
is an irreflexive and ω-transitive relation Â finer than ., i.e., satisfying y . x ⇒ y Â x for all
y, x ∈ A.

Corollary. If . admits a potential, then M.(X) 6= ∅ for each X ∈ C.

Proof. Obviously, MÂ(X) ⊆ M.(X) for any potential Â for ..

The Corollary often helps to establish the existence of maximizers. From the formal
viewpoint, however, it is disputable whether the existence of a potential should be viewed as
an “internal” property of the relation. Fortunately, the condition can be reformulated without
mentioning other relations: Theorem 2 ([2.1] ⇐⇒ [2.2]) of Kukushkin (2003) states that a
binary relation admits a potential if and only if it is Ω-acyclic. Therefore, the Corollary to
Theorem 1 can be reformulated as M.(X) 6= ∅ for each X ∈ C if . is Ω-acyclic.
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Theorem 2. Let . be a binary relation on a metric space A. Then a choice function F on A
path independent on C and satisfying the condition

∅ 6= F (X) ⊆ M.(X) for each X ∈ C (3)

exists if and only if . is Ω-acyclic.

Proof. The sufficiency easily follows from Theorem 1: if Â is a potential for ., then (3) holds
for F = MÂ, which is path independent on C.

Let an F exist and π be an improvement path for .. As a first step, we prove that

F ({π(β), π(α)}) = {π(α)} 6= {π(β)} (4)

for each β < α.

Supposing the contrary, let (α, β) ∈ ∆2 be a pair for which (4) does not hold and where α
is the least possible. If α is isolated, we have F ({π(α− 1), π(α)}) ⊆ M.({π(α− 1), π(α)}) =
{π(α)}, hence F ({π(α−1), π(α)}) = {π(α)}; π(α) = π(α−1) would imply M.({π(α−1)}) = ∅.
Thus, (4) holds for β = α − 1. For β < α − 1, we have F ({π(β), π(α − 1)}) = {π(α −
1)} 6= {π(β)} because α is the least possible, hence π(β) 6= π(α). Thus, F ({π(β), π(α −
1), π(α)}) = F (F ({π(β), π(α− 1)}) ∪ {π(α)}) = F ({π(α− 1), π(α)}) = {π(α)}; on the other
hand, F ({π(β), π(α− 1), π(α)}) = F (F ({π(α− 1), π(α)}) ∪ {π(β)}) = F ({π(α), π(β)}), i.e.,
(4) holds. Therefore, α cannot be isolated.

If α is a limit point, we invoke (2b), assuming, without restricting generality, that β0 = β.
The set X = {π(βk)}k=0,1,... ∪ {π(α)} is compact, hence F (X) 6= ∅. For each k, we have
F (X) = F ({π(βk), π(βk+1)} ∪ [X \ {π(βk)}]) = F (F ({π(βk), π(βk+1)}) ∪ [X \ {π(βk)}]) =
F (X \{π(βk)}) because (4) holds for βk, βk+1 < α; therefore, π(βk) /∈ F (X) for each k, hence
F (X) = {π(α)} 6= {π(β)}. Denoting X ′ = X \{π(β)}, we obtain F (X) = {π(α)} in the same
way. Now F (X) = F (F (X ′) ∪ {π(β)}) = F ({π(β), π(α)}), hence (4) holds.

Now if . were not Ω-acyclic, we would have an improvement path with π(α) = π(0) for
α > 0; but this clearly contradicts (4).

As is well understood, the “usual” acyclicity is an infinite conjunction of the prohibition of
an improvement cycle of the length m for every natural m, and all members of the conjunction
are mutually independent. Similarly, (weak) Ω-acyclicity is an uncountable conjunction of the
prohibition of particular cycles parameterized by the order types of countable, well ordered
sets, i.e., countable ordinal numbers (Natanson, 1974, Chapter XIV). All the conditions are
mutually independent.

Example 1. Let ∆ be a countable, well ordered set such that α = max ∆ exists. We introduce
intrinsic topology on ∆ (Birkhoff, 1967) and define the relation . on ∆ by β′′ . β′ iff β′′ = β′+1;
then the identity mapping ∆ → ∆ becomes a narrow improvement path. Let X be the result
of the identification of 0 ∈ ∆ with α ∈ ∆; then X inherits the topology and relation . from ∆.
Since ∆ can be homeomorphically embedded into the real line (e.g., by the Debreu Theorem),
X can be homeomorphically embedded into a circle. It is easy to see that X contains a narrow
improvement cycle of the “length” α, but no “shorter” improvement cycle.

Proposition 2. If M.(X) 6= ∅ for each X ∈ C, then . is weakly Ω-acyclic on A.

This is the implication [2.6]⇒[2.7] from Theorem 2 of Kukushkin (2003).
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A binary relation . is called ω-acyclic if it is acyclic and the conditions xk+1 . xk for all
k = 0, 1, . . . and x0 = limk→∞ xk are incompatible. A weakly Ω-acyclic relation (in particular,
ω-transitive and irreflexive) is obviously ω-acyclic.

Corollary. If M.(X) 6= ∅ for each X ∈ C, then . is ω-acyclic on A.

Remark. The statement was proved by Mukherji (1977, Corollary 3).

Example 2. Let us consider a circle represented as the set of complex numbers with |z| = 1;
formally, B = {eit| t ∈ IR}. We define a binary relation y . x ⇐⇒ y = ei · x. Then we
define B′ = B \ {1}.
Proposition 3. The relation . defined in Example 2 is weakly Ω-acyclic, but not Ω-acyclic
on both B and B′. It admits a maximizer on every nonempty compact subset of B′, but not
of B.

Proof. The relation is acyclic because 1 is incommensurable with 2π. Let an infinite sequence
{xk}k∈IN be such that xk+1 . xk for all k, i.e., xk = eki · x0. By the Jacobi theorem (see,
e.g., Billingsley, 1965), {xk}k∈IN is dense in X; therefore, x0 is a limit point, and we obtain a
cycle. By the same token, {xk}k∈IN cannot be convergent, so every narrow improvement path
is finite; therefore, acyclicity implies weak Ω-acyclicity. Clearly, there is no maximizer for .
on B, which is compact itself.

Finally, let us show that every nonempty compact X ⊆ B′ admits a maximizer for ..
Supposing the contrary, we would have a compact X ⊆ B′ containing an infinite sequence
{xk}k∈IN such that xk+1 . xk for all k. Again invoking the Jacobi theorem, we see that 1 is a
limit point. On the other hand, X, being compact, must contain every limit point of {xk}k∈IN ;
therefore, 1 ∈ X ⊂ B \ {1}. The contradiction completes the proof.

3.3 Closedness

The following condition, more or less tautologically, characterizes binary relations with closed
sets M.(X):

there is no sequence xk → xω and y ∈ A such that[
y . xω, y 6 . xk for any k, xω 6 . xk for any k, and xh 6 . xk for any h, k

]
. (5)

Proposition 4. For every binary relation ., the following conditions are equivalent:

4.1. M.(X) is closed for every X ∈ C;

4.2. . satisfies (5);

4.3. M.(X) is closed in X for every X ∈ B.

Proof. If (5) does not hold, we denote X = {xk}k=0,1,... ∪ {xω, y} ∈ C; obviously, xk ∈ M(X)
for each k, but xω /∈ M(X), i.e., M(X) is not closed. If there is X ∈ B such that M(X) is
not closed in X, there must be a sequence xk → xω such that xk ∈ M(X) and xω /∈ M(X),
hence there is y ∈ X for which y . xω; thus, we obtain a configuration prohibited by (5). The
implication [4.3] ⇒ [4.1] is trivial.

Theorem 3. A binary relation . on a metric space has the property that M.(X) ∈ C for
every X ∈ C if and only if . is weakly Ω-acyclic and satisfies (5).
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Proof. The necessity immediately follows from Propositions 2 and 4.

Lemma 3.1. If . is weakly Ω-acyclic and satisfies (5), then for every improvement path
π : ∆ → A, every isolated α ∈ ∆, and every β < α, there is a narrow improvement path from
π(β) to π(α).

Proof. Supposing the contrary, we pick a pair (α, β) ∈ ∆2 for which no such path exists;
we also assume that (isolated) α is the least possible. If α − 1 were isolated, there would
exist a narrow improvement path from π(β) to π(α − 1) because α is the least; adding to it
π(α) . π(α− 1), we would obtain a narrow improvement path from π(β) to π(α).

Let α − 1 be a limit point. Invoking Proposition 1, we pick a sequence {βk}k=0,1,... such
that βk+1 > βk for all k, α − 1 = supk βk, π(α − 1) = limk→∞ π(βk), and each βk is isolated;
without restricting generality, β0 > β. Since α is the least, there exist narrow improvement
paths from π(β) to each π(βk) (the paths need not be consistent in any sense). We call a
subsequence {βkh}h=0,1,... tight if kh+1 > kh and π(βkh+1) . π(βkh) for every h.

Let us suppose first that there is no infinite tight subsequence. Then we define an infinite
sequence γk ∈ ∆ by an inductive process. First, we pick a maximal finite tight subsequence
starting at β0: β0 = βk0 < βk1 < · · · < βkr (r ≥ 0). For every βh > βkr , the relation π(βkr) .
π(βh) would contradict the weak Ω-acyclicity of . because there exists a narrow improvement
path from π(βkr) to π(βh), whereas π(βh) . π(βkr) would contradict the maximality of the
tight subsequence. Therefore, π(βkr) is incomparable with π(βh) for any h > kr. We set
γ0 = βkr and repeat the same procedure replacing β0 with βkr + 1. Eventually, we obtain a
sequence {γk}k=0,1,... such that γk+1 > γk for all k, π(γk) → π(α−1), and π(γk) is incomparable
with π(γh) whenever k 6= h. The conditions (5) and π(α) . π(α − 1) imply that either
π(α) . π(γk) or π(α − 1) . π(γk) must hold for some k. Now, taking a narrow improvement
path connecting π(β) to π(γk) and adding to it π(α) in the first case or both π(α − 1) and
π(α) in the second, we obtain a narrow improvement path connecting π(β) to π(α).

If there is an infinite tight subsequence {βkh}h=0,1,..., we take a narrow improvement path
connecting π(β) to π(βk0) and add the whole sequence {π(βkh)}h=0,1,... plus π(α−1) and π(α).
Thus, in every case, our impossibility hypothesis leads to a contradiction.

Now let us show that . is Ω-acyclic; then a reference to Theorem 2 ([2.1]⇒[2.6]) of
Kukushkin (2003) will suffice. Indeed, let π be an improvement cycle, π(0) = π(α∗) with
α∗ > 0. If α∗ is isolated, we immediately apply Lemma 3.1 and obtain a narrow improve-
ment cycle, contradicting the weak Ω-acyclicity of .. If α∗ is a limit point, we (re)define
π(α∗ + 1) = π(1)[. π(0) = π(α∗)] and apply Lemma 3.1 with β = 1 and α = α∗ + 1, again
obtaining a narrow improvement cycle.

3.4 Restrictions on Relations

An irreflexive and transitive relation Â is called an interval order if [y Â x & a Â b] ⇒
[y Â b or a Â x] (actually, transitivity follows from the other conditions). An interval
order is called a semiorder if z Â y Â x ⇒ ∀a ∈ A [z Â a or a Â x]. A relation Â is
called a strict preference relation if it is irreflexive, transitive and negatively transitive, i.e.,
z 6Â y & y 6Â x ⇒ z 6Â x. It is easy to see that every strict preference relation is a semiorder.

Proposition 5. Let Â be a semiorder; then the following properties are equivalent:

5.1. MÂ(X) 6= ∅ for every X ∈ C;
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5.2. MÂ(X) 6= ∅ for every X ∈ C and MÂ(·) is path independent on C;

5.3. Â is ω-transitive;

5.4. Â is ω-acyclic.

Proof. The implications [5.2]⇒[5.1] and [5.3]⇒[5.4] are obvious; [5.1]⇒[5.4] follows from the
Corollary to Proposition 2; [5.2] ⇐⇒ [5.3], from Theorem 1. Thus, it is sufficient to prove
[5.4]⇒[5.3]. Let Â be an ω-acyclic semiorder, xk → xω, and xk+1 Â xk for all k. Then
x2 Â x1 Â x0 implies that either xω Â x0 or x2 Â xω. The latter would contradict the
ω-acyclicity (with the sequence xω, x2, x3, . . . ).

The restriction of Proposition 5 to strict preference relations renders the main theorem of
Smith (1974, Theorem 4.1).

Example 3. Let A = [0, 1] and y Â x ⇐⇒ 1 > y > x for all y, x ∈ A. Then A is compact,
Â is an interval order, ω-acyclic but not ω-transitive. Clearly, M(X) 6= ∅ for each X ∈ C;
however, M(·) is not path independent on C: denoting X = {k/(k + 1)}k=0,1,... ∪ {1} ∈ C,
we have M(X) = {1} = M(X \ {0}), but M(M(X \ {0}) ∪ {0}) = {1, 0} 6= M(X). Thus,
Proposition 5 does not hold for interval orders.

Theorem 4. Let Â be an interval order on a separable metric space A. Then MÂ(X) 6= ∅
for every X ∈ C if and only if Â is ω-acyclic.

Proof. The necessity immediately follows from the Corollary to Proposition 2.

Let Â be an ω-acyclic interval order, and let π be an improvement path for Â. We show
that

π(α + 1) Â π(β) whenever α ≥ β and (α + 1) ∈ ∆. (6)

Supposing the contrary, we pick a pair (α, β) ∈ ∆2 violating (6) with the least possible α. For
β = α, (6) follows from (2a), so β < α. If α is isolated, then π(α + 1) Â π(α) from (2a) and
π((α− 1) + 1) = π(α) Â π(β) from the minimality of α; therefore, (6) holds.

Let α be a limit point. Invoking Proposition 1, we pick a sequence {βk}k=0,1,... such that
βk+1 > βk for all k, α = supk βk, π(βk) → π(α), and each βk is isolated. For the simplicity of
notation, we assume β0 = β. For each k = 0, 1, . . . , we have π(βk+1) = π((βk+1 − 1) + 1) Â
π(βk) because α is the least possible. Since π(α + 1) Â π(α) and Â is an interval order,
either π(α + 1) Â π(β0) or π(β1) Â π(α); the latter relation, however, would contradict the
ω-acyclicity (for the sequence π(α), π(β1), . . . ). Therefore, (6) holds for all admissible α and
β.

Now let π be an improvement cycle, π(0) = π(α∗) with α∗ > 0. If α∗ is isolated, we, from
(6), derive π(α∗) = π((α∗ − 1) + 1) Â π(0) = π(α∗), contradicting the irreflexivity of Â. If α∗

is a limit point, we, as in the proof of Theorem 3, (re)define π(α∗ + 1) = π(1) and, applying
(6) with β = 1 and α = α∗, again obtain a contradiction with the irreflexivity. Therefore,
Â is Ω-acyclic; a reference to Theorem 2 ([2.1]⇒[2.6]) of Kukushkin (2003) completes the
proof.

Campbell and Walker (1990) called a relation Â “weak lower continuous” if y Â x implies
the existence of an open neighbourhood U of x such that z 6Â y for every z ∈ U . Obviously,
the weak lower continuity of Â implies its ω-acyclicity; therefore, Theorem 1 of Campbell and
Walker (when restricted to metric spaces) immediately follows from our Theorem 4. Weak
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lower continuity is not necessary for an interval order to admit a maximizer on every X ∈ C:
consider a lexicographic order on a plane with fixed coordinates.

With a strict preference relation Â, the nonstrict preference relation º can be associated:
y º x ⇐⇒ x 6Â y; the relation º is reflexive, transitive and complete (“weak order”). The
relation y ∼ x ⇐⇒ [y º x & x º y] is an equivalence relation.

Proposition 6. (Smith 1974, Theorem 4.2) A strict preference relation Â has the property
that MÂ(X) ∈ C for every X ∈ C if and only if º is ω-transitive.

Proof. Let º be ω-transitive; then Â is obviously ω-transitive too, hence MÂ(X) 6= ∅ for
every X ∈ C by Theorem 1. If xk → xω and xk+1 ∼ xk for all k, then xω º xk for all k, hence
y Â xω implies y Â xk for all k. Therefore, the configuration prohibited by (5) is impossible.
A reference to Proposition 4 completes the sufficiency proof.

As to the necessity, let xk → xω and xk+1 º xk for all k; without restricting generality,
either xk+1 Â xk for all k or xk+1 ∼ xk for all k. In the first case, we have xω Â x0 because
the ω-transitivity of Â is necessary by Proposition 5. In the second case, assuming x0 Â xω,
we obtain a configuration prohibited by (5) (with y = x0); therefore, xω º x0.

4 Impossibility Results

4.1 Configurations

We denote IN = {0, 1, . . . } the chain of natural numbers starting from zero. An abstract
configuration C consists of Dom C ⊆ IN , C=, C 6=, C>, C 6> ⊆ Dom C × Dom C, and C→, C 6→ ⊆
(Dom C)IN , where (Dom C)IN means the set of mappings IN → Dom C, i.e., sequences in
Dom C. In the following we use indices κ ∈ {=, 6=, >, 6>,→, 6→}.

Let . be a binary relation on a metric space A and C be an abstract configuration. A
realization of C in A for . is a mapping µ : Dom C → A such that: µ(k′) = µ(k) whenever
(k′, k) ∈ C=; µ(k′) 6= µ(k) whenever (k′, k) ∈ C 6=; µ(k′) . µ(k) whenever (k′, k) ∈ C>;
µ(k′) 6 . µ(k) whenever (k′, k) ∈ C6>; µ(ν(k)) → µ(ν(0)) whenever ν ∈ C→; µ(ν(k)) 6→ µ(ν(0))
whenever ν ∈ C6→.

Many natural properties of binary relations, including all those considered in Section 3, can
be expressed as the impossibility to realize a certain configuration (or every configuration from
a certain set). For example, to define the irreflexivity of ., we can prohibit the realization
of a configuration with Dom C = {0}, C> = {(0, 0)}, and other sets empty; transitivity,
with Dom C = {0, 1, 2}, C> = {(1, 0), (2, 1)} and C6> = {(2, 0)}. To define ω-transitivity,
we additionally prohibit the realization of a configuration with Dom C = IN , C> = {(k +
1, k)}k=1,2,..., C6> = {(0, 1)}, and C→ = {ν0}, where ν0(k) = k. To define acyclicity, we have
to prohibit the realization of each of a countable set of configurations parameterized with
m ∈ IN : Dom C(m) = {0, . . . , m + 1}, C

(m)
> = {(1, 0), (2, 1), . . . , (m + 1,m)} and C(m)

= =
{(0,m + 1)}; to define ω-acyclicity, we additionally prohibit the realization of a configuration

with Dom C(ω) = IN , C
(ω)
> = {(k + 1, k)}k∈IN , and C(ω)

→ = {ν0}.
Weak Ω-acyclicity is equivalent to the impossibility to realize each configuration from

an uncountable set parameterized with isolated countable ordinal numbers α: Dom C(α) =
IN ; a bijection τ between IN and a well ordered set ∆ of the type α is fixed; C(α)

= =

{(τ−1(0), τ−1(max ∆))}; C
(α)
6= = C

(α)
6> = C

(α)
6→ = ∅; (k′, k) ∈ C

(α)
> ⇐⇒ τ(k′) = τ(k) + 1;
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ν ∈ C(α)
→ ⇐⇒ [

τ(ν(k + 1)) > τ(ν(k)) (for k = 1, 2, . . . ) & τ(ν(0)) = supk τ(ν(k))
]
. It is

easy to see that a realization of C(α) is the same thing as a narrow improvement cycle of the
“length” α.

A similar redefinition of Ω-acyclicity needs an even larger set of prohibited configurations:
For each limit ordinal β ≤ α, we should pick an increasing sequence γk ∈ ∆ for which
β = supk γk, and then include into C→ the sequence ν defined by ν(k) = τ−1(γk) and ν(0) =
τ−1(β). Thus each single configuration C(α) is replaced with a set parameterized with all
possible choices of sequences γk (simultaneously for all β < α).

Besides “negative” conditions, prohibiting certain configurations, we will consider “posi-
tive” ones, demanding that a certain configuration must have a realization. Obviously, the
negation of a “negative” condition is “positive” and vice versa.

There are also properties of binary relations in the definition of which configurations are
used in a subtler way. For instance, the existence of a maximizer on the whole A, ∃x @y [y . x],
clearly refers to the configuration defined by Dom C = {0, 1}, C> = {(1, 0)} and every other
Cκ empty. However, a realization of this configuration is neither prohibited nor requested.
Rather, it must be possible to start building a realization (choosing µ(0)) in such a way
that the completion of the process (the choice of µ(1)) is impossible. To include such (and
even more complicated) conditions into our formal framework, we need a definition of one
configuration or realization extending another.

Let C and C ′ be abstract configurations; C ′ is an extension of C (denoted C ′ ≥ C) if
Dom C ⊆ Dom C ′ and Cκ ⊆ C ′

κ for every κ. Let C ′ ≥ C, and µ and µ′ be realizations of
C and C ′, respectively, in the same A for the same .; then µ′ is an extension of µ (denoted
µ′ ≥ µ) if µ coincides with the restriction of µ′ to Dom C.

4.2 Configurational Tests

Let C be an abstract configuration. An object over C is A = 〈A, ., µ〉, where A is a metric
space, . is a binary relation on A, and µ is a realization of C in A for .. Strictly speaking,
all objects over C form a “class” rather than a “set.” However, we may fix a “universal set”
U large enough for any reasonable purpose, and only consider A ⊆ U; this simple trick allows
us to speak of the set AC of all objects over C.

It is important to note that our definition of an abstract configuration allows an “empty”
configuration with Dom C = ∅ (hence Cκ = ∅ for every κ). This configuration, denoted simply
∅, admits a unique, empty, realization in every metric space A for every binary relation on
A. Therefore, A∅ can be viewed as consisting of pairs 〈A, .〉, each of which defining a choice
function M. we are interested in. Other sets AC play an auxiliary role.

A test over C is a mapping T : AC → {0, 1}. The set of all tests over C will be denoted
TC . An object A ∈ AC passes a test T ∈ TC if T (A) = 1.

Let T ⊆ TC and T ∈ TC . We say that T is a combination of tests from T , which fact
is denoted T ∈ Comb T , if, whenever A1,A2 ∈ AC are such that T ′(A1) ≥ T ′(A2) for all
T ′ ∈ T , we have T (A1) ≥ T (A2) as well. Clearly, if T (A1) = T (A2) for all T ∈ T , then
T (A1) = T (A2) for all T ∈ Comb T . The following properties of the operator Comb are easily
checked:

T ⊆ Comb T ; (7a)

T ′ ⊆ Comb T ⇒ Comb T ′ ⊆ Comb T . (7b)
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Remark. In a sense, Comb T consists of logical combinations which do not use negation. The
point is that negation affects both formal properties and the meaning of a test so strongly
that it would make no sense to view it as an innocuous operation.

Let T ∈ TC and A′,A′′ ∈ AC . We say that T distinguishes A′′ from A′ if T (A′′) = 1 while
T (A′) = 0. If B′,B′′ ⊆ AC , we say that T distinguishes B′′ from B′ if T (A′′) = 1 for every
A′′ ∈ B′′ while T (A′) = 0 for every A′ ∈ B′.
Proposition 7. For every T ⊆ TC and B′,B′′ ⊆ AC, the existence of a test T ∈ Comb T
distinguishing B′′ from B′ is equivalent to the existence, for each A′′ ∈ B′′ and A′ ∈ B′, of a
test T [A′′,A′] ∈ T distinguishing A′′ from A′.

Proof. If T [A′′,A′] does not exist for a pair A′′ ∈ B′′, A′ ∈ B′, then T (A′′) ≤ T (A′) for all
T ∈ T . By the definition of Comb T , the same inequality holds for all T ∈ Comb T , hence
none of them could distinguish A′′ from A′, to say nothing of B′′ from B′.

Conversely, if T [A′′,A′] ∈ T exists for every pair A′′ ∈ B′′, A′ ∈ B′, then we define

T ∗(A) = max
A′′∈B′′

min
A′∈B′

T [A′′,A′](A). (8)

Obviously, T ∗ ∈ Comb T . Now if A ∈ B′′, we have T [A,A′](A) = 1 for all A′ ∈ B′, hence
T ∗(A) = 1; if A ∈ B′, then T [A′′,A](A) = 0 for all A′′ ∈ B′′, hence T ∗(A) = 0.

Remark. In a sense, (8) is just a disjunctive form without negations. Actually, every T ∈
Comb T can be represented in the form (8) if A′′ ∈ B′′ and A′ ∈ B′ are perceived as arbitrary
parameters.

Let C ′ ≥ C. We define two operators from TC′ to TC :

ExtC,C′ [T ](A, ., µ) = max
µ′≥µ

T (A, ., µ′);

AllC,C′ [T ](A, ., µ) = min
µ′≥µ

T (A, ., µ′);

where µ′ is a realization of C ′, max∅ = 0 and min∅ = 1. Clearly, both ExtC,C and AllC,C are
identity mappings.

For every configuration C, we introduce two simplest tests imaginable, >C ,⊥C ∈ TC , by
>C(A) = 1 and ⊥C(A) = 0 for all A ∈ AC . We denote singleton subsets {>C}, {⊥C} ⊂ TC

by >>>C and ⊥⊥⊥C respectively.

Let a class of tests LC ⊆ TC have been defined for every abstract configuration C. Then
we define

∀LC = Comb
⋃

C′≥C

AllC,C′ LC′ ⊆ TC ; (9a)

∃LC = Comb
⋃

C′≥C

ExtC,C′ LC′ ⊆ TC . (9b)

Since C ′ = C is allowed in both equalities (9), we have L ⊆ ∃L ∩ ∀L by (7a). By induction,
σm . . . σ1L ⊆ σm′ . . . σm . . . σ1L for every m′ ≥ m ≥ 1 and σk ∈ {∀,∃}.

A test T ∈ T∅ is configurational if it belongs to one of the classes inductively defined
by (9), starting with L = ⊥⊥⊥ or L = >>> (e.g., ∀∃∃∀∀∃⊥⊥⊥∅). A property of pairs 〈A, .〉 (or a
condition on such pairs) is configurational if the characteristic function of the subset of A∅
defined by the property or condition is a configurational test.
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The meaning of the constructions well deserves discussion. Let A = 〈A, ., µ〉 ∈ AC and
C ′ ≥ C; by definition, AllC,C′ ⊥C′(A) = 1 if and only if the realization µ of C cannot be
extended to a realization µ′ of C ′. In particular, every test from {All∅,C ⊥C}C can be inter-
preted as the prohibition to realize a configuration, whereas tests from ∀⊥⊥⊥∅ are combinations,
“positive disjunctive forms,” of such elementary negative conditions. It is easy to see that all
conditions obtained in Section 3 are of this form, even without disjunctions.

Similarly, ∃>>>∅ consists of “positive” requirements: every configuration from one of specified
sets of configurations must be realizable. Here belong various non-triviality conditions, e.g.,
A 6= ∅, #A ≥ 3, “A is infinite,” or “there is a pair y, x ∈ A such that y . x.”

It is easily checked that ∀>>>∅ = >>>∅ and ∃⊥⊥⊥∅ = ⊥⊥⊥∅; therefore, we should only consider
classes whose descriptions end in ∀⊥⊥⊥∅ or ∃>>>∅. It seems σm . . . σ1L ⊂ σm′ . . . σm . . . σ1L for
m′ > m ≥ 1, L ∈ {>>>∅,⊥⊥⊥∅}, and σk ∈ {∀, ∃} unless an equality can be derived from those two,
although there is no formal proof for the assertion. It is also worth noting that ⊥⊥⊥C ⊆ ∃>>>C

and >>>C ⊆ ∀⊥⊥⊥C because we can demand or prohibit something impossible by itself; therefore,
σm . . . σ1∃>>>C ⊇ σm . . . σ1⊥⊥⊥C and σm . . . σ1∀⊥⊥⊥C ⊇ σm . . . σ1>>>C .

The existence of a maximizer on the whole A, discussed at the end of Section 4.1, is
obviously a configurational property from the class ∃∀⊥⊥⊥∅. Other natural properties belong to
the same class in a less obvious way.

Let Dom C = {1, 2, . . . } and Cκ = ∅ for all κ; Dom C ′ = IN , C ′
6→ = {ν : IN → IN | ν(0) =

0 & ν(k) > 0 for all k > 0} and C ′
κ = ∅ for all other κ. Then the test Ext∅,C AllC,C′ ⊥C′ ∈

∃∀⊥⊥⊥∅ characterizes topologically separable metric spaces: there is a countable subset of A,
µ(Dom C), such that there is no point, µ′(0), which is not the limit of any sequence in the
subset.

Let Dom C = {2, 3, . . . } and Cκ = ∅ for all κ; for each I ⊆ Dom C, Dom C ′[I] = IN ,
C ′[I]> = {(1, 0)} ∪ {(k, 1)}k∈I ∪ {(0, k)}k∈(Dom C)\I and C ′[I]κ = ∅ for all other κ. Then
the test Ext∅,C minI⊆Dom C AllC,C′[I]⊥C′[I] ∈ ∃∀⊥⊥⊥∅, added (with a conjunction, i.e., minimum)
to the condition that . is the strict component of a linear order (which condition obviously
belongs to ∀⊥⊥⊥∅ ⊆ ∃∀⊥⊥⊥∅), defines Cantor’s condition for the possibility to imbed A with the
order into the real line: there is a countable subset of A, µ(Dom C), such that every order
interval contains a point from the subset.

The class ∀∃>>>∅ contains, e.g., the definition of a directed set: ∀a, b ∃c [c . a & c . b] (again,
the condition that . is an order should be added). Another property from the class is the
convergence of every infinite improvement sequence.

In principle, every configurational test, regardless of its complexity, admits a reasonable
interpretation. To the best of this author’s knowledge, however, the lengthiest list of quanti-
fiers needed in the formulation of a useful property is met in the definition of a (semi)lattice
order:

∀a, b ∃c [
c . a & c . b & 6 ∃d [d . a & d . b & d 6 . c]

]
. (10)

It is easy to see that the condition is characterized by a configurational test from ∀∃∀⊥⊥⊥∅.

4.3 Main Negative Results

There is nothing surprising in the fact that all conditions used in the results of Section 3
belong to the class ∀⊥⊥⊥∅: all the properties of choice functions considered their are “inherited”
(Walker, 1977) if we replace A with a subspace; similarly inherited is every configurational
property from ∀⊥⊥⊥∅, while every other class of configurational properties contains some that
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are not. Much more interesting is that the non-emptiness of choice, which is inherited, does
not belong to the class, nor even to some wider classes.

Let us define TMax ∈ T∅ by TMax(A) = 1 if and only if M.(X) 6= ∅ for every X ∈ C(A).

Theorem 5. TMax /∈ ∀∃>>>∅.

Proof. Let us suppose, to the contrary, that

TMax ∈ ∀∃>>>∅ = Comb
⋃
C

All∅,C Comb{ExtC,C′ >C′}C′≥C .

As in Example 2, we define B = {eit| t ∈ IR}, B′ = B \ {1}, and y . x ⇐⇒ y = ei · x;
we also denote A = 〈B, .〉 and A′ = 〈B′, .〉. By Proposition 3, TMax(A) = 0 whereas
TMax(A′) = 1.

By Proposition 7, there must be a configuration C and a test T ∈ All∅,C Comb{ExtC,C′

>C′}C′≥C distinguishing A′ from A. By the definition of the operator All, there must be a
realization µ of C in B and a test T ′ ∈ Comb{ExtC,C′ >C′}C′≥C such that T ′(A′′) = 0 where
A′′ = 〈B, ., µ〉 ∈ AC .

Picking r ∈ B \ {1/µ(k)}k∈Dom C , we define µ∗ : Dom C → B by µ∗(k) = r · µ(k). Clearly,
µ∗(k) = µ∗(h) ⇐⇒ µ(k) = µ(h), µ∗(k) . µ∗(h) ⇐⇒ µ(k) . µ(h), and µ∗(ν(k)) →
µ∗(ν(0)) ⇐⇒ µ(ν(k)) → µ(ν(0)) for all k, h ∈ Dom C and ν ∈ INDom C ; besides, 1 /∈
µ∗(Dom C) by the choice of r. Thus, µ∗ is a realization of C in B′; we denote A′′′ = 〈B′, .,
µ∗〉 ∈ AC . From T (A′) = 1, we obtain T ′(A′′′) = 1, again by the definition of the operator
All.

Thus, T ′ distinguishes A′′′ from A′′; by Proposition 7, there must be a configuration
C ′ ≥ C such that ExtC,C′ >C′(A′′) = 0 whereas ExtC,C′ >C′(A′′′) = 1. By the definition of the
operator Ext, the realization µ cannot be extended to a realization of C ′ in B, while there is
a realization µ∗∗ ≥ µ∗ of C ′ in B′.

Now we define µ′ : Dom C ′ → B by µ′(k) = µ∗∗(k)/r. For exactly the same reasons as
above, µ′ is a realization of C ′ in B. Besides, µ′(k) = µ∗∗(k)/r = µ∗(k)/r = µ(k) for every
k ∈ Dom C; therefore, µ′ ≥ µ. The contradiction with the impossibility to extend µ proves
the theorem.

Remark. A slight modification of the proof shows that TMax /∈ ∀∃ . . .∃>>>∅.

So far, it proved impossible to prove an exact analogue of Theorem 5 for the class ∃∀⊥⊥⊥∅
without an additional restriction. For every abstract configuration C, we denote C∗(C) the
set of configurations C ′ ≥ C such that C ′

6→ \ C6→ is countable. Then we define

L∗ = Comb
⋃
C

Ext∅,C Comb{AllC,C′ ⊥C′}C′∈C∗(C). (11)

Clearly, L∗ ⊆ ∃∀⊥⊥⊥∅; of all properties from the latter class listed in Section 4.2, only topological
separability seems not to belong to L∗ (as usual, there is no formal proof for that).

Theorem 6. TMax /∈ L∗.

Proof. Let us suppose, to the contrary, that TMax ∈ L∗. As in the proof of Theorem 5, we
refer to Example 2, but with some elaboration: we use the same relation ., the same set B′,
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and define B′′ = B′ ∪ B∗, where B∗ = {2 · eit| t ∈ IR}; geometrically, B′′ is a disjoint union
of a circle and a circle without a point. Then we define A = 〈B′′, .〉, and A′ = 〈B′, .〉; again,
TMax(A) = 0 whereas TMax(A′) = 1.

By Proposition 7, there are a configuration C and a test T ∈ Ext∅,C Comb{AllC,C′ ⊥C′}C′∈C∗(C)

distinguishing A′ from A. By the definition of the operator Ext, there must be a realization
µ of C in B′ (hence in B′′ as well) and a test T ′ ∈ Comb{AllC,C′ ⊥C′}C′∈C∗(C) such that
T ′(A′′′) = 1, where A′′′ = 〈B′, ., µ〉 ∈ AC . Clearly, µ is a realization of C in B′′ as well; we
denote A′′ = 〈B′′, ., µ〉 ∈ AC . By the definition of the operator Ext, T ′(A′′) = 0.

Thus, T ′ distinguishes A′′′ from A′′; by Proposition 7, there must be a configuration
C ′ ∈ C∗(C) such that AllC,C′ ⊥C′(A′′) = 0 whereas AllC,C′ ⊥C′(A′′′) = 1. By the definition of
the operator All, the realization µ cannot be extended to a realization of C ′ in B′, but can be
in B′′.

Let µ′ ≥ µ be a realization of C ′ in B′′. We denote M ′ = (µ′)−1(B′) ⊇ Dom C; M∗ =
(µ′)−1(B∗) ⊆ Dom C ′\Dom C; Y = {x ∈ B′′| ∃k ∈ Dom C ′ [x = µ′(k)] or ∃ν ∈ C ′

6→\C6→ [x =
limk→∞ µ′(ν(k))]}; Y1 = Y ∩B∗; Y2 = (Y ∩B′)∪{1}; Z = {2y2/y1, 2e

iy2/y1, 2e
−iy2/y1}y1∈Y1, y2∈Y2 .

Since C ′ ∈ C∗(C), Z is countable. Picking r ∈ B \ Z, we define µ∗ : Dom C ′ → B′ by
µ∗(k) = µ′(k) for k ∈ M ′ and µ∗(k) = r · µ′(k)/2 for k ∈ M∗. Clearly, µ∗(k) = µ(k) for
k ∈ Dom C. Let us check that µ∗ is a realization of C ′; the contradiction will prove the
theorem.

The transformation of µ′ into µ∗ is identical on M ′ and isomorphic on M∗ (as in the proof
of Theorem 5); therefore, problems might emerge only between k ∈ M ′ and k′ ∈ M∗. Since
B′ and B∗ are totally disconnected in B′′ and µ′ is a realization of C ′, neither C ′

=, nor C ′
>

can contain pairs (k, k′) with k and k′ belonging to different components of the partition
IN = M ′ ∪ M∗; similarly, if ν ∈ C ′

→, then the number of k ∈ IN for which ν(0) and ν(k)
belong to different components of the partition is finite. Thus, only “negative” conditions
from C ′

6=, C ′
6>, or C ′

6→ could be violated by µ∗. However, this is impossible by the choice of r
(and because the limits were included into Y ).

Remark. As in Theorem 5, we could modify the definition of L∗, inserting several combi-
nations Comb

⋃
Cs+1≥Cs ExtCs,Cs+1 between Ext∅,C1 and Comb{AllCm,C′ ⊥C′}C′∈C∗(Cm) in (11),

and still have a valid theorem.

A couple of technical points is worth discussion. First, there is a test from L∗ distinguish-
ing 〈B′, .〉 from 〈B, .〉: Let Dom C = {1, 2, . . . }, C> = {(k + 1, k)}k∈Dom C , Dom C ′ = IN ,
C ′

> = C>, C ′
→ = {ν∗}, where ν∗(0) = 0 and eν∗(k)i → 1 as k → ∞ (such ν∗ exists by the

Jakobi theorem), and Cκ = ∅ and C ′
κ = ∅ for all κ not mentioned. Then 〈B′, .〉 passes

Ext∅,C AllC,C′ ⊥C′ , but 〈B, .〉 does not. Second, there is a test from ∃∀⊥⊥⊥∅ \L∗, distinguishing
〈B′, .〉 from 〈B′′, .〉, e.g., an improvement sequence is dense in 〈B′, .〉, but no improvement
sequence is dense in 〈B′′, .〉 (formalization is straightforward).

Finally, let us note that the possibility to imbed a chain into the real line, as well as
topological separability, are also inherited, but, most likely, do not belong to ∀⊥⊥⊥∅; the former
belongs to L∗, but the latter does not seem so. (Perhaps, formal proofs for all the three asser-
tions could be produced after some effort, but studying such properties hardly has anything
to do with decision theory.) So the non-emptiness of choice may not be unique in this respect.
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5 A Characterization of Existence

Test TMax proves configurational after all.

Theorem 7. There exists a test T ∗ ∈ ∀∃∀⊥⊥⊥∅ such that T ∗(A) = 1, for A ∈ A∅, if and only if
M.(X) 6= ∅ for each X ∈ C(A). In other words, TMax ∈ ∀∃∀⊥⊥⊥∅.
Remark. It is funny to note that the definition of a (semi)lattice (10) belongs to the same
class.

Proof. First, we define an abstract configuration C0 by Dom C0 = {2, 3, . . . } and C0
κ = ∅ for all

κ. Then we denote N = {ν : IN → Dom C0} and Λ = {λ : IN → IN | k′ > k ⇒ λ(k′) > λ(k)}.
For each ν ∈ N, we define an abstract configuration C1[ν] by Dom C1[ν] = {0, 2, 3, . . . },
C1[ν]→ = {ν∗}, where ν∗(0) = 0 and ν∗(k) = ν(k) for k > 0, and C1[ν]κ = ∅ for all other
κ. For each ν, ν ′ ∈ N, we define an abstract configuration C2[ν, ν ′] by Dom C2[ν, ν ′] = IN ,
C2[ν, ν ′]> = {(1, 0)}, C2[ν, ν ′]→ = {ν∗, ν∗∗}, where ν∗ is the same as above, while ν∗∗(0) = 1
and ν∗∗(k) = ν ′(k) for k > 0, and C2[ν, ν ′]κ = ∅ for all other κ. It is easily checked that
C2[ν, ν ′] ≥ C1[ν] ≥ C0 for all ν, ν ′ ∈ N.

Now we define the following configurational tests:

T 1 = max
ν∈N

min
λ∈Λ

AllC0, C1[ν◦λ]⊥C1[ν◦λ] ∈ ∀⊥⊥⊥C0 ⊆ ∃∀⊥⊥⊥C0 ;

T 2 = max
ν∈N

ExtC0, C1[ν] min
ν′∈N

AllC1[ν], C2[ν,ν′]⊥C2[ν,ν′] ∈ ∃∀⊥⊥⊥C0 ;

T ∗ = All∅, C0 max{T 1, T 2} ∈ ∀∃∀⊥⊥⊥∅.
Let us prove that T ∗ actually coincides with TMax.

Let A = 〈A, .〉 ∈ A∅, T ∗(A) = 1, and X ∈ C(A). As a compact metric space, X includes
a countable dense subset Y . Let a realization µ0 of C0 in A be such that µ0(Dom C0) = Y ;
we can be sure of its existence because all C0

κ are empty. We denote A′ = 〈A, ., µ0〉 ∈ AC0 .
By the definition of the operator All, we have max{T 1(A′), T 2(A′)} = 1. If T 1(A′) = 1,
there must be ν ∈ N such that, for every λ ∈ Λ, the realization µ0 cannot be extended to
a realization of C1[ν ◦ λ], which means that the sequence µ0 ◦ ν in X does not contain a
convergent subsequence, µ0 ◦ ν ◦ λ; however, this contradicts the compactness of X.

Therefore, T 2(A) = 1, hence there are ν ∈ N and a realization µ1 ≥ µ0 of C1[ν] such that

min
ν′∈N

AllC1[ν], C2[ν,ν′]⊥C2[ν,ν′](A′′) = 1, (12)

where A′′ = 〈A, ., µ1〉 ∈ AC1[ν]. Denoting x = µ1(0), we have x = limk→∞ µ1(k); since X
is compact, x ∈ X. If there existed y ∈ X for which y . x, we could take a sequence yk

in Y converging to y and ν ′ ∈ N such that µ0(ν ′(k)) = yk for every k > 0. Now defining
µ2(1) = y, we would have completed the definition of a realization of C2[ν, ν ′] which extends
µ1, contradicting (12). Therefore, x ∈ M.(X) 6= ∅.

Now let M.(X) 6= ∅ for each X ∈ C(A); we have to prove T ∗(A) = 1. Let a realization
µ0 be fixed; we denote Y = µ0(Dom C0), X = cl Y , and A′ = 〈A, ., µ0〉 ∈ AC0 . Every x ∈ X
is the limit of a sequence in Y , and such sequences are defined by ν ∈ N. We consider two
alternatives.

Let X be compact; then there is a maximizer x0 ∈ X and a sequence in Y converging to
x0. We pick ν that defines the sequence, and define µ1(0) = x0 while µ1(k) = µ0(k) for all
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k ∈ Dom C0. Clearly, µ1 is a realization of C1[ν]. If a realization µ2 of C2[ν, ν ′] were possible
for a ν ′ ∈ N, we would have a point x = µ2(1) ∈ X such that x . x0; but this would contradict
the choice of x0. Thus, T 2(A′) = 1.

Let X not be compact. Then there is a sequence xk (k ∈ IN) in X no subsequence of which
converges in X, hence in A as well. For every k ∈ IN , we pick ν(k) so that ρ(xk, µ0(ν(k))) <
1/2k. Each λ ∈ Λ defines a subsequence, µ0 ◦ ν ◦ λ, of µ0 ◦ ν. The existence of a realization
µ1 of C1[ν ◦ λ] extending µ0 would imply the convergence of µ0 ◦ ν ◦ λ(k) to µ0 ◦ ν ◦ λ(0),
which, in turn, would imply the convergence of xλ(k), contradicting the choice of the sequence
xk. Thus, T 1(A′) = 1.

Since µ0 was arbitrary, T ∗(A) = 1.

Remark. Comparing Theorem 7 with the theorems from Section 4.3, we clearly see a gap:
It is not known whether TMax ∈ ∃∀⊥⊥⊥∅ \ L∗ or whether TMax ∈ ∀∀⊥⊥⊥∅.

A natural reaction to the construction proving Theorem 7 might be a desire to modify our
definitions so that the test TMax cease to be configurational. We can demand that all sets and
sequences participating in the definition of an abstract configuration should be recursive. Then
the total set of abstract configurations can be parameterized with natural numbers; defining
general configurational tests, we can again impose the recursiveness restriction. “Negative”
Theorems 5 and 6 will obviously remain valid in the new situation; the conditions established in
“positive” Theorems 1 and 4 will remain configurational. However, the conditions established
in Theorems 2, 3, and 7 will hardly remain so. The same can be said of such properties as
topological separability or the existence of a countable, order dense subchain. Thus, such an
attempt to distinguish between “natural” and “too complicated” conditions would clearly be
less than satisfactory.

At the moment, there is no idea of how to reformulate the definition of a configurational
test so that all the conditions formulated in Section 3 remain configurational, whereas T ∗

defined in Theorem 7 violate some requirements. Perhaps this cannot be done in a convincing
way. In any case, there is plenty of room for further exploration.
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