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Abstract

Connections between aggregation in preferences and the acyclicity of improve-
ments in strategic games are studied in two distinct contexts. The first are “games
with common intermediate objectives,” where: the players participate in certain
“activities”; each activity generates a “level of satisfaction,” shared by all partici-
pating players; the utility of each player is an aggregate of the relevant levels. The
second are games with ordered strategy sets where each player’s best responses are
increasing in an aggregate of the partners’ strategies. The necessity of scalar ag-
gregation is shown for a stylized model, viz. an endomorphism. Certain necessity
results are also obtained for two or three person games.
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1 Introduction

This paper continues the study of conditions for the acyclicity of improvement relations
in strategic games. A systematic investigation of games where the convergence of uni-
lateral improvement dynamics is ensured was started by Monderer and Shapely (1996);
Milchtaich (1996) suggested similar treatment of best response improvements. Kukushkin
(1999, 2000, 2003) showed the usefulness of the language of binary relations and developed
transfinite techniques.

The main purpose of this paper is to extend further the results of Kukushkin (2003)
and Kukushkin (2004b). Thus we consider two independent contexts, vaguely united by
the term “aggregation,” which has a distinct meaning in either case.

The first are “games with structured preferences” (a far-reaching extension of the
model from Germeier and Vatel’, 1974, and Kukushkin et al., 1985). The players derive
“intermediate utilities” from participation in certain “activities”; “aggregation” means re-
placing Pareto dominance with an ordering. The description of preferences with complete
relations being a well-established practice in game theory, the appearance of aggregation
in this sense seems inevitable. The focus of our study is on what kind of aggregation
rules ensure the acyclicity of improvements in every derivative game; in other words, it is
necessity results that are most important.

The central position is occupied by Theorem 2 – an analogue of the famous Debreu–
Gorman Theorem (Fleming, 1952; Debreu, 1960; Gorman, 1968; see also Wakker, 1989,
and Vind, 1991) in a strategic game context: If every aggregation rule is continuous and
strictly increasing in each variable, then the existence of a Nash equilibrium in every
derivative game implies additivity in the same sense as in Gorman (1968). Unfortunately,
a complete proof was only given for two particular cases. One of them is sufficient for the
derivation of the main result of Gorman (1968, Theorem 1); probably, a closed proof of
that theorem is given for the first time ever.

It seems proper to recognize (at least) two different aspects of additivity: It may refer
to an algebraic object, a (semi)group, where entities can be combined producing new
entities of the same kind. It may also refer to a purely ordinal framework, where an
ordering on a given set is produced with the help of numeric functions. An exposition
of interplay between both aspects can be found in the wonderful book of Krantz et al.
(1971). Here we only consider additivity in the ordinal sense.

The second class are games with ordered strategy sets where each player’s best re-
sponses are increasing in an aggregate of the partners’ strategies. The presence of such
aggregates is by no means mandatory. As is well known, monotonicity conditions may
ensure the existence of an equilibrium and some other nice properties of strategic games,
including important economic models, without any hint of aggregation in this sense (Top-
kis, 1979; Bulow et al., 1985; Tirole, 1988; Vives, 1990; Milgrom and Roberts, 1990;
Fudenberg and Tirole, 1991; Milgrom and Shannon, 1994; Topkis, 1998). Still, it was
noticed long ago that aggregation can help (McManus 1962, 1964; Novshek, 1985; see
also Kukushkin, 1994a).

Here we are concerned with conditions for nice best response improvement dynamics
rather than the mere existence of a Nash equilibrium. It is already known that aggregation
is conducive to the acyclicity of best response improvements. In a sense, this paper
supplies evidence supporting the claim “there is no acyclicity without aggregation.” Taken
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literally, the claim is invalid: Kandori and Rob (1995; Theorem 2) showed that symmetry
in a game with strategic complements may be sufficient, although S. Takahashi (personal
communication) demonstrated that the exact analogue of the theorem for games with
strategic substitutes is wrong.

To make the necessity of aggregation provable, we concentrate on statements whose
conditions survive the application of a monotonic transformation; for instance, Theorems 1
and 2 of Kukushkin (2004a) are of this kind, while the symmetry of Theorem 3 from the
same paper or Theorem 2 from Kandori and Rob (1995) is not. The most convincing
results are obtained for the case of an endomorphism of a partially (pre)ordered set – a
stylized image of the system of the best response correspondences in a strategic game.

The next Section 2 contains basic definitions and notation. The following two sections
correspond to two contexts mentioned above: Section 3 considers games with structured
preferences; Section 4, “acyclic patterns” for endomorphisms and systems of reactions.

In Subsection 3.1, basic notions concerning games with structured preferences are
introduced. There is a set of players, a set of “activities,” lists of activities where every
player participates, sets of feasible values of “intermediate utilities” associated with every
activity, and an aggregation rule, i.e., an ordering on the set of feasible vector utilities for
each player. Theorem 1 shows that the existence of a potential in every strategic game
consistent with a given game structure and a given list of aggregation rules is equivalent
to the existence of a potential in the same sense on the level of a general scheme.

In Subsection 3.2, the definition of Gorman additive aggregation rules is given and
Theorem 2 about them is formulated. It is also shown that the Gorman additivity implies
that individual improvements in every derivative game are acyclic in a rather strong sense.
In Subsections 3.3 and 3.4, constructions needed for a necessity proof are developed,
although, as has already been mentioned, the proof is left uncompleted, except for two
special cases, Propositions 3.4 and 3.6 of Subsection 3.5. In particular, Theorem 1 of
Gorman (1968) is easily derived from Proposition 3.4.

In Subsection 4.1, basic definitions concerning monotonic mappings and correspon-
dences on (pre)ordered sets are given; auxiliary results about the existence of increasing
mappings are proven. Subsection 4.2 is about “acyclic patterns” for endomorphisms, i.e.,
endomorphisms of (pre)ordered sets that remain acyclic after any monotonic transforma-
tion. Theorems 3 and 4 show the importance of linear orders; in a sense, they explain the
lack of conditions for the acyclicity of simultaneous best response improvements in the
literature.

In Subsection 4.3, an analogue of Theorem 3 is obtained for two person games (The-
orem 5); unfortunately, no analogue of Theorem 4 for this case has been obtained so far
(Example 5.2 from Kukushkin, 2000, shows the difficulties here).

Subsection 4.4 contains two isolated results on three person games: three continuous
and strictly increasing (in Theorem 6; decreasing in Theorem 7) functions form an acyclic
pattern if and only if all the three can be transformed into simple sums by the same
change of variables. The proof is based on a special case of Theorem 2 covered by Propo-
sition 3.6. The necessity statement becomes wrong if there are more than three players
(Example 4.3).
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2 Basic Notions

A binary relation on a set X is a Boolean function on X × X; as usual, we write y . x
whenever the relation . is true on a pair (y, x). The most popular in mathematical
literature seem to be order relations. A (partial) strict order is an irreflexive and transitive
binary relation; a reflexive and transitive binary relation is called a preorder. With every
preorder º, strict orders Â and ≺, as well as an equivalence relation ∼, are naturally
associated. A complete preorder is called an ordering ; an ordering º is represented by a
numeric function f : X → R if y º x ⇐⇒ f(y) ≥ f(x).

Let . be a binary relation on X = X1 × X2. A relation .1 on X1 is a separable
projection of . to X1 (along X2) if

(x′1, x2) . (x1, x2) ⇐⇒ x′1 .1 x1

for all x′1, x1 ∈ X1 and x2 ∈ X2. Usually X2 is clear from the context and not mentioned at
all. Obviously, a separable projection “inherits” all properties inherited by the restrictions
to subsets (as being a preorder, strict order, ordering, etc.). The following two statements
are also easy to prove. Let X = X1 ×X2 ×X3 and . be a binary relation on X. Then:
(1) If . admits separable projections to both X1×X2 and X2×X3, then it also admits a
separable projection to X2. (2) If . admits a separable projection .12 to X1 ×X2, then a
separable projection of .12 to X1 (if exists) is a separable projection of . to X1 and vice
versa.

We always assume X to be a metric space. An ordering on X is continuous if upper
and lower contours, {y ∈ X| y Â x} and {y ∈ X| x Â y}, are open for every x ∈ X.
By the famous Debreu Theorem, an ordering on a separable metric space is continuous if
and only if it can be represented by a continuous function. As Gorman (1968) stressed,
topological separability has nothing to do with the separability of the previous paragraph.

This paper is mostly concerned with improvement relations in strategic games. As
usual, a strategic game Γ is defined by a finite set of players N (we denote n = #N), and
strategy sets Xi and preference relations ºi on X =

∏
i∈N Xi for all i ∈ N . We assume

each ºi to be an ordering; its numeric representation, when exists, is called a utility
function. We always assume that each Xi, hence X too, is a metric space; if each Xi is
compact, we call Γ a compact game. The best response correspondence Ri : X−i → 2Xi

for each i ∈ N is defined in the usual way:

Ri(x−i) = {xi ∈ Xi| ∀x′i ∈ Xi [(xi, x−i) ºi (x′i, x−i)]};

generally, Ri(x−i) = ∅ is possible.

With every strategic game, a number of improvement relations on X are associated.
Here we shall use two of them: the individual improvement relation .Ind and the best
response improvement relation .BR (called Cournot relation in Kukushkin, 2004a).

y .Ind
i x ⇐⇒ [y−i = x−i & y Âi x]; (2.1a)

y .Ind x ⇐⇒ ∃i ∈ N [y .Ind
i x]; (2.1b)

y .BR
i x ⇐⇒ [y−i = x−i & xi /∈ Ri(x−i) 3 yi]; (2.2a)

y .BR x ⇐⇒ ∃i ∈ N [y .BR
i x] (2.2b)
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(y, x ∈ X, i ∈ N).

By definition, a strategy profile x ∈ X is a Nash equilibrium if and only if x is a
maximizer for .Ind, i.e., if y .Ind x holds for no y ∈ X. Every Nash equilibrium is a
maximizer for .BR; if Ri(x−i) 6= ∅ for all i ∈ N and x−i ∈ X−i, then the converse is
also true. The condition holds, for instance, when preferences are represented by utility
functions each of which only takes a finite number of values; alternatively, we may require
each Xi to be compact and each ui upper semicontinuous in own strategy xi.

For a finite game, the acyclicity of the individual improvement relation (2.1) implies
that an infinite individual improvement path is impossible, hence every such path, if
continued whenever possible, ends at a Nash equilibrium; the existence of the latter is
thus implied. Monderer and Shapley (1996) called this the finite improvement path (FIP)
property of the game. Similarly, the acyclicity of (2.2) in a finite game implies that
every best response improvement path eventually leads to a Nash equilibrium (the FBRP
property of Milchtaich, 1996).

Von Neumann and Morgenstern (1953) called a relation strongly acyclic if it admits
no infinite improvement path; if the individual (best response) improvement relation in Γ
is strongly acyclic, then Γ has the FIP (FBRP) property even if it is infinite. To the best
of my knowledge, however, this condition does not hold in interesting infinite games.

A more promising extension of acyclicity to the infinite (topological) case is based on
the notion of a potential, i.e., a strict order Â such that

y . x ⇒ y Â x. (2.3a)

Clearly, . admits a potential in this sense if and only if it is acyclic. An ω-potential is a
strict order which is ω-transitive,

[
xω = lim

k→∞
xk & ∀k ∈ N[xk+1 Â xk]

] ⇒ xω Â x0, (2.3b)

and satisfies (2.3a). A binary relation admits an ω-potential if and only if no path combin-
ing improvements with taking limit points can return to its origin after any (transfinite)
number of steps. Since this version of acyclicity is of crucial importance, I reproduce basic
formal constructions.

A linearly ordered set is well ordered if every subset contains a least point; Natanson
(1974, Chapter XIV) can be used as a reference textbook. Considering a well ordered set
Σ, we will denote 0 the least point of the whole Σ, and β + 1, for β ∈ Σ, the least point
exceeding β (the latter exists unless β = max Σ). A point β ∈ Σ \ {0} is called isolated if
β = β′ + 1 for some β′ ∈ Σ; otherwise, β is called a limit point. Thus, we have a partition
Σ = {0} ∪ Σiso ∪ Σlim. It is sometimes convenient to consider a partial function β − 1
defined by the equality β = (β − 1) + 1 for isolated β and not defined at all on Σ \ Σiso.

Let . be a binary relation on a metric space X (interesting for us are improvement
relations in strategic games). An improvement path for . is a mapping π : Σ → X, where
Σ is a countable well ordered set, satisfying these two conditions:

π(β + 1) . π(β) whenever β, β + 1 ∈ Σ; (2.4a)

whenever βω ∈ Σlim, there exists a sequence {βk}k ⊂ Σ for which

βk+1 > βk for all k = 0, 1, . . . , βω = sup
k

βk, and π(βω) = lim
k→∞

π(βk). (2.4b)
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An improvement path π is narrow if

π(βω) = lim
k→∞

π(βk) whenever βω ∈ Σlim and a sequence {βk}k ⊂ Σ

are such that βω = sup
k

βk and βk+1 > βk for all k = 0, 1, . . . (2.5)

A (narrow) improvement cycle is a (narrow) improvement path π such that π(β′′) =
π(β′) for some β′′ > β′ ∈ Σ. Deleting from Σ all γ < β′ and γ > β′′, we can assume
β′ = 0 and β′′ = max Σ. A relation . is called (weakly) Ω-acyclic if it admits no (narrow)
improvement cycle.

By Theorem 2 of Kukushkin (2003), a relation . is Ω-acyclic if and only if it admits
an ω-potential (2.3); an Ω-acyclic relation admits a maximizer on every compact subset
of its domain. The weak Ω-acyclicity is necessary for the existence of maximizers on all
compact subsets, but not sufficient for anything of interest. If strategy sets are compact
and an improvement relation (.Ind or .BR) admits an ω-potential, then every appropriate
improvement path “eventually” (perhaps in a very long run) reaches a Nash equilibrium.

It is clear from (2.2) that the relation .BR depends on the correspondences Ri rather
that on Γ as such. It makes sense, therefore, to introduce the notion of a “system of
reactions” (Kukushkin, 2000). Virtually the same object was called an “abstract game”
by Vives (1990); however, he focussed attention on an endomorphism, the Cartesian
product of all reactions.

A system of reactions S is defined by a finite set of indices N , and sets Xi and mappings
Ri : X−i → 2Xi \ {∅} for all i ∈ N . A point x0 ∈ X =

∏
i∈N Xi is called a fixed point of S

if x0
i ∈ Ri(x

0
−i) for all i ∈ N .

With every system S, one can associate binary relations on X: y .Si x ⇐⇒ [y−i =
x−i & xi /∈ Ri(x−i) 3 yi]; y .S x ⇐⇒ ∃i ∈ N [y .S

i x]. Clearly, x ∈ X is a maximizer
for .S if and only if x is a fixed point of S. Improvement paths for .S are generated by
iterating Ri’s and picking limit points; we usually call them iteration paths. We call S
(Ω-)acyclic if so is .S . As a rule, we omit the superscript S at .. By Theorem 2 ([2.1] ⇒
[2.6]) of Kukushkin (2003), an Ω-acyclic system of reactions with compact sets Xi has a
fixed point.

It is sometimes useful to consider endomorphisms (“fixed point frameworks”) as sim-
plified analogues of systems of reactions. With every mapping F : X → 2X \ {∅} (a
correspondence X → X), we associate a binary relation .F : y .F x ⇐⇒ x /∈ F (x) 3 y;
for the particular case of a mapping f : X → X, we have y .f x ⇐⇒ y = f(x) 6= x.
Maximizers for .F (.f ) are exactly the fixed points of F (or f), while improvement paths
for .F (.f ) combine iterating F (or f) and picking limit points, so we also call them
iteration paths. We call a mapping F (or f) acyclic or Ω-acyclic, if so is .F (.f ).

3 Games with Structured Preferences

3.1 Game structures and aggregation rules

We start with an abstract scheme closely related to the notion of a game with structured
utilities (Kukushkin, 2004b).
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A game structure is a list S =
〈
N, A, 〈Υi〉i∈N , 〈Vα〉α∈A

〉
, where N and A are finite sets

(of players and activities, respectively), and all Υi ⊆ A and Vα ⊆ R are not empty. We
always assume that

⋃
i∈N Υi = A. For each α ∈ A, we denote N(α) = {i ∈ N | α ∈ Υi};

for each B ⊆ A, VB =
∏

α∈B Vα. We always equip VB with the topology defined by the
norm ‖vB‖ = maxα∈B |vα|. For a given game structure and i ∈ N , an aggregation rule is
an ordering ºa

i on VΥi
such that v′ ≥ v ⇒ v′ ºa

i v for all v′, v ∈ VΥi
. An aggregation rule

is strictly responsive if

v′ Âai v whenever v′, v ∈ VΥi
, ∀α ∈ Υi [v

′
α ≥ vα], and ∃α ∈ Υi [v

′
α > vα]. (3.1)

The property is essential in Theorem 2 below.

Given a game structure S and a list of aggregation rules L = 〈ºa
i〉i∈N , we introduce

binary relations on VA:

v′ .ai v ⇐⇒ [v′Υi
Âai vΥi

& v′A\Υi
= vA\Υi

]; (3.2a)

v′ .a v ⇐⇒ ∃i ∈ N [v′ .ai v]. (3.2b)

We call .a the aggregate improvement relation. By the general results cited in the previous
section, the aggregate improvement relation .a is (Ω-)acyclic if and only if it admits a(n
ω-)potential.

A strategic game Γ is consistent with a game structure S and a list L if N is the set
of players in Γ and there is a continuous mapping ϕα : XN(α) → Vα for each α ∈ A such
that

x′ ºi x ⇐⇒ ϕΥi
(x′) ºa

i ϕΥi
(x), (3.3)

where ϕB(x) = 〈ϕα(xN(α))〉α∈B ∈ VB for every B ⊆ A and x ∈ X.

Remark. One could think that considering N ′ ⊂ N would widen the scope of games
consistent with S and L; however, a singleton Xi is equivalent to the exclusion of player i.

Proposition 3.1. Let a game structure S and a list of aggregation rules L be given. Then
every strategic game Γ consistent with S and L has the FIP property if and only if the
relevant aggregate improvement relation is strongly acyclic.

Proof. If x0, x1, . . . is an individual improvement path in Γ, then ϕA(x0), ϕA(x1), . . . is an
improvement path for the aggregate improvement relation by (3.3); therefore, the strong
acyclicity of the latter relation implies the FIP property of Γ.

Conversely, let the aggregate improvement relation not be strongly acyclic and v0, v1, . . .
be an infinite improvement path for .a. For every k ∈ N, we pick ι(k) such that
vk .aι(k) vk−1, obtaining a mapping ι : N → N . (Since we have made no assumption
on S, the choice of ι(k) need not be unique.) For each i ∈ N , we define Xi = {0}∪ ι−1(i);
they will be strategy sets (with the discrete topology). For each k ∈ N, i ∈ N and I ⊆ N ,
we define ξi(k) = max{h ∈ Xi| h ≤ k} and ξI(k) = 〈ξi(k)〉i∈I ∈ XI . For each α ∈ A, we
define Xα = {ξN(α)(k)}k∈N ⊆ XN(α). Whenever ξN(α)(h) = ξN(α)(k), we have vh

α = vk
α: the

proof consists in iteration of (3.2a). Therefore, we may define ϕα(ξN(α)(k)) = vk
α, obtain-

ing a mapping ϕα : Xα → Vα; then we extend it to a mapping XN(α) → Vα in an arbitrary
way (since we assumed discrete topology, there is no problem with continuity). Finally,
we perceive (3.3) as the definition of preferences, obtaining a strategic game Γ, which is
obviously consistent with S and L. It is easy to see that (0, . . . , 0), ξN(1), ξN(2), . . . is an
infinite improvement path in Γ.
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Proposition 3.2. Let a game structure S and a list of aggregation rules L be given. Then
the individual improvement relation in every strategic game Γ consistent with S and L is
acyclic if and only if so is the relevant aggregate improvement relation.

Proof. The sufficiency part is the same as in Proposition 3.1; the necessity is almost the
same, but there is a subtle point. Assuming the existence of an aggregate improvement
cycle v0, v1, . . . , vm = v0, we pick ι(k), for k ∈ {1, . . . , m}, such that vk .aι(k) vk−1. Then
we “double” our cycle, defining M = {1, . . . , 2m} and vm+k = vk (k = 1, . . . , m), and
extend ι to a mapping M → N by ι(m+k) = ι(k). For each i ∈ N , we define Xi = ι−1(i)
and, for each k ∈ M , Ξi(k) = {h ∈ Xi| h ≤ k}. If Xi = ∅, player i is not needed for
the cycle; formally, he can be given a singleton strategy set and forgotten about. We
assume ∅ 6= Xi = Ξi(2m) for all i ∈ N . We define ξi(k) = max Ξi(k) if Ξi(k) 6= ∅
and ξi(k) = max Ξi(2m) = max Xi otherwise; we denote ξI(k) = 〈ξi(k)〉i∈I ∈ XI for all
I ⊆ N .

Let α ∈ A and h, k ∈ M ; we assume h < k. An important intermediate statement is:
vh

α = vk
α whenever ξN(α)(h) = ξN(α)(k). A similar claim in the proof of Proposition 3.1 was

virtually obvious because of the monotonicity of ξ(·) in that case; let us prove it now. If
ι−1(N(α))∩]h, k] = ∅, then vh

α = vk
α by (3.2a) applied k − h times. Let there be i ∈ N(α)

and k′ ∈ Xi such that h < k′ ≤ k; without restricting generality, ξi(k) = k′. Now
ξi(h) = k′ is only possible if ι−1(i)∩ [1, h] = ∅ = ι−1(i)∩]k′, 2m], which implies k′ > h+m
(by the extension of ι, ι(k′±m) = i provided (k′±m) ∈ M), hence k > h+m. Therefore,
for every j ∈ N(α), we have ι−1(j)∩]h, k] 6= ∅, hence ξj(h) = ξj(k) is only possible if
ι−1(j) ∩ [1, h] = ∅ = ι−1(j)∩]k, 2m]. Thus, ι−1(N(α)) ∩ [1, h] = ∅ = ι−1(N(α))∩]k, 2m]
and we obtain vh

α = vk
α applying (3.2a) 2m + h− k times.

The rest of the proof is essentially the same as in Proposition 3.1: we define ϕα on
{ξN(α)(x

k)}k∈M , extend it to a mapping XN(α) → Vα in an arbitrary way, and perceive
(3.3) as the definition of preferences, obtaining a strategic game Γ, which is obviously
consistent with S and L, but admits an individual improvement cycle.

Remark. If an aggregate improvement cycle contains just one improvement by a player
i, then the cycle obviously cannot be generated by an individual improvement cycle in a
strategic game. Thus the doubling of the cycle may be indispensable indeed (cf. the proof
of Lemma 3.3.1 below).

Theorem 1. Let a game structure S and a list of aggregation rules L be given. Then
the individual improvement relation in every strategic game Γ consistent with S and L is
Ω-acyclic if and only if so is the relevant aggregate improvement relation.

Proof. The sufficiency part is essentially the same as in Proposition 3.1. The necessity
is much more complicated. Unfortunately, I cannot insist that the theorem justifies the
effort; however, it would look even sillier to leave it as an open problem.

Let us assume that there is an aggregate improvement cycle, i.e., a mapping π̂ :
Σ′ → VA (where Σ′ is a countable well ordered set) satisfying (2.4) and such that π̂(0) =
π̂(β̄). Taking into account Proposition 3.2, we may assume that Σ′ is infinite; without
restricting generality, β̄ = max Σ′ ∈ Σ′

lim. For every β ∈ Σ′
iso, we pick ι̂(β) such that

π̂(β) .a ι̂(β) π̂(β − 1).

We define Σ = (Σ′ × {0, 1}) \ {(0, 1)} with a lexicographic order: (β′′, θ′′) ≥ (β′, θ′)
(β′′, β′ ∈ Σ′, θ′′, θ′ ∈ {0, 1}) iff θ′′ > θ′ or θ′′ = θ′ and β′′ ≥ β′. When β ∈ Σ, we assume
β = (β1, β2) with β1 ∈ Σ′ and β2 ∈ {0, 1}. Clearly, Σ is also a well ordered set, which
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is compact in its intrinsic (as a chain) topology (Birkhoff, 1967); since Σ is countable,
the topology can be defined with a metric. We extend π̂ to a mapping π : Σ → VA by
π(β, 1) = π(β, 0) = π̂(β) [thus π(0, 0) = π(β̄, 1)], and ι̂ to a mapping ι : Σiso → N by
ι(β, 1) = ι(β, 0) = ι̂(β).

For each i ∈ N , we denote Y 0
i = ι−1(i) ⊆ Σiso and Yi its closure in Σ, which is

automatically compact. As in the proof of Proposition 3.2, if Yi = Y 0
i = ∅, then player i

can be given a singleton strategy set and forgotten about. Clearly, Yi = Y 0
i ∪ Y ∞

i , where
Y ∞

i = Yi∩Σlim consists of the least upper bounds of infinite, strictly increasing sequences
in Y 0

i . Each Yi is well ordered itself; its limit points are exactly β ∈ Y ∞
i and its intrinsic

topology coincides with that induced from Σ.

For each β ∈ Σ and i ∈ N , we denote Ξi(β) = {γ ∈ Yi| γ ≤ β}; obviously, Ξi(β) 6= ∅
whenever β2 = 1, in particular, for β = (β̄, 1). If Ξi(β) 6= ∅, we define ξi(β) = max Ξi(β) ∈
Yi. If Ξi(β) = ∅, we define ξi(β) = ξi(β̄, 1). We denote ξI(β) = 〈ξi(β)〉i∈I ∈ XI for every
I ⊆ N .

Lemma 3.1.1. Let α ∈ A, β′′, β′ ∈ Σ, and ξN(α)(β
′′) = ξN(α)(β

′); then πα(β′′) = πα(β′).

Proof. The scheme is the same as in Proposition 3.2; without restricting generality, β′′ >
β′. If ι−1(N(α)) ∩ {β ∈ Σ| β′ < β < β′′} = ∅, then a straightforward inductive process
(generally, transfinite) based on (3.2a) shows πα(β′′) = πα(β′).

Let there be i ∈ N(α) such that ξi(β
′′) > β′. By the condition of the lemma, ξi(β

′) =
ξi(β

′′), hence Ξi(β
′) = ∅ = Yi ∩ {β ∈ Σ| β > β′′}; by the definition of ι, (ξi(β

′)1, 0) ∈ Yi 3
(ξi(β

′)1, 1). Therefore, β′′1 > β′1, β′2 = 0, and β′′2 = 1.

If there are j ∈ N(α) and γ ∈ Yj such that γ ≤ β′, then ξj(β
′) ≤ β′, while ξj(β

′′) ≥
(γ1, 1) > β′, hence ξj(β

′′) 6= ξj(β
′), contradicting the condition of the lemma. Therefore,

Ξj(β
′) = ∅ for all j ∈ N(α), hence ξN(α)(β

′) = ξN(α)(β̄, 1) and πα(β′) = πα(0, 0) by
straightforward induction based on (3.2a).

If there are j ∈ N(α) and γ ∈ Yj such that β′′ < γ, then (γ1, 0) ∈ Yj and (γ1, 0) < β′′,
hence Ξj(β

′′) 6= ∅, hence ξj(β
′′) ≤ β′′; on the other hand, ξj(β̄, 1) ≥ γ > β′′. Taking

into account ξj(β
′) = ξj(β̄, 1) established in the previous paragraph, we again obtain a

contradiction. Thus, ι−1(N(α)) ∩ {β ∈ Σ| β > β′′} = ∅. The same induction based on
(3.2a) shows that πα(β′′) = πα(β̄, 1); since π(β̄, 1) = π(0, 0), we are home.

Let β ∈ Σlim; we denote I∗(β) = {i ∈ N | β ∈ Yi} and I0(β) = N \ I∗(β). By (2.4b),
there is an increasing sequence βk → β such that π(βk) → π(β). Deleting superfluous
members from the sequence if necessary, we obtain two sequences bk(β), ck(β) ∈ Σ (k ∈ N)
such that: β = supk bk(β); ck+1(β) > bk(β) > ck(β) and ‖π(β) − π(bk(β))‖ < 2−k for all
k; ξi ◦ ck+1(β) > ξi ◦ bk(β) > ξi ◦ ck(β) for all k and i ∈ I∗(β); ξi(β) = ξi ◦ c0(β) for all
i ∈ I0(β).

For each i ∈ N , we define a binary relation on Σ:

β ..i γ ⇐⇒ [
β ∈ Y ∞

i and there are mi(β, γ) ≥ 1

(to the end of the formula, we write just mi)

and corteges γi(β, γ) = 〈γ0
i , γ

1
i , . . . , γ

mi
i 〉 ∈ Σmi+1

and si(β, γ) = 〈s0
i , . . . , s

mi−1
i 〉 ∈ Nmi such that

γ0
i = β, (3.4a)

10



γh+1
i = bsh

i
◦ ξi(γ

h
i ) and (3.4b)

ξi ◦ csh+1
i

◦ ξi(γ
h+1
i ) > csh

i
◦ ξi(γ

h
i ) (3.4c)

for h = 0, 1, . . . ,mi − 1, and ξi(γ
mi
i ) = ξi(γ)

]
.

Obviously, if β ..i γ, then β > γ. It is important to stress that

β ..i γ ⇐⇒ β ..i ξi(γ).

Lemma 3.1.2. Let i, j ∈ N and β, γ ∈ Σ. If β ..i γ, then mi(β, γ), γi(β, γ), and si(β, γ)
are unique. If β ..i γ, β ..j γ, and mi(β, γ) ≥ mj(β, γ), then γi(β, γ) = 〈γj(β, γ),

γ
mj+1
i , . . . , γmi

i 〉, si(β, γ) = 〈sj(β, γ), s
mj

i , . . . , smi−1
i 〉, and ξj(γ) = ξj(γ

mi
i ).

Proof. Let β ..i γ and β ..j γ; we argue by induction in min{mi(β, γ),mj(β, γ)}. By
definition, γ1

i = bs0
i
(β) and γ1

j = bs0
j
(β). Let γ1

i 6= γ1
j ; then, without restricting generality,

γ1
i > γ1

j , hence s0
i > s0

j , ξi(γ
1
i ) > ξi◦cs0

i
(β), and ξj◦cs0

i
(β) > ξj(γ

1
j ). From the inequality for

ξi and (3.4c), we easily obtain ξi(γ
k
i ) > ξi◦cs0

i
(β) for all k ≤ mi; therefore, ξi(γ

mi
i ) = ξi(γ) is

only possible when γ > cs0
i
(β). From the inequality for ξj and straightforward inequalities

γk+1
j < γk

j for all k < mj, we see that ξj(γ
mj

j ) = ξj(γ) is only possible when γ < cs0
i
(β).

Therefore, s0
i = s0

j and γ1
i = γ1

j .

Now let 〈s0
i , . . . , s

h−1
i 〉 = 〈s0

j , . . . , s
h−1
j 〉 and 〈γ0

i , . . . , γ
h
i 〉 = 〈γ0

j , . . . , γ
h
j 〉. If mi = h =

mj, we are home; suppose the contrary. Let us assume first that ξi(γ
h
i ) > ξj(γ

h
j ). If

mi = h < mj, then from ξi(γ) = ξi(γ
h
i ) we obtain γ ≥ ξi(γ

h
i ) > ξj(γ

h
j ), while from

ξj(γ) = ξj(γ
mj

j ) we obtain γ < ξj(γ
h
j ). Thus, mi > h; if mj = h, we are home again. If

mi > h < mj, we see that ξi(γ) = ξi(γ
mi
i ) is only possible for γ > csh

i
◦ ξi(γ

h
i ) > ξj(γ

h
j )

because of (3.4c) and j ∈ I0(ξi(γ
h
i )). On the other hand, ξj(γ) = ξj(γ

mj

j ) is only possible

for γ < ξj(γ
h
j ).

Finally, if ξi(γ
h
i ) = ξj(γ

h
j ) = β∗ (which must hold if i = j!), we have β∗ ∈ Yi ∩ Yj. If

β∗ ∈ Σiso, then mi = h = mj and we are home again; otherwise, we have β∗ ..i γ and
β∗ ..j γ, so the induction hypothesis applies.

For each i ∈ N , we denote Li = [0, 1]Y
∞
i with the metric ρ(w′′, w′) =

∑
β∈Y∞i

∣∣w′′
β − w′

β

∣∣·
2−λ(β), where λ : Σlim → N is an injection (“arbitrary, but fixed”). Then we define a map-

ping ηi : Yi → Li coordinate-wise: ηi
β(γ) = 0 whenever β ≤ γ; ηi

β(γ) =
∑mi(β,γ)−1

k=0 2−sk
i (β,γ)

whenever β ..i γ; and ηi
β(γ) = 1 otherwise. Now we can define the strategy set:

Xi = {(yi, η
i(yi))}yi∈Yi

(simply put, Xi is the graph of ηi). For technical convenience,
we define η̄i : Yi → Xi (i ∈ N) as the Cartesian product of the identity mapping on Yi

and ηi; as usual, η̄I : YI → XI is the Cartesian product of η̄i for i ∈ I ⊆ N .

Lemma 3.1.3. Let α ∈ A and there be a sequence {βk}k∈N such that, for each i ∈ N(α),
ξi(β

k) → yi ∈ Σ (hence yi ∈ Yi) and ηi ◦ ξi(β
k) → ηi(yi). We denote I0 the set of

i ∈ N(α) for which the sequence ξi(β
k) stabilizes after a finite number of steps. Then either

I0 = N(α), or there are a subsequence {βks}s∈N and βω ∈ Σ such that I0 = I0(βω)∩N(α),
βks+1 > βks (s ∈ N), βks → βω, and πα(βks) → πα(βω).

Proof. Since Σ is well ordered, we may assume, without restricting generality, that βk+1 ≥
βk ≥ ξi(β

k) for all k ∈ N and i ∈ N(α). Denoting βω = supk βk, we have βk → βω. Let
i ∈ N(α) \ I0; without restricting generality, ξi(β

k+1) > ξi(β
k), hence ξi(β

k+1) > βk, for
all k ∈ N, which implies yi ≥ βω. Taking into account ξi(β

k) ≤ βk, we obtain yi ≤ βω,
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hence βω = yi ∈ Yi, i.e., i ∈ I∗(βω). Conversely, if i ∈ I∗(βω), then ξi(β
k) has to jump up

at an infinite number of steps k, hence i /∈ I0.

Without restricting generality, we may assume that ξi(β
ω) = ξi(β

k) for all i ∈ I0 =
I0(βω) ∩ N(α) and all k ∈ N. By the conditions of the lemma, ηi ◦ ξi(β

k) → ηi(βω) for
every i ∈ I∗(βω); therefore, ηi

βω ◦ ξi(β
k) → ηi

βω(βω). Since ηi
βω(βω) = 0, for every ε > 0

there is k ∈ N such that ηi
βω ◦ ξi(β

k) < ε for every i ∈ I∗(βω). By the definition of ηi, we

have βω ..i ξi(β
k), hence βω ..i βk, with

∑mi(β
ω ,βk)−1

h=0 2−sh
i < ε.

Picking the minimal mi(β
ω, βk), and invoking Lemma 3.1.2, we see that there is γmi

i

such that ξj(γ
mi
i ) = ξj(β

k) for all j ∈ I∗(βω); for j ∈ I0, the same equality was assumed
in the previous paragraph. Therefore, πα(γmi

i ) = πα(βk) by Lemma 3.1.1. For each
h < mi, we denote γ̄h

i = ξi(γ
h
i ); by Lemmas 3.1.2 and 3.1.1, we have πα(γ̄h

i ) = πα(γh
i ).

Taking into account the definition of functions bk, we obtain
∣∣πα(γ̄h

i )− πα(γh+1
i )

∣∣ < 2−sh
i .

Therefore, we have
∣∣πα(βω)− πα(βk)

∣∣ ≤ |πα(βω)− πα(γ1
i )|+

∑mi−1
h=1

∣∣πα(γ̄h
i )− πα(γh+1

i )
∣∣ <∑mi−1

h=0 2−sh
i < ε.

For each α ∈ A, we denote X∗
N(α) = η̄N(α) ◦ ξN(α)(Σ); the set X∗

N(α) is closed in XN(α)

by Lemma 3.1.3. By Lemma 3.1.1, there is a mapping ϕ∗α : X∗
N(α) → Vα such that

πα = ϕ∗α ◦ η̄N(α) ◦ ξN(α); the mapping is continuous by Lemma 3.1.3. Therefore, we can
extend it to a continuous mapping ϕα : XN(α) → Vα, just as in the proof of Proposition 3.1.
Perceiving (3.3) as the definition of preferences, we obtain a strategic game Γ, which is
obviously consistent with S and L.

Let us show that η̄N ◦ ξN : Σ → X defines an individual improvement cycle in Γ. We
have ξN(0, 0) = ξN(β̄, 1) by the definition of ξi. Whenever β ∈ Σiso, we have β ∈ Yi for a
unique i ∈ N and ξ−i(β − 1) = ξ−i(β). Therefore, (3.2a) implies that η̄N ◦ ξN(β) is the
result of a unilateral improvement over η̄N ◦ ξN(β − 1) by player i.

Finally, let us check (2.4b). Let βω ∈ Σlim; we have to produce a sequence {βk}k

in Σ′ such that βk → βω and η̄N ◦ ξN(βk) → η̄N ◦ ξN(βω). For every i ∈ I∗(βω) and
β ∈ Σlim such that β > βω, we define ζi(β) < βω by the following inductive process.
We define γ̄0

i (β) = β and execute the following procedure for each h = 0, 1, . . . First, we
define sh

i = min{k ∈ N| bk(γ̄
h
i (β)) ≥ βω} and γ̄h+1

i (β) = ξi ◦ bsh
i
(γ̄h

i (β)). If γ̄h+1
i (β) = βω

or sh
i = 0, we set ζi(β) = (0, 0); if γ̄h+1

i (β) ∈ Σiso or csh
i
(γ̄h

i (β)) ≥ βω, we set ζi(β) =

ξi ◦ bsh
i −1(γ̄

h
i (β)) [< βω]. In either case, we stop the process; if neither condition holds, we

proceed to h + 1. Since Σ is well ordered and γ̄h+1
i (β) < γ̄h

i (β) for all h, the process must
stop at some stage.

For every k ∈ N, we denote Λk = λ−1({0, 1, . . . , k + 1}), Λ−k = {β ∈ Λk| β < βω},
and Λ+

k = {β ∈ Λk| β ≥ βω}; note that each of them is finite. Then we pick sk ∈ N
inductively, satisfying, at each step, the following requirements:

sk ≥ k + 2 & sk > sk−1; (3.5a)

∀i ∈ I∗(βω) [ξi ◦ bsk
(βω) > max

β∈Λ+
k

ζi(β)]; (3.5b)

∀i ∈ I∗(βω) [ξi ◦ bsk
(βω) > max Λ−k ]. (3.5c)

Finally, we define βk = bsk
(βω).

Now βk → βω by (3.5a) and the definition of the functions bsk
, hence ξi(β

k) → ξi(β
ω) =

βω for all i ∈ I∗(βω). For all i ∈ I0(βω), we have ξi(β
k) = ξi(β

ω) again by the definition
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of bsk
. Therefore, we only have to check ηi ◦ ξi(β

k) → ηi(βω) for every i ∈ I∗(βω). It is
sufficient to show that

ρ(ηi ◦ ξi(β
k), ηi(βω)) =

∑

β∈Y∞i

∣∣ηi
β ◦ ξi(β

k)− ηi
β(βω)

∣∣ · 2−λ(β) < 2−k. (3.6)

Obviously, the contribution of all β /∈ Λk to the left hand side of (3.6) is less than 2−k−1;
it is enough to be able to assert the same about the contribution of all β ∈ Λk. If β ∈ Λ−k ,
then we have ηi

β(βω) = 0 = ηi
β ◦ ξi(β

k) by (3.5c), so there is no contribution at all here.

Let us note that βω ..i βk with mi(β
ω, βk) = 1 and s0

i (β
ω, βk) = sk ≥ k + 2; therefore,∣∣ηi

βω ◦ ξi(β
k)− ηi

βω(βω)
∣∣ < 2−k−2. Let β ∈ Λ+

k \ {βω}. If β ..i βω, then β ..i βk as well,

mi(β, βk) = mi(β, βω) + 1, and smi
i (β, βk) = sk; therefore,

∣∣ηi
β ◦ ξi(β

k)− ηi
β(βω)

∣∣ < 2−k−2.

Finally, if β ..i βω does not hold for β > βω, then β ..i βk also cannot hold because of
(3.5b) and the definition of ζi(β), hence ηi(βω) = 1 = ηi ◦ ξi(β

k). Summing up the terms
associated with β ∈ Λ+

k in (3.6), we obtain less than 2−k−1.

Proposition 3.2 and Theorem 1 can be reformulated as follows. Given a game structure
S and a list of aggregation rules L, the individual improvement relation in every strategic
game Γ consistent with S and L admits a(n ω-)potential if and only if a potential in the
same sense exists on the level of S and L. It is easy to see that the Ω-acyclicity of the
aggregate improvement relation implies that the strict component of each aggregation
rule, Âai, is ω-transitive.

The aggregate improvement relation is acyclic whenever there is an order on VA such
that the asymmetric component of each player’s aggregation rule is the separable projec-
tion of the order to VΥi

. If the order is ω-transitive, the aggregate improvement relation
is Ω-acyclic. A trivial example is when {Υi}i∈N is a partition of A and each Âai is ω-tran-
sitive; the strict component of the Cartesian product of all aggregation rules (Pareto
dominance) then becomes an ω-potential. More interesting examples are provided by the
cases when ºa

i is leximinα∈Υi
vα, or when ºa

i is represented by a function on VΥi
of the

form
∑

α∈Υi
λα(vα). It is even sufficient that the strict component of each player’s aggre-

gation rule be a coarsening of the separable projection of a strict order on VA to VΥi
(see

Kukushkin, 2004b, Proposition 5.1) as in the case when ºa
i is represented by a function

on VΥi
of the form minα∈Υi

λα(vα). However, there is no necessity result here.

Example 3.1. Let N = {1, 2}, A = {1, 2, N}, Υi = {i, N} and Vi = {0, 1} for both i ∈ N ,
while VN = {0, 1, 2, 3, 4, 5}. The aggregation rules for both players are defined by numeric
functions Ui; we depict triples (U1(v−2), U2(v−1); P (v)), where P is a numeric potential
for the aggregate improvement relation (the existence of which is thus established), in a
single table assuming that the abscissae axis corresponds to the private objective v1, the
ordinates axis to the public one, vN , while two possible values of v2 determine which table
is appropriate:




(6, 9; 11) (8, 9; 15)
(5, 6; 8) (7, 6; 12)
(4, 5; 7) (5, 5; 8)
(3, 2; 3) (4, 2; 4)
(2, 1; 2) (3, 1; 3)
(0, 0; 0) (1, 0; 1)







(6, 11; 15) (8, 11; 17)
(5, 10; 14) (7, 10; 16)
(4, 8; 10) (5, 8; 14)
(3, 7; 9) (4, 7; 13)
(2, 4; 6) (3, 4; 7)
(0, 3; 4) (1, 3; 5)




.

Nonetheless, even the strict components of the aggregation rules cannot be represented
as separable projections of the same strict order on VA. Indeed, if Â were the strict

13



component of such a strict order and Â1 and Â2 were its separable projections to Vi×VN ,
we would have (0, 0; 3) Â (0, 1; 1) Â (1, 1; 0) Â (1, 0; 2), hence (0; 3) Â1 (1; 2); on the other
hand, (1, 1; 2) Â (1, 0; 4) Â (0, 0; 5) Â (0, 1; 3), hence (1; 2) Â1 (0; 3).

Let a game structure S be given; if a list of aggregation rules L is such that the
aggregate improvement relation is acyclic (Ω-acyclic), then every finite (compact) game
consistent with S and L admits a Nash equilibrium. Remarkably, neither statement can
be reversed.

Example 3.2. Let N = {1, 2}, A = {1, 2, N}, Υi = {i, N} for both i ∈ N , and Vα =
{0, 1, 2} for all α ∈ A. Let the aggregation rules for both players be “isomorphic” and
defined by a numeric function Ui depicted under the convention that the abscissae axis
corresponds to the private objective vi and the ordinates axis to the public one, vN :

5 6 8
1 3 7
0 2 4

. (3.7)

Assuming that VA consists of triples (v1, v2; vN), we demonstrate that the aggregate im-
provement relation is not acyclic:

(1, 0; 2) →1 (2, 0; 1) →2 (2, 1; 0) →1 (0, 1; 2) →2 (0, 2; 1) →1 (1, 2; 0) →2 (1, 0; 2).

Proposition 3.3. If a strategic game Γ is consistent with the game structure and the list
of aggregation rules from Example 3.2, then Γ possesses a Nash equilibrium.

Proof. Let us assume first that ϕi(xi) = 2 is feasible for both i and pick a strategy profile
x0 = (x0

1, x
0
2) where ϕN(x0) is maximized subject to the restrictions ϕi(x

0
i ) = 2 for both

i. If x0 is a Nash equilibrium, we are home. Let there be x′1 such that (x′1, x
0
2) Â1 x0,

hence U1(ϕ1(x
′
1), ϕN(x′1, x

0
2)) > U1(2, ϕN(x0)) ≥ 4. It is clear from (3.7) that ϕN(x0) = 0

and ϕN(x′1, x
0
2) = 2 hence U2(ϕ2(x

0
2), ϕN(x′1, x

0
2)) = 8 and cannot be improved upon.

Therefore, if x′1 ∈ R1(x
0
2), then (x′1, x

0
2) is obviously a Nash equilibrium.

Supposing that ϕ2(x2) < 2 for all x2 ∈ X2, we notice that Γ is consistent with a
modification of the game structure from Example 3.2 where v2 = 2 is deleted from V2.
In the new situation, however, the aggregate improvement relation admits a potential.
We depict triples (U1(v−2), U2(v−1); P (v)), where P is a numeric representation of the
potential, in a single table assuming that the abscissae axis corresponds to the private
objective v1, the ordinates axis to the public one, vN , while two possible values of v2

determine which table is appropriate:


(5, 5; 5) (6, 5; 6) (8, 5; 12)
(1, 1; 1) (3, 1; 3) (7, 1; 7)
(0, 0; 0) (2, 0; 2) (4, 0; 4)







(5, 6; 9) (6, 6; 10) (8, 6; 13)
(1, 3; 3) (3, 3; 5) (7, 3; 11)
(0, 2; 2) (2, 2; 4) (4, 2; 8)


.

Therefore, the aggregate improvement relation is strongly acyclic, hence Γ has the FIP
property by Proposition 3.2, hence possesses a Nash equilibrium.

Remark. There is a gap between Theorem 1 and Example 3.2: Ω-acyclicity of individ-
ual improvements is only helpful in a compact game, but the game constructed in the
proof of Theorem 1 need not be compact. A plausible hypothesis is this: The individ-
ual improvement relation in every compact strategic game Γ consistent with S and L is
Ω-acyclic if and only if so are restrictions of the relevant aggregate improvement relation
to all WA =

∏
α∈A Wα with compact Wα ⊆ Vα. The sufficiency is again straightforward;

as to the necessity, there are plenty of technical details that have not yet received enough
attention (see the first paragraph of the proof of Theorem 1).
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3.2 Gorman additive aggregation rules

For an arbitrary game structure, we define an important class of aggregation rules. The
definition needs auxiliary constructions. We denote B = 2A \ {∅}, N(B) =

⋂
α∈B N(α)

for B ∈ B, and ΥI =
⋃

i∈I Υi for I ⊆ N .

Let i, j ∈ N ; we say that Υi and Υj overlap if Υi \ Υj, Υj \ Υi, and Υi ∩ Υj are
not empty; the notation i ./ j will be used in this case. An overlap path is a sequence
i0, i1, . . . , im with m > 0 such that ik−1 ./ ik for each k = 1, . . . , m. A nonempty subset
I ⊆ N is connected if for every i, j ∈ I there is an overlap path i = i0, i1, . . . , im = j with
ik ∈ I for each k = 1, . . . , m. It follows immediately that #I ≥ 2.

We say that i and j are contiguous, i ≈ j, if either Υi = Υj or there is an overlap
path with i0 = i and im = j. Clearly, ≈ is an equivalence relation on N ; its equivalence
classes are called clusters. We denote N the set of clusters; for each i ∈ N , we denote
ν(i) ∈ N the cluster containing i. A cluster I ∈ N is proper if it contains i and j such
that Υi 6= Υj. Every proper I ∈ N is connected.

For each connected I ⊆ N , we define YI as the least subset of B which is closed under
intersection (B, B′ ∈ YI ⇒ [B∩B′ ∈ YI ]) and contains all Υi (i ∈ I) and Υi\Υj for i, j ∈ I
such that i ./ j. We define FI as the least subset of B including YI and closed under
set difference (B, B′ ∈ FI ⇒ [B \ B′ ∈ FI ]); it is easily checked that FI is closed under
intersection too. The set AI ⊆ B consists of minimal (w.r.t. set inclusion) members of
FI ; it is easy to see that each B ∈ AI is associated with a partition I = I+∪ I− such that
B = (

⋂
i∈I+ Υi)\(

⋃
i∈I− Υi). Every B ∈ FI is the union of some members of AI . We define

BI ⊆ B as the set of all unions of members of AI ; it is easy to see that ΥI =
⋃

B∈AI
B.

There holds YI ⊆ FI ⊆ BI ⊆ B.

For technical convenience, we also define AI = BI = {Υi} (i ∈ I) for non-proper
I ∈ N; then we denote B =

⋃
I∈N BI and A =

⋃
I∈NAI . We define M(B) = {B′ ∈

B| B′ ⊂ B & @B′′ ∈ B [B′ ⊂ B′′ ⊂ B]} and ∆(B) = B \⋃
B′∈M(B) B′ for each B ∈ A.

To clarify the structure of B, we define a strict order on N:

I < J ⇐⇒ [
I 6= J & ∃B ∈ AJ ∀i ∈ I [Υi ⊆ B]

]
. (3.8)

Lemma 3.2.1. If I, J ∈ N, I 6= J , i ∈ I, j ∈ J , and Υi ⊂ Υj, then Υi′ ⊂ Υj for each
i′ ∈ I.

Proof. Otherwise, we pick the first violation of the strict inclusion in the overlap path
i = i0, i1, . . . , im = i′: there are k − 1 and k such that Υik−1

⊂ Υj, but not Υik ⊂ Υj.
Since ∅ 6= Υik−1

\ Υik ⊂ Υj, the equality Υik = Υj is impossible; therefore, Υik \ Υj 6= ∅.
Since ∅ 6= Υik−1

∩Υik ⊆ Υj ∩Υik and Υik−1
\Υik ⊆ Υj \Υik , we have ik ./ j, hence I = J ,

contradicting our assumption.

Lemma 3.2.2. Let I, J ∈ N and I 6= J ; then exactly one of the following alternatives
holds: (1) I > J ; (2) J > I; (3) BI ∩ BJ = ∅ for all BI ∈ BI and BJ ∈ BJ .

Proof. The incompatibility of the alternatives is obvious. Let (3) not hold, i.e., there be
BI ∈ BI and BJ ∈ BJ such that BI ∩BJ 6= ∅. Since BI ⊆ ΥI and BJ ⊆ ΥJ , there are i ∈ I
and j ∈ J such that Υi∩Υj 6= ∅. If i and j overlap or Υi = Υj, then I = J , contradicting
the assumption.

15



If Υi ⊂ Υj, then Υi′ ⊂ Υj for each i′ ∈ I by Lemma 3.2.1. Now if Υi′ ∩ Υj′ 6= ∅
for i′ ∈ I and j′ ∈ J , then, again, Υi′ ⊂ Υj′ ; otherwise, we would have Υj ⊂ Υi′ by
Lemma 3.2.1, contradicting Υi′ ⊂ Υj. In other words, for every j ∈ J either Υi ⊂ Υj

for all i ∈ I, or Υi ∩ Υj = ∅ for all i ∈ I. Denoting J+ = {j ∈ J | ∀i ∈ I [Υi ⊂ Υj]},
J− = J \ J+, and B = (

⋂
j∈J+ Υj) \ΥJ− , we have B ∈ AJ and Υi ⊂ B for each i ∈ I.

Thus, for every I ∈ N, the set of successors, {J ∈ N| I ≤ J} is a chain. For every
B ∈ AJ , the set M(B) consists of sets ΥI for some “immediate predecessors” of J in the
sense of (3.8). For each connected I ⊆ N and i ∈ I, we denote Ai

I = {B ∈ AI | B ⊆ Υi};
clearly, Υi =

⋃
B∈Ai

I
B.

A list of aggregation rules L = 〈ºa
i〉i∈N is called Gorman additive if for each B ∈ B

there is a continuous function µB : VB → R such that

1. µΥi
represents ºa

i for each i ∈ N ;

2. if I ∈ N is proper, B, B′ ∈ BI , and B ∩ B′ = ∅, then

µB∪B′(vB, vB′) = µB(vB) + µB′(vB′) (3.9a)

for every vB ∈ VB and vB′ ∈ VB′ ;

3. for every B ∈ A, there is a continuous function κB :
[∏

B′∈M(B) µB′(VB′)
]×V∆(B) → R

such that
µB(vB) = κB(〈µB′(vB′)〉B′∈M(B), v∆(B)) (3.9b)

for every vB ∈ VB.

Remark. When 〈Υi〉i∈N is a partition of A, every list L is Gorman additive.

“Theorem” 2. Let S be a game structure where each set Vα (α ∈ A) is an open interval
(bounded or not), and let L be a list of aggregation rules each of which is continuous and
strictly responsive in the sense of (3.1). Then the following statements are equivalent.

1. The aggregate improvement relation is Ω-acyclic.

2. Every strategic game which is consistent with S and L, and where every player has
at most two strategies, possesses a Nash equilibrium.

3. The list L is Gorman additive.

Sufficiency proof. Let L be Gorman additive. For every I ∈ N, we have ΥI ∈ BI and
µΥI

(vΥI
) =

∑
B∈AI

µB(vB). Denoting N+ the set of maximizers on N of the order (3.8),
we derive, from Lemma 3.2.2 and our assumption ΥN = A, that {ΥI}I∈N+ is a partition
of A. Now we define µ∗ : RA → R by µ∗(v) =

∑
I∈N+ µΥI

(vΥI
). Clearly, µ∗ is continuous,

hence the order v′ Âa v ⇐⇒ µ∗(v′) > µ∗(v) is ω-transitive.

Let i ∈ N , v′, v ∈ RA, and v′ .ai v; a straightforward inductive reasoning shows that
µΥI

(v′ΥI
) > µΥI

(vΥI
) for every I ≥ ν(i), in particular for the unique I ∈ N+ among them;

since v′ΥI
= vΥI

for all other I ∈ N+, we have µ∗(v′) > µ∗(v). Therefore, the order Âa is
an ω-potential for the aggregate improvement relation, hence the latter is Ω-acyclic.
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In the next two subsections, constructions needed for a necessity proof are developed.
As was already mentioned, Lemma 3.4.2 is left without a general proof. Two special cases
are treated in Subsection 3.5.

The term “Gorman additivity,” naturally, refers to Gorman (1968). To see a connec-
tion clearer, let us assume that there is a finite set A of indices (“sectors”), an open interval
Vα (bounded or not) for each α ∈ A, and a continuous ordering º∗ on VA =

∏
α∈A Vα

strictly responsive in the sense of (3.1). Let there be a finite list of subsets Υi ⊆ A indexed
by i ∈ N such that º∗ admits a separable projection ºa

i to each VΥi
(which is inevitably

a continuous and strictly responsive ordering itself). Then the main result of Gorman
(1968) states, if one reads 1.7 through 1.13 of that paper attentively enough, that the list
〈ºa

i〉i∈N ∪ {º∗} is Gorman additive.

The statement easily follows from our Theorem 2 (assuming it proven): Perceiving
each ºa

i as the aggregation rule of a player i ∈ N , we add one “fictitious” player ∗ to
N with Υ∗ = A and º∗ as the aggregation rule. Now Â∗ is obviously an ω-potential
for the complete list of aggregation rules, hence Statement 2 of Theorem 2 holds, hence
Statement 1 holds as well.

It is by no means obvious that all Gorman’s results, especially those from Section 6
of that paper, could be derived from our Theorem 2. However, the question goes well
beyond the intended scope of this paper. On the other hand, there is no way to derive our
Theorem 2 from Gorman (1968): there is no “global” ordering on VA in the conditions of
the theorem; it only emerges at the end of the proof.

It is worth noting that neither continuity without strict monotonicity, nor strict mono-
tonicity without continuity, ensure the necessity of Gorman additivity: consider, e.g.,
an aggregation rule represented by the function Ui(v) = minα∈Υi

vα in the first case
(Theorem 1 of Kukushkin, 2004a), and leximinα∈Υi

vα in the second (Proposition 5.1 of
Kukushkin, 2004b).

We end this subsection with an auxiliary result.

Lemma 3.2.3. If I ⊆ N is connected, then there exists an order on I, i.e., a one-to-one
mapping σ : {1, . . . , #I} → I, such that each set σ({1, . . . , s}) for s ≥ 2 is connected and,
whenever s′ > s and Υσ(s′) ∩Υσ(s) 6= ∅, either σ(s′) ./ σ(s), or Υσ(s′) ⊆ Υσ(s).

Proof. First of all, we define Imax
0 ⊆ I by the condition that {Υi}i∈Imax

0
is the subset

of maximal (w.r.t. set inclusion) members of {Υi}i∈I . Note that #Imax
0 ≥ 2. We pick

i0 ∈ Imax
0 arbitrarily and define σ(1) = i0. For every i ∈ Imax

0 \ {i0}, we define m(i) as
the minimal m ∈ N for which there is an overlap path i0, . . . , im = i such that ik ∈ I for
each k. It is important to note that we may assume ik ∈ Imax

0 for each k = 1, . . . , m− 1.
Otherwise, let k be the least for which ik /∈ Imax

0 ; then Υik ⊂ Υj with j ∈ Imax
0 . Since

Υj ∩ Υik−1
6= ∅ and ik−1 ∈ Imax

0 , we have ik−1 ./ j. If ik+1 ./ j, then we can replace ik
with j; otherwise Υik+1

⊂ Υj, hence, taking the first h > k + 1 for which Υih 6⊂ Υj, we
see that ih ./ j, so the overlap path i0, . . . , im was not minimal.

Then we define σ : {2, . . . , #Imax
0 } → Imax

0 \ {i0} so that m(i) > m(j) ⇒ σ−1(i) >
σ−1(j); there is no problem with existence. By definition, for each i ∈ Imax

0 \ {i0},
there is an overlap path i0, . . . , im(i) = i in Imax

0 . Clearly, m(ik) ≤ k < m(i) for all
k < m(i), hence σ−1(ik) < σ−1(i). Now for each s such that 2 ≤ s < #Imax

0 , and
each i, j ∈ σ({1, . . . , s}), there is an overlap path i = im(i), . . . , i1, i0, j1, . . . , jm(j) = j
in σ({1, . . . , s}). If s < s′ ≤ #Imax

0 and Υσ(s′) ∩ Υσ(s) 6= ∅, then both Υσ(s′) ⊂ Υσ(s)
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and Υσ(s) ⊂ Υσ(s′) are incompatible with maximality; therefore, either σ(s′) ./ σ(s), or
Υσ(s′) = Υσ(s).

Now we define Imax
1 ⊆ I by the condition that {Υi}i∈Imax

1
is the subset of maximal

(w.r.t. set inclusion) members of {Υi}i∈I\Imax
0

. Since I is connected, we can pick i0 ∈ Imax
1

such that i0 ./ i for an i ∈ Imax
0 ; we define σ(#Imax

0 +1) = i0. For every i ∈ Imax
1 \{i0}, we

define m(i) as the minimal m ∈ N for which there is an overlap path i0, . . . , im = i such
that ik ∈ I for each k. As in the first paragraph of the proof, we may assume ik ∈ Imax

0 ∪
Imax
1 for each k = 1, . . . , m− 1. We define σ on {#Imax

0 + 1, . . . , #Imax
0 + #Imax

1 } so that
m(i) > m(j) ⇒ σ−1(i) > σ−1(j) and then repeat the same procedure for I \ (Imax

0 ∪ Imax
1 ).

The conditions on σ are checked in the same way as in the second paragraph of the
proof.

3.3 Necessity of Gorman additivity: Basic lemmas

Let L = 〈ºa
i〉i∈N be a list of continuous and strictly increasing aggregation rules such

that every strategic game which is consistent with the list and where every player has
at most two strategies possesses a Nash equilibrium. Then we have to prove that L is
Gorman additive. All information to be derived from the equilibrium existence condition
is contained in four technical lemmas.

Lemma 3.3.1. Let i, j ∈ N , Υi ∩ Υj = B 6= ∅, Bi = Υi \ B, Bj = Υj \ B, B̄ = Υi ∪ Υj,
vB̄ ∈ VB̄, v′B ∈ VB, and

(vB, vBi
) ∼a

i (v′B, vBi
). (3.10a)

Then
(vB, vBj

) ∼a
j (v′B, vBj

). (3.10b)

Proof. Suppose, without restricting generality, that (vB, vBj
) Âaj (v′B, vBj

). By continu-
ity, there is v′′B < vB such that (v′′B, vBj

) Âaj (v′B, vBj
); by monotonicity from (3.10a),

(v′B, vBi
) Âai (v′′B, vBi

). Now we define a strategic game Γ consistent with S and L:
Xi = Xj = {0, 1}, Xk = {0} for k 6= i, j; for each α ∈ B̄ \ B and each xN(α) ∈ XN(α),
ϕα(xN(α)) = vα; for each α ∈ B and xN(α) ∈ XN(α), ϕα(xN(α)) = v′α whenever xi = xj,
while ϕα(xN(α)) = v′′α otherwise. Clearly, Γ possesses no Nash equilibrium: if xi = xj,
then player j chooses x′j 6= xi and improves; if xi 6= xj, player i chooses x′i = xj and
improves.

Lemma 3.3.2. Let i, j ∈ N , the sets B, Bi, Bj, B̄ ⊆ A have the same meaning as in
Lemma 3.3.1, B 6= ∅, vB̄, v ′̄

B
∈ VB̄,

(vB, v′Bi
) ∼a

i (vB, vBi
), (3.11a)

and
(vB, v′Bj

) ∼a
j (v′B, vBj

). (3.11b)

Then
(v′B, v′Bi

) ∼a
i (v′B, vBi

). (3.12)

Proof. Suppose, without restricting generality, that (v′B, v′Bi
) Âai (v′B, vBi

). By continuity,
there are v+

B > v′B and v+
Bi

> vBi
such that

(v′B, v′Bi
) Âai (v+

B , v+
Bi

). (3.13a)
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By monotonicity from (3.11a), we have

(vB, v+
Bi

) Âai (vB, v′Bi
); (3.13b)

by monotonicity from (3.11b), (v+
B , vBj

) Âaj (vB, v′Bj
). By the continuity from the last

relation, there is v+
Bj

> v′Bj
such that

(v+
B , vBj

) Âaj (vB, v+
Bj

). (3.13c)

Finally, we have
(vB, v+

Bj
) Âaj (v′B, vBj

) (3.13d)

by monotonicity from (3.11b).

Now we define a strategic game Γ consistent with S and L: Xi = Xj = {0, 1},
Xk = {0} for k 6= i, j; for each α ∈ Bi and xN(α) ∈ XN(α), ϕα(xN(α)) = v′α whenever
xi = 1, while ϕα(xN(α)) = v+

α whenever xi = 0; for each α ∈ Bj and xN(α) ∈ XN(α),
ϕα(xN(α)) = vα whenever xj = 1, while ϕα(xN(α)) = v+

α whenever xj = 0; for each α ∈ B
and xN(α) ∈ XN(α), ϕα(xN(α)) = vα whenever xj = 0, ϕα(xN(α)) = v+

α whenever xj = 1
and xi = 0, and ϕα(xN(α)) = v′α whenever xj = 1 and xi = 1.

Putting xi on the abscissae axis and xj on the ordinates, we can depict the values of
functions (ϕBi

, ϕB, ϕBj
) in the following matrix:

(v+
Bi

, v+
B , vBj

) (v′Bi
, v′B, vBj

)
(v+

Bi
, vB, v+

Bj
) (v′Bi

, vB, v+
Bj

)
.

It follows immediately from relations (3.13) that Γ possesses no Nash equilibrium.

Lemma 3.3.3. Let i, j ∈ N , i ./ j, the sets B, Bi, Bj, B̄ ⊆ A have the same meaning as
in Lemma 3.3.1, vB̄, v ′̄

B
∈ VB̄, v′′B ∈ VB,

(v′B, vBi
) ∼a

i (vB, v′Bi
), (3.14a)

(v′′B, vBi
) ∼a

i (v′B, v′Bi
), (3.14b)

and
(v′B, vBj

) ∼a
j (vB, v′Bj

). (3.14c)

Then
(v′′B, vBj

) ∼a
j (v′B, v′Bj

). (3.15)

Proof. Suppose first that (v′′B, vBj
) Âaj (v′B, v′Bj

). By continuity, there are v−B < v′′B and

v+
Bj

> v′Bj
such that

(v−B , vBj
) Âaj (v′B, v+

Bj
). (3.16a)

By monotonicity from (3.14b), (v′B, v′Bi
) Âai (v−B , vBi

); therefore, there is v−Bi
< v′Bi

such
that

(v′B, v−Bi
) Âai (v−B , vBi

). (3.16b)

By monotonicity from (3.14c) and (3.14a), respectively, we have

(vB, v+
Bj

) Âaj (v′B, vBj
) (3.16c)

and
(v′B, vBi

) Âai (vB, v−Bi
). (3.16d)
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Now we define a strategic game Γ consistent with S and L: Xi = Xj = {0, 1},
Xk = {0} for k 6= i, j; for each α ∈ Bi and xN(α) ∈ XN(α), ϕα(xN(α)) = v−α whenever
xi = 1, while ϕα(xN(α)) = vα whenever xi = 0; for each α ∈ Bj and xN(α) ∈ XN(α),
ϕα(xN(α)) = v+

α whenever xj = 1, while ϕα(xN(α)) = vα whenever xj = 0; for each α ∈ B
and xN(α) ∈ XN(α), ϕα(xN(α)) = vα whenever xi = xj = 1, ϕα(xN(α)) = v′α whenever
xi + xj = 1, and ϕα(xN(α)) = v−α whenever xi = xj = 0. Putting xi on the abscissae
axis and xj on the ordinates, we can depict the values of functions (ϕBi

, ϕB, ϕBj
) in the

following matrix:
(vBi

, v′B, v+
Bj

) (v−Bi
, vB, v+

Bj
)

(vBi
, v−B , vBj

) (v−Bi
, v′B, vBj

)
.

It follows immediately from relations (3.16) that Γ possesses no Nash equilibrium.

If (v′B, v′Bj
) Âaj (v′′B, vBj

), then we follow the same scheme, changing all signs. To be

more precise, we pick v−B > v′′B, v+
Bj

< v′Bj
, and v−Bi

> v′Bi
such that the relations opposite

to (3.16) hold. Now a strategic game defined in the same way as above possesses no Nash
equilibrium.

Lemma 3.3.4. Let m ≥ 2, i0, i1, . . . , im−1 ∈ N , ∅ 6= Bk ⊆ A (k = 0, . . . ,m − 1; for
notational convenience, we add im = i0 and Bm = B0, and also denote B̄ =

⋃
k Bk),

v′, v ∈ VB̄, and w ∈ VA be such that: v′α > vα for every α ∈ B̄; Bk ∪ Bk+1 ⊆ Υik ;
Bh ∩Υik = ∅ whenever h /∈ {k, k + 1} (hence Bh ∩Bk = ∅ whenever h 6= k, and ik ./ ik+1

for every k = 0, 1, . . . , m− 1);

(v′Bk+1
, vBk

, wΥik
\{Bk+1∪Bk}) ∼a

ik (vBk+1
, v′Bk

, wΥik
\{Bk+1∪Bk}) (3.17)

for all k = 0, . . . , m− 2. Then

(v′Bm−1
, vB0 , wΥim−1

\{Bm−1∪B0}) ∼a
im−1 (vBm−1 , v

′
B0

, wΥim−1
\{Bm−1∪B0}). (3.18)

Proof. Suppose the contrary; changing the numeration if needed, we may assume that

(v′Bm−1
, vB0 , wΥim−1

\{Bm−1∪B0}) Âaim−1 (vBm−1 , v
′
B0

, wΥim−1
\{Bm−1∪B0}).

By continuity, there is δ0 > 0 such that, defining v′′α = v′α + δ0 for all α ∈ B0 and v′′α = v′α
for all α ∈ Bm−1, we still have

(v′′Bm−1
, vB0 , wΥim−1

\{Bm−1∪B0}) Âaim−1 (vBm−1 , v
′′
B0

, wΥim−1
\{Bm−1∪B0}).

By monotonicity from (3.17) with k = 0, we have

(vB1 , v
′′
B0

, wΥi0
\{B1∪B0}) Âai0 (v′B1

, vB0 , wΥi0
\{B1∪B0});

by continuity, there is δ1 > 0 such that, defining v′′α = v′α + δ1 for all α ∈ B1, we still have

(vB1 , v
′′
B0

, wΥi0
\{B1∪B0}) Âai0 (v′′B1

, vB0 , wΥi0
\{B1∪B0}).

A straightforward inductive process based on the monotonicity and continuity of pref-
erences shows the existence, for every α ∈ B̄, of v′′α ≥ v′α > vα such that

(vBk+1
, v′′Bk

, wΥik
\{Bk+1∪Bk}) Âaik (v′′Bk+1

, vBk
, wΥik

\{Bk+1∪Bk}) (3.19)

for all k = 0, . . . , m− 1.
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Now we define a strategic game Γ consistent with S and L: Xik = {0, 1} for each
k = 0, 1, . . . , m − 1, Xj = {0} for all other j ∈ N ; for each k = 1, . . . , m − 1 and
α ∈ Bk, there holds ϕα(xN(α)) = v′′α whenever xik = xik−1

and ϕα(xN(α)) = vα whenever
xik 6= xik−1

; for each α ∈ B0, there holds ϕα(xN(α)) = v′′α whenever xi0 6= xim−1 and
ϕα(xN(α)) = vα whenever xi0 = xim−1 ; for each α ∈ A \ B̄, there holds ϕα(xN(α)) = wα for
all xN(α) ∈ XN(α).

Clearly, for every x ∈ X, there is k such that ϕα(xN(α)) = vα for all α ∈ Bk. Therefore,
player ik can change his strategy and obtain a better outcome by (3.1) or (3.19). It follows
immediately that Γ possesses no Nash equilibrium.

There is a point about Lemma 3.3.4 worth discussion. In the games constructed in the
proofs of all other lemmas of this subsection, all players but two were dummies. Here, on
the contrary, the number of active players may be arbitrary (between 2 and n). The fact is
that the existence of a Nash equilibrium (or even Ω-acyclicity of individual improvements)
in every game consistent with S and L and with no more than two active players does
not imply the existence of a Nash equilibrium (or Ω-acyclicity of improvements) in every
game consistent with S and L. In Kukushkin (2006), the opposite was true.

Example 3.3. Let N = {1, 2, 3}, A = {0, 1, 2}, ⊕ mean addition modulo 3, Υi =
{i−1, (i−1)⊕1} for every i ∈ N , and Vα = R for all α ∈ A; let each ºa

i be represented by
the function vi−1 +2v(i−1)⊕1. It is easy to see that Lemma 3.3.4 does not hold: (40, 01) ∼a

1

(00, 21), (21, 02) ∼a
2 (01, 12), but (40, 02) Âa3 (00, 12). On the other hand, if we delete any

one player from N , obvious transformations will make both utility functions just sums;
therefore, every two person game consistent with S and L possesses a Nash equilibrium
(hence, the other three lemmas hold).

Lemmas 3.3.1 and 3.3.2 have important implications in terms of separability. Let us
denote E the set of B ∈ B such that there is an ordering ºa

B on VB which is a separable
projection to VB of ºa

i whenever B ⊆ Υi (i ∈ N).

Lemma 3.3.5. The following five statements hold:

1. If i, j ∈ N , B′ ⊆ Υi, B′′ = Υj ∩ B′ 6= ∅, and ºa
i admits a separable projection ºa

B′

to VB′, then ºa
B′ and ºa

j admit a common separable projection to VB′′;

2. Υi \Υj ∈ E whenever i ./ j;

3. YI ⊆ E whenever I ⊆ N is connected;

4. B \ B′ ∈ E whenever B, B′ ∈ E, B and B′ overlap, and B ∪ B′ ⊆ Υi for an i ∈ N ;

5. AI ⊆ E whenever I ⊆ N is connected.

Remark. Theorem 2 itself implies that Υi∪Υj ∈ E whenever ν(i) = ν(j) (cf. Theorem 1
of Gorman, 1968); however, this assertion can only be proven at the end of a rather long
way.

Proof. (1) Assuming the contrary, we must have vB′∪Υj
∈ VB′∪Υj

and v′′B′′ ∈ VB′′ such that

vB′ ºa
B′ (vB′\B′′ , v

′′
B′′), (3.20a)
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but
(v′′B′′ , vΥj\B′′) Âaj vΥj

. (3.20b)

In the case of a strict preference in (3.20a) and indifference in (3.20b), we can increase v′′B′′
a bit, obtaining (3.20). If we replace each v′′α, α ∈ B′′, with max{v′′α, vα}, the relation in
(3.20a) will be reversed; therefore, there is v′B′′ ≥ v′′B′′ such that vB′ ∼a

B′ (vB′\B′′ , v′B′′); pick-
ing vΥi\(B′∪Υj) arbitrarily, we obtain vΥi

∼a
i (v′B′′ , vΥi\B′′). Now we can invoke Lemma 3.3.1

with v′Υi∩Υj
= (v′B′′ , vΥi∩Υj\B′′), obtaining vΥj

∼a
j (v′B′′ , vΥj\B′′), but this contradicts

(3.20b).

(2) In the light of Statement 1, it is sufficient to prove that ºa
i admits a separable

projection on VΥi\Υj
provided i ./ j. The following argument is similar to, but shorter

than, that of Gorman (1968, 2.6-2.13). In the notation of Lemmas 3.3.2 or 3.3.1, the
contrary would mean the existence of vB̄ and v ′̄

B
such that

(vB, v′Bi
) ºa

i (vB, vBi
), (3.21a)

but
(v′B, vBi

) Âai (v′B, v′Bi
). (3.21b)

Since (3.21b) is impossible when v′B = vB, we can shift vB towards v′B along a straight
line and mark the last point where (3.21b) does not hold. Therefore, we can assume
that (3.21a) holds as an equivalence and v′B is close to vB, so there is v′Bj

such that
(vB, v′Bj

) ∼a
j (v′B, vBj

). Finally, we can apply Lemma 3.3.2 in the same way as Lemma 3.3.1
was applied above, obtaining a contradiction with (3.21b).

(3) An easy induction based on Statements 1 and 2.

(4) We consider another game structure, where N = {1, 2}, A is the same, Υ1 = B,
Υ2 = B′ (thus the condition

⋃
i Υi = A is violated, but this can be fixed easily), ºa

1 is
ºa

B, and ºa
2 is ºa

B′ . Clearly, the strict aggregate preferences Âai from the original list L
is an aggregate ω-potential for the new situation. Therefore, we can apply Statement 2
of this same Lemma.

(5) We order I in the way described in Lemma 3.2.3, and show by recursion that
Aσ({1,...,s}) ⊆ E . Since σ(1) ./ σ(2), we have A{σ(1),σ(2)} = Y{σ(1),σ(2)} ⊆ E by Statement 3.
At each consecutive step, some B ∈ Aσ({1,...,s}) are replaced with B∩Υσ(s+1) and B\Υσ(s+1)

(whenever both are not empty); the first term obviously belongs to E . If not empty,
B′ = Υσ(s+1) \

(⋃
B∈Aσ({1,...,s})

B
)

is added as well. Clearly, B′ =
⋂

h∈{1,...,s}
(
Υσ(s+1) \Υσ(h)

)
;

for every h, either σ(s+1) ./ σ(h) or Υσ(s+1)\Υσ(h) = Υσ(s+1) by Lemma 3.2.3. Therefore,
B′ ∈ Yσ({1,...,s+1}) ⊆ E by Statement 3.

In the case of σ(s + 1) ∈ Imax
0 (in the notation of the proof of Lemma 3.2.3), we

add another statement to be carried through the recursion: Fσ({1,...,s}) = Yσ({1,...,s}); it is
obvious when s = 2. Generally, we have B = (

⋂
i∈I+ Υi) \ (

⋃
i∈I− Υi), where I+ ∩ I− = ∅

and I+ ∪ I− ⊆ σ({1, . . . , s}); we denote I∗ = {i ∈ I−| Υi ∩Υσ(s+1) 6= ∅}. Since σ(s + 1) ∈
Imax
0 , the inclusion Υσ(s+1) ⊂ Υσ(h) is impossible for any h ≤ s. The case of Υσ(s+1) = Υσ(h)

for an h ≤ s being trivial, we may assume that σ(s + 1) ./ i for every i ∈ I+ ∪ I∗ (again,
by Lemma 3.2.3). Now we have B∩Υσ(s+1) =

⋂
i∈I+(Υi ∩Υσ(s+1))∩

⋂
i∈I∗(Υσ(s+1) \Υi) ∈

Yσ({1,...,s+1}) and B \Υσ(s+1) = B∩⋂
i∈I+(Υi \Υσ(s+1)) ∈ Yσ({1,...,s+1}), since B ∈ Yσ({1,...,s})

by the induction hypothesis. Now Statement 3 applies.

In the case of σ(s + 1) /∈ Imax
0 , we only have to consider B ∈ Aσ({1,...,s}), hence

I+ ∪ I− = σ({1, . . . , s}). There is i ∈ {1, . . . , s} such that Υσ(s+1) ⊂ Υi, hence i ∈ I+,
hence B ⊆ Υi. There also exists j ∈ {1, . . . , s} such that σ(s + 1) ./ j; if j ∈ I+, then
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∅ 6= Υσ(s+1) \ Υj ⊆ Υσ(s+1) \ B; if j ∈ I−, then ∅ 6= Υσ(s+1) ∩ Υj ⊆ Υσ(s+1) \ B. In either
case, Υσ(s+1) and B overlap, hence Statement 4 applies.

3.4 Necessity of Gorman additivity: Main construction

From now on, we assume Vα = R for each α ∈ A. This assumption inflicts no loss of
generality – there always exists an order-preserving homeomorphism to the whole line –
but it makes our notation much less cumbersome. For each B ∈ B, we denote 0B ∈ VB

(1B ∈ VB) a vector each component of which is 0 (1).

Let I ⊆ N be connected. An integer net on I is a collection of mappings ψB :
MB → R, B ∈ AI , where MB is the set of integers m satisfying m−

B < m < m+
B (m−

B ∈
{−∞, . . . ,−2,−1}, m+

B ∈ {2, 3, . . . , +∞} ), such that

1. for every B ∈ AI ,
ψB(0) = 0; (3.22a)

2. whenever i ∈ I and there are mB ∈ MB for all B ∈ Ai
I and B′, B′′ ∈ Ai

I such that
(mB′ + 1) ∈ MB′ and (mB′′ + 1) ∈ MB′′ , there holds

(〈ψB(mB) · 1B〉B∈Ai
I\{B′}, ψB′(mB′ + 1) · 1B′

) ∼a
i(〈ψB(mB) · 1B〉B∈Ai

I\{B′′}, ψB′′(mB′′ + 1) · 1B′′
)
; (3.22b)

3. whenever i ∈ I, B, B′ ∈ Ai
I , B 6= B′, m+

B < +∞, and vB ∈ VB, there holds

(
ψB(m+

B − 1) · 1B, ψB′(1) · 1B′ , 0Υi\(B∪B′)
)Âai (vB, 0B′ , 0Υi\(B∪B′)); (3.22c)

4. whenever i ∈ I, B, B′ ∈ Ai
I , B 6= B′, m−

B > −∞, and vB ∈ VB, there holds

(
vB, ψB′(1) · 1B′ , 0Υi\(B∪B′)

) Âai

(
ψB(m−

B + 1) · 1B′ , 0B′ , 0Υi\(B∪B′)
)
. (3.22d)

Lemma 3.4.1. Let ψ be an integer net on a connected I ⊆ N . Then whenever i ∈ I and
m′

B, mB ∈ MB for every B ∈ Ai
I , we have

〈
ψB(m′

B) · 1B

〉
B∈Ai

I
ºa

i

〈
ψB(mB) · 1B

〉
B∈Ai

I
⇐⇒

∑

B∈Ai
I

m′
B ≥

∑

B∈Ai
I

mB. (3.23)

Proof. First, an equality in the right hand side of (3.23) implies an equivalence in the left
hand side by a straightforward inductive reasoning based on (3.22b).

If there is a strong inequality in the right hand side of (3.23), we can find 〈m′′
B〉B∈Ai

I

such that
∑

B∈Ai
I
m′′

B =
∑

B∈Ai
I
mB while 〈m′

B〉B∈Ai
I

Pareto dominates 〈m′′
B〉B∈Ai

I
. Now〈

ψB(m′
B)

〉
B∈Ai

I
Âai

〈
ψB(m′′

B)
〉

B∈Ai
I
∼a

i

〈
ψB(mB)

〉
B∈Ai

I
by the strict monotonicity of ºa

i and

the findings of the previous paragraph. Finally, an “(in)equality” in the left hand side
of (3.23) implies the same (in)equality in the right hand side because

∑
B∈Ai

I
m′

B and∑
B∈Ai

I
mB are always comparable.

Let ψ be an integer net on a connected I ⊆ N . The even half of ψ is a collection
of mappings ψ̂B : M̂B → R for B ∈ AI such that ψ̂B(m) = ψB(2m) and M̂B = {m ∈
MB| (2m) ∈ MB}. It is easily checked that, for each B ∈ AI , m̂±

B = ±∞ ⇐⇒ m±
B = ±∞;
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ψ̂ itself is an integer net on I if and only if 1 ∈ M̂B for each B ∈ AI . Let ψ and ψ̄ be two
integer nets on I; we call ψ̄ a doubling of ψ if ψ is the even half of ψ̄. A binary net on I
is an infinite sequence of integer nets ψ0, ψ1, . . . on I such that each ψd+1 is a doubling
of ψd.

Unproven Lemma 3.4.2. Whenever I ⊆ N is connected, there exists a binary net on
I.

Two special cases are proven in Subsection 3.5 (Propositions 3.4 and 3.6).

Lemma 3.4.3. Let ψ be an integer net on I. Then, whenever B 6= B′ and m ∈ MB′

are such that B, B′ ∈ Ai
I for some i ∈ N , and (m + 1) ∈ MB′, there are continuous

and strictly increasing mappings em
BB′ , f

m
BB′ : [0, ψB(1)] → [ψB′(m), ψB′(m + 1)] such that

em
BB′(0) = fm

BB′(0) = ψB′(m), em
BB′(ψB(1)) = fm

BB′(ψB(1)) = ψB′(m + 1),

(
t · 1B, ψB′(m) · 1B′ , 0Υi\(B∪B′)

) ∼a
i

(
0B, em

BB′(t) · 1B′ , 0Υi\(B∪B′)
)

(3.24a)

and

(
t · 1B, ψB′(m + 1) · 1B′ , 0Υi\(B∪B′)

) ∼a
i

(
ψB(1) · 1B, fm

BB′(t) · 1B′ , 0Υi\(B∪B′)
)

(3.24b)

for every t ∈ [0, ψB(1)]. If B∪B′ ⊆ Υj for a j ∈ N , then both equivalences (3.24) hold with
i replaced with j. If ψ̄ is a doubling of ψ, then em

BB′(ψ̄B(1)) = ψ̄B′(2m + 1) = fm
BB′(ψ̄B(1)).

Proof. The validity of (3.24a) for t = 0 and of (3.24b) for t = ψB(1) is tautological;
(3.24a) for t = ψB(1) and (3.24b) for t = 0 immediately follow from (3.22b). Since both
mappings t 7→ t · 1B and t 7→ t · 1B′ are obviously continuous and strictly increasing, the
existence and uniqueness of solutions em

BB′(t), f
m
BB′(t) to (3.24) immediately follows from

the continuity of ºa
i. Each function em

BB′ or fm
BB′ is strictly increasing and maps [0, ψB(1)]

onto [ψB′(m), ψB′(m+1)] because (3.24) can be resolved in the opposite direction as well.
Therefore, both are continuous.

The second statement immediately follows from Lemma 3.3.1; the third, from (3.22b)
and the uniqueness of a solution to (3.24).

Remark. It follows from the uniqueness statement that e0
BB′ = (e0

B′B)−1 whenever one
side is well defined.

Lemma 3.4.4. Let ψ0, ψ1, . . . be a binary net on a connected I ⊆ N and B ∈ AI ; then
Ψ = {ψd

B(m)}d∈N, m∈Md
B

is dense in R.

Proof. By definition, B ⊆ Υi for some i ∈ I. Since I is connected, there is j ∈ I such
that i ./ j. Then either B ⊆ Υi ∩ Υj, or B ⊆ Υi \ Υj; we pick B′ ∈ AI included in the
other “half.” Thus B ∪ B′ ⊆ Υi and B ∩ B′ = ∅.

Suppose the contrary: there are u− < u+ such that Ψ ∩ [u−, u+] = ∅. We denote
Ψ− = {t ∈ Ψ| t ≤ u−} and Ψ+ = {t ∈ Ψ| t ≥ u+}. There are three alternatives:

1. Ψ− 6= ∅ 6= Ψ+;

2. Ψ+ = ∅;
3. Ψ− = ∅.
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Step 3.4.4.1. The first alternative cannot hold.

Proof. If ψ
d−
B (m−) ∈ Ψ− and ψ

d+

B (m+) ∈ Ψ+, then, defining d = max{d−, d+}, we see
that {ψd

B(m)}m∈Md
B

intersects both Ψ− and Ψ+. Deleting all ψd′ with d′ < d if needed,

we may assume d = 0; clearly, there is m̄ ∈ M0
B 3 (m̄ + 1) such that ψ0

B(m̄) ∈ Ψ− while
ψ0

B(m̄ + 1) ∈ Ψ+. Denoting υ− = sup Ψ− and υ+ = inf Ψ+, we have υ− ≤ u− < u+ ≤ υ+

and Ψ∩]υ−, υ+[= ∅. Denoting υ′± = (em̄
BB′)

−1(υ±) and Ψ′ = {ψd
B′(m)}d∈N, m∈Md

B′
, we have

Ψ′∩]υ′−, υ′+[= ∅ as well.

By monotonicity,

(υ+ · 1B, υ′+ · 1B′) Âai (υ− · 1B, υ′+ · 1B′) Âai (υ− · 1B, υ′− · 1B′);

by continuity, there are open intervals U+, U−, U ′
+, U ′

− ⊂ R containing υ+, υ−, υ′+, υ′−,
respectively, and such that the strict preferences are retained on U+ · 1B × U ′

+ · 1B′ , U− ·
1B × U ′

+ · 1B′ , and U− · 1B × U ′
− · 1B′ . Without restricting generality, U ′

± = (em̄
B′B)−1(U±).

Essentially the same argument that led us to m̄ above shows that there are d ∈ N and
m ∈ Md

B 3 (m + 1) such that ψd
B(m) ∈ U− and ψd

B(m + 1) ∈ U+, hence ψd
B′(m− m̄ · 2d) =

(em̄
B′B)−1(ψd

B(m)) ∈ U ′
− and ψd

B′(m + 1 − m̄ · 2d) = (em̄
B′B)−1(ψd

B(m + 1)) ∈ U ′
+. Let

us note that ψd
B(m) = ψd+1

B (2m) < ψd+1
B (2m + 1) < ψd+1

B (2m + 2) = ψd
B(m + 1) and

ψd+1
B (2m + 1) /∈]υ−, υ+[.

Let ψd+1
B (2m+1) < υ−; then ψd+1

B (2m+1) ∈ U−, hence ψd+1
B′ (2m+1− m̄ ·2d+1) ∈ U ′

−.
Therefore,

(
ψd+1

B (2m) · 1B, ψd+1
B′ (2m+2− m̄ · 2d+1) · 1B′

) Âai

(
ψd+1

B (2m+1) · 1B, ψd+1
B′ (2m+

1− m̄ · 2d+1) · 1B′
)
, but this contradicts (3.22b).

The assumption ψd+1
B (2m + 1) > υ+ is refuted dually.

Step 3.4.4.2. The second alternative cannot hold.

Proof. We denote υ+ = sup Ψ < +∞; by the continuity and strict monotonicity of ºa
i,

there are δ, δ′ > 0 such that

((υ+ + δ) · 1B, 0B′) ∼a
i (υ+ · 1B, δ′ · 1B′).

Now we note that the conditions of this lemma are satisfied for B′, hence Step 3.4.4.1
holds for B′ as well. Therefore, there is d ∈ N such that ψd

B′(1) < δ′; without restricting
generality, d = 0. We consider two alternatives.

If m+
B < +∞, then ((υ+ + δ) · 1B, 0B′) Âai (υ+ · 1B, ψ0

B′(1) · 1B′) Âai (ψ0
B(m+

B − 1) ·
1B, ψ0

B′(1) · 1B′), contradicting (3.22c).

Let m+
B = +∞; then υ+ = sup{ψ0

B(m)}m∈N. By continuity from (υ+ ·1B, ψ0
B′(1)·1B′) Âai

(υ+ · 1B, 0B′), there is υ∗ < υ+ such that (t · 1B, ψ0
B′(1) · 1B′) Âai (t′ · 1B, 0B′) whenever

t > υ∗ and t′ < υ+. On the other hand, if ψ0
B(m) > υ∗, then ψ0

B(m + 1) < υ+, but
(ψ0

B(m) · 1B, ψ0
B′(1) · 1B′) ∼a

i (ψ0
B(m + 1) · 1B, 0B′).

Step 3.4.4.3. The third alternative cannot hold.

The proof is dual to that of Step 3.4.4.2. The lemma is proved.

Lemma 3.4.5. Let B ∈ A and vB ∈ VB; then there is a unique τB(vB) ∈ R such that

vB ∼a
B τB(vB) · 1B. (3.25)
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Proof. We denote t+ = maxα∈B vα and t− = minα∈B vα; by (3.1), t+ ·1B ºa
B vB ºa

B t− ·1B.
Therefore, there is τB(vB) ∈ [t−, t+] satisfying (3.25). It is unique because of (3.1).

Lemma 3.4.6. Let ψ0, ψ1, . . . be a binary net on a connected I ⊆ N and B ∈ AI . Then
for every d, d′ ∈ N, m ∈ Md

B, and m′ ∈ Md′
B , there holds ψd′

B (m′) ≥ ψd
B(m) ⇐⇒ m′/2d′ ≥

m/2d.

Proof. When d = d′, this is just the monotonicity of ψd
B, which immediately follows from

(3.22b). Then a straightforward inductive process in max{d′, d}−min{d′, d} based on the
definition of a doubling works.

Now we are prepared to define the functions µB for B ∈ A. If I ∈ N is not proper,
then AI = BI consists of a single set Υi ∈ E . By Lemma 3.3.5, all preferences ºa

i (i ∈ I)
coincide. By the Debreu Theorem, there is a continuous function representing ºa

Υi
on VΥi

;
by (3.1), it is strictly increasing in each argument. Now Condition 1 holds by definition;
(3.9a) holds by default.

Let I ∈ N be proper and ψ0, ψ1, . . . be a binary net on I. For every B ∈ AI and
d ∈ N, we denote q+ d

B = (m+ d
B − 1)/2d and q− d

B = (m− d
B + 1)/2d. Then we define

QB =
⋃

d∈N[q
− d
B , q+ d

B ] \ {+∞,−∞}. Clearly, QB is a non-degenerate interval (actually,
open). For every vB ∈ VB, we define

µB(vB) = sup{m/2d| d ∈ N & m ∈ Md
B & ψd

B(m) ≤ τ(vB)}. (3.26)

By Lemmas 3.4.4 and 3.4.6, µB is strictly increasing and µB(vB) ∈ QB for every v ∈ VB.
Conversely, if w ∈ QB, we define t = sup{ψd

B(h)| d ∈ N & m ∈ Md
B & m/2d ≤ w} and

vB = t · 1B; then we easily derive from Lemma 3.4.4 that w = µ(vB). Thus, we have a
strictly increasing mapping onto a non-degenerate interval; therefore, µB is continuous.

Lemma 3.4.7. Let I ∈ N be proper, i ∈ I, v′B, vB ∈ VB for all B ∈ Ai
I , and µB be defined

by (3.26). Then

〈v′B〉B∈Ai
I
ºa

i

〈
vB

〉
B∈Ai

I
⇐⇒

∑

B∈Ai
I

µB(v′B) ≥
∑

B∈Ai
I

µB(vB). (3.27)

Proof. We denote H = #Ai
I . Suppose first that δ =

∑
B µ(v′B) − ∑

B µ(vB) > 0. By

Lemma 3.4.4, for every B ∈ Ai
I , there is d′B ∈ N such that ψ

d′B
B (m) ≤ τ(v′B) for some

m ∈ M
d′B
B and dB ∈ N such that ψdB

B (m) > τ(vB) for some m ∈ MdB
B . Let us pick

d ∈ N such that d ≥ maxB∈Ai
I
max{d′B, dB} and 2d−1 ≥ H/δ. For every B ∈ Ai

I , we denote

m′
B = max{m ∈ Md

B| ψd
B(m) ≤ τ(v′B)} and mB = min{m ∈ Md

B| ψd
B(m) > τ(vB)}. Clearly,

we have m′
B/2d ≤ µ(v′B) < (m′

B +1)/2d and (mB−1)/2d ≤ µ(vB) < mB/2d for all B ∈ Ai
I .

Therefore,
∑

B(m′
B/2d) >

∑
B µ(v′B)−H/2d and

∑
B(mB/2d) <

∑
B µ(vB) + H/2d, hence∑

B(m′
B/2d)−∑

B(mB/2d) > δ−2H/2d ≥ 0, hence
∑

B m′
B >

∑
B mB. Now Lemma 3.4.1

(for ψd
B) and strict monotonicity of ºa

i imply a strict preference in the left hand side of
(3.27).

An equality in the right hand side of (3.27) means that we have both strict inequal-
ities in any open neighbourhood, hence the same strict preferences in the left hand
side of (3.27), hence an equivalence. The opposite implication is proven exactly as in
Lemma 3.4.1.
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For every B ∈ BI and vB ∈ VB, we define

µB(vB) =
∑

B′∈AI : B′⊆B

µB′(vB′).

Then (3.9a) holds trivially, while Condition 1 immediately follows from Lemma 3.4.1.
Thus, we only have to check (3.9b).

Lemma 3.4.8. Let ψ be an integer net on a connected I ⊆ N , i ∈ N , ΥI ⊆ Υi, B′, B′′ ∈
AI , mB ∈ MB for every B ∈ AI , (mB′ + 1) ∈ MB′, (mB′′ + 1) ∈ MB′′, and v ∈ VΥi\ΥI

.
Then

(〈
ψB(mB) · 1B

〉
B∈AI\{B′}, ψB′(mB′ + 1) · 1B′ , v

) ∼a
i(〈

ψB(mB) · 1B

〉
B∈AI\{B′′}, ψB′′(mB′′ + 1) · 1B′′ , v

)
. (3.28)

Proof. If B′∪B′′ ⊆ Υj for a j ∈ I, then (3.28) immediately follows from (3.22b) and from
Υj ∈ E (Lemma 3.3.5). Supposing the contrary, let i0, . . . , im̄ be an overlap path in I of
the minimal length such that B′ ⊆ Υi0 and B′′ ⊆ Υim̄ . We denote K = {0, 1, . . . , m̄ + 1},
B0 = B′ and Bm̄+1 = B′′, and then pick Bk ∈ AI for k ∈ K \ {0, m̄ + 1} such that
Bk ⊆ Υik−1

∩Υik . The minimality of the path implies that Bk ∩ Bh = ∅ whenever k 6= h;
by definition, Bk ∪ Bk+1 ⊆ Υik for all k ∈ K.

We denote K+ = {k ∈ K| (mBk + 1) ∈ MBk}, K− = K \K+, K+
bgn = {k ∈ K+| (k −

1) ∈ K−}, K−
bgn = {k ∈ K−| (k + 1) ∈ K+}, K+

end = {k ∈ K+| (k + 1) ∈ K−},
and K−

end = {k ∈ K−| (k − 1) ∈ K+}. The definition of an integer net implies that
(mBk − 1) ∈ MBk whenever k ∈ K−. Therefore, for every collection of hB ∈ MB, B ∈ AI ,
and each k ∈ K, at least one of the following equivalences is valid:

(〈
ψB(hB) · 1B

〉
B∈Aik

I \{Bk,Bk+1}, ψBk(mBk + 1) · 1Bk , ψBk+1(mBk+1) · 1Bk+1

) ∼a
ik(〈

ψB(hB) · 1B

〉
B∈Aik

I \{Bk,Bk+1}, ψBk(mBk) · 1Bk , ψBk+1(mBk+1 + 1) · 1Bk+1

)
; (3.29a)

(〈
ψB(hB) · 1B

〉
B∈Aik

I \{Bk,Bk+1}, ψBk(mBk) · 1Bk , ψBk+1(mBk+1) · 1Bk+1

) ∼a
ik(〈

ψB(hB) · 1B

〉
B∈Aik

I \{Bk,Bk+1}, ψBk(mBk + 1) · 1Bk , ψBk+1(mBk+1 − 1) · 1Bk+1

)
; (3.29b)

(〈
ψB(hB) · 1B

〉
B∈Aik

I \{Bk,Bk+1}, ψBk(mBk) · 1Bk , ψBk+1(mBk+1) · 1Bk+1

) ∼a
ik(〈

ψB(hB) · 1B

〉
B∈Aik

I \{Bk,Bk+1}, ψBk(mBk − 1) · 1Bk , ψBk+1(mBk+1 + 1) · 1Bk+1

)
; (3.29c)

(〈
ψB(hB) · 1B

〉
B∈Aik

I \{Bk,Bk+1}, ψBk(mBk − 1) · 1Bk , ψBk+1(mBk+1) · 1Bk+1

) ∼a
ik(〈

ψB(hB) · 1B

〉
B∈Aik

I \{Bk,Bk+1}, ψBk(mBk) · 1Bk , ψBk+1(mBk+1 − 1) · 1Bk+1

)
. (3.29d)

Taking into account that Υik ∈ E by Lemma 3.3.5, we see that (3.29) remain valid if we
replace ∼a

ik with ∼a
i, and B ∈ Aik

I \ {Bk, Bk+1} with B ∈ AI \ {Bk, Bk+1}, and add v.

By our assumptions, both 0 and m̄ + 1 belong to K+. Therefore, each “connected
component” of K− has a k ∈ K−

end at its left end and a k ∈ K−
bgn at its right end. Similarly,

each “connected component” of K+ has a k ∈ K+
bgn or k = 0 at its left end and a k ∈ K+

end
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or k = m̄ + 1 at its right end. Putting together all equivalences of the type (3.29c) with
k ∈ K−

bgn and (k + 1) ∈ K+
bgn, we obtain

(〈
ψB(mB) · 1B

〉
B∈AI\{B′}, ψB′(mB′ + 1) · 1B′ , v

) ∼a
i(〈

ψB(mB) · 1B

〉
B∈AI\({B′}∪{Bk}

k∈K−
bgn

∪K+
bgn

)
, ψB′(mB′ + 1) · 1B′ ,

〈
ψB(mBk − 1) · 1Bk

〉
k∈K−

bgn

,
〈
ψB(mBk + 1) · 1Bk

〉
k∈K+

bgn

, v
)
. (3.30a)

Then we consecutively move along each component of K+ from the left to the right,
applying equivalences of the type (3.29a) with k, (k+1) ∈ K+, and along each component
of K− in the opposite direction, applying equivalences of the type (3.29d) with k, (k+1) ∈
K−. Eventually, we obtain

(〈
ψB(mB) · 1B

〉
B∈AI\({B′}∪{Bk}

k∈K−
bgn

∪K+
bgn

)
, ψB′(mB′ + 1) · 1B′ ,

〈
ψB(mBk − 1) · 1Bk

〉
k∈K−

bgn

,
〈
ψB(mBk + 1) · 1Bk

〉
k∈K+

bgn

, v
) ∼a

i

(〈
ψB(mB) · 1B

〉
B∈AI\({B′′}∪{Bk}

k∈K−
end

∪K+
end

)
, ψB′′(mB′′ + 1) · 1B′′ ,

〈
ψB(mBk − 1) · 1Bk

〉
k∈K−

end

,
〈
ψB(mBk + 1) · 1Bk

〉
k∈K+

end

, v
)
. (3.30b)

Then we apply all equivalences of the type (3.29b) with k ∈ K+
end and (k + 1) ∈ K−

end,
obtaining

(〈
ψB(mB) · 1B

〉
B∈AI\({B′′}∪{Bk}

k∈K−
end

∪K+
end

)
, ψB′′(mB′′ + 1) · 1B′′ ,

〈
ψB(mBk − 1) · 1Bk

〉
k∈K−

end

,
〈
ψB(mBk + 1) · 1Bk

〉
k∈K+

end

, v
) ∼a

i

(〈
ψB(mB) · 1B

〉
B∈AI\{B′′}, ψB′′(mB′′ + 1) · 1B′′ , v

)
. (3.30c)

Finally, we notice that the three equivalences (3.30) give us just (3.28).

Lemma 3.4.9. Let ψ be an integer net on a connected I ⊆ N , i ∈ N , ΥI ⊆ Υi, and
v ∈ VΥi\ΥI

. Then whenever m′
B, mB ∈ MB for every B ∈ AI , we have

(〈
ψB(m′

B) · 1B

〉
B∈AI

, v
) ºa

i

(〈
ψB(mB) · 1B

〉
B∈AI

, v
) ⇐⇒

∑
B∈AI

m′
B ≥

∑
B∈AI

mB. (3.31)

Proof. The proof is based on (3.28) exactly in the same way as the proof of Lemma 3.4.1
is based on (3.22b).

Lemma 3.4.10. Let I ∈ N be proper, i ∈ N , ΥI ⊆ Υi, v ∈ VΥi\ΥI
, and v′B, vB ∈ VB for

all B ∈ AI ; let each µB be defined by (3.26). Then

(〈v′B〉B∈AI
, v

) ºa
i

(〈
vB

〉
B∈AI

, v
) ⇐⇒

∑
B∈AI

µB(v′B) ≥
∑
B∈AI

µB(vB). (3.32)

Proof. The proof is based on (3.31) exactly in the same way as the proof of Lemma 3.4.7
is based on (3.23)

We see that, in the conditions of Lemma 3.4.10, we have ΥI ∈ E . Therefore, (3.9b)
immediately follows from Lemma 1 of Gorman (1968), so a reference to Murphy (1981)
suffices (the latter paper gave a final resolution to a dispute between W. Gorman and
K. Vind concerning the above-mentioned Lemma 1).
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3.5 Necessity of Gorman additivity: Proven cases

A special case of Theorem 2 is the main result of Kukushkin (1994b): A = N ∪ {N} and
Υi = {i, N} there; Gorman additivity means that the preferences can be represented by
functions µi(ϕi(xi)) + µN(ϕN(x)). In a sense, Concluding Remark 2 from that paper can
be viewed as a precursor of this theorem.

Proposition 3.4. Lemma 3.4.2 is valid if #I = 2.

Proof. To simplify notation, we assume I = {1, 2} and denote B0 = Υ1∪Υ2, B1 = Υ1\Υ2,
and B2 = Υ2 \Υ1. All the three sets are not empty because Υ1 and Υ2 overlap.

Lemma 3.5.1. Let t0, t1, t2 ∈ R be such that (t0 · 1B0 , 0B1) ∼a
1 (0B0 , t1 · 1B1) and (t0 ·

1B0 , 0B2) ∼a
2 (0B0 , t2 · 1B2). Then there exists a unique integer net ψ on I such that

ψBk(1) = tk for k = 0, 1, 2.

Proof. For each k ∈ {0, 1, 2}, we set ψBk(0) = 0 and ψBk(1) = tk. Then for each k ∈ {1, 2}
we define ψBk(m + 1) for integer m ≥ 1 inductively, by the relations

(0B0 , ψBk(m + 1) · 1Bk) ∼a
k (ψB0(1) · 1B0 , ψBk(m) · 1Bk). (3.33a)

There are two alternatives: either no solution ψBk(m + 1) to (3.33a) can be found at a
stage m ≥ 1, in which case we stop the process and set m+

Bk = m + 1; or ψBk(m) will be
defined for all m ≥ 0, in which case we set m+

Bk = +∞.

For m ≤ 0, ψBk(m− 1) is also defined inductively, by the relations

(ψB0(1) · 1B0 , ψBk(m− 1) · 1Bk) ∼a
k (0B0 , ψBk(m) · 1Bk). (3.33b)

Note that (3.33a) and (3.33b) only differ in their viewpoint. Again, if no solution ψBk(m−
1) to (3.33b) can be found at a stage m ≤ 0, we stop the process and set m−

Bk = m − 1;
if ψBk(m) is defined for all m ≤ 0, we set m−

Bk = −∞.

Then we define ψB0(m) also by two inductions, satisfying the relations

(ψB0(m + 1) · 1B0 , 0B1) ∼a
1 (ψB0(m) · 1B0 , ψB1(1) · 1B1) (3.34a)

for m ≥ 1, and

(ψB0(m− 1) · 1B0 , ψB1(1) · 1B1) ∼a
1 (ψB0(m) · 1B0 , 0B1) (3.34b)

for m ≤ 0. Each of the inductive processes either stops at some stage m, defining m±
B0 ,

or continues forever, in which case we set m±
B0 = ±∞.

Turning to the definition of an integer net, we notice that the condition (3.22a) is
satisfied automatically. All equivalences (3.33) and (3.34) follow from (3.22b), hence the
uniqueness of ψ. Let us check (3.22b) itself; it is convenient to reproduce it here:

(ψB0(m + 1) · 1B0 , ψBk(h) · 1Bk) ∼a
k (ψB0(m) · 1B0 , ψBk(h + 1) · 1Bk) (3.35)

for both k = 1, 2 and all m−
B0 < m < m+

B0 − 1 and m−
Bk < h < m+

Bk − 1. Note that
we already have it for both k and all h if m = 0. For each k and each h, we organize
two inductive processes in m: upwards and downwards. It is essential to execute both
processes for player 2 first. Each step consists in an application of Lemma 3.3.3.
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On an “upward” induction step, we assume i = 1; j = 2; vα = ψB0(m− 1) for α ∈ B0;
vα = 0 for α ∈ B1; vα = ψB2(h) for α ∈ B2; v′α = ψB0(m) for α ∈ B0; v′α = ψB1(1) for
α ∈ B1; v′α = ψB2(h + 1) for α ∈ B2; v′′α = ψB0(m + 1) for α ∈ B0; Taking into account
(ψB0(m− 1) · 1B0 , ψB1(1) · 1B1) ∼a

1 (ψB0(m) · 1B0 , 0B1) and (ψB0(m) · 1B0 , ψB1(1) · 1B1) ∼a
1

(ψB0(m+1) ·1B0 , 0B1) from the definition of ψB0 and (ψB0(m−1) ·1B0 , ψB2(h+1) ·1B2) ∼a
2

(ψB0(m) ·1B0 , ψB2(h) ·1B2) from the induction hypothesis, we obtain (ψB0(m) ·1B0 , ψB2(h+
1) · 1B2) ∼a

2 (ψB0(m + 1) · 1B0 , ψB2(h) · 1B2) from (3.15).

On a “downward” step, we again assume i = 1 and j = 2, but the order of everything
else is reversed: vα = ψB0(m + 1) for α ∈ B0; vα = ψB1(1) for α ∈ B1; vα = ψB2(h + 1)
for α ∈ B2; v′α = ψB0(m) for α ∈ B0; v′α = 0 for α ∈ B1; v′α = ψB2(h) for α ∈ B2;
v′′α = ψB0(m − 1) for α ∈ B0. This time, (3.15) implies (ψB0(m) · 1B0 , ψB2(h) · 1B1) ∼a

2

(ψB0(m− 1) · 1B0 , ψB2(h + 1) · 1B2).

Now similar induction processes for player 1 can be organized. Each step again consists
in an application of Lemma 3.3.3, but the roles of the players are reversed: i = 2 and
j = 1. Conditions (3.14a) and (3.14b) follow from (3.35) with i = 2 and h = 0, which is
already proven; condition (3.14c) is the induction hypothesis.

Finally, let us turn to (3.22c) and (3.22d). Suppose that k ∈ {1, 2} and m+
Bk < +∞,

but (3.22c) does not hold (only B = Bk and B′ = B0 can be relevant), i.e., there is vBk ∈
VBk such that (0B0 , vBk) ºa

k (ψB0(1) ·1B0 , ψBk(m+
Bk−1) ·1Bk), hence (0B0 , τBk(vBk) ·1Bk) ºa

k

(ψB0(1) ·1B0 , ψBk(m+
Bk−1) ·1Bk). Therefore, a solution to (3.33a) with m = m+

Bk−1 exists,
so our inductive process could not have stopped here. Quite similarly, the “downward”
process of choosing ψBk(m− 1) can only stop at a finite m if (3.22d) is satisfied.

The situation with MB0 is a bit subtler. Here (3.22c) and (3.22d) mean two conditions
each: one for B = B0 and B′ = B1; the other for B = B0 and B′ = B2. The first ones
are treated exactly as above; the second deserve separate consideration. Let there be
vB0 ∈ VB0 such that (vB0 , 0B2) ºa

2 (ψB0(m+
B0−1) ·1B0 , ψB2(1) ·1B2). Invoking Lemma 3.4.5

and continuity, we obtain the existence of t∗ ∈ R such that

(t∗ · 1B0 , 0B2) ∼a
2 (ψB0(m+

B0 − 1) · 1B0 , ψB2(1) · 1B2). (3.36)

Then we invoke Lemma 3.3.3 with i = 2, j = 1, vα = ψB0(m+
B0 − 2) for all α ∈ B0,

vα = 0 for all α ∈ B1 ∪ B2, v′α = ψB0(m+
B0 − 1) for all α ∈ B0, v′α = ψBk(1) for all α ∈ Bk

(k = 1, 2), and v′′α = t∗ for all α ∈ B0. Conditions (3.14a) and (3.14b) follow from (3.22b);
condition (3.14c), from (3.36). Now (3.15) implies that t∗ as ψB0(m+

B0) solves (3.34a) with
m = m+

B0 − 1, contradicting the definition of m+
B0 . A dual argument proves (3.22d).

Since both aggregation rules are continuous and strictly responsive, such t0, t1, t2 as
needed in the lemma, obviously can be found. Therefore, we have the existence of an
integer net ψ on I. It is sufficient now to show that every integer net ψ on I admits a
doubling ψ̄.

From (ψB0(1) · 1B0 , ψB1(1) · 1B1) Âa1 (ψB0(1) · 1B0 , 0B1) Âa1 (0B0 , 0B1) and continuity, we
immediately derive the existence of t∗ ∈]0, ψB0(1)[ such that (t∗ · 1B0 , e0

B0B1(t∗) · 1B1) ∼a
1

(ψB0(1) · 1B0 , 0B1) [∼a
1 (0B0 , ψB1(1) · 1B1)]. Invoking Lemma 3.5.1, we define ψ̄ by the

conditions ψ̄B0(1) = t∗ and ψ̄Bk(1) = e0
B0Bk(t

∗) for k = 1, 2.

The definition of t∗ implies ψ̄B0(2) = ψB0(1) and ψ̄B1(2) = ψB1(1). From Lemma 3.3.3
with i = 1, j = 2, vα = 0 and v′α = ψBk(1) for all α ∈ B0∪B1∪B2, and v′′α = ψB0(1) for all
α ∈ B0, we obtain (ψ̄B0(1) · 1B0 , ψ̄B2(1) · 1B2) ∼a

2 (0B0 , ψB2(1) · 1B2), i.e., ψ̄B2(2) = ψB2(1).
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Therefore, ψ coincides with the even half of ψ̄ by the uniqueness statement of Lemma 3.5.1,
i.e., ψ̄ is a doubling of ψ.

Proposition 3.4 completes a proof of Theorem 1 from Gorman (1968) free from outside
references.

Proposition 3.5. Let S be such that #{Υi}i∈I ≤ 2 for every I ∈ N which is maximal
w.r.t. the order (3.8). Then Theorem 2 holds for S and any list L.

Proof. By Lemma 3.3.5, ºa
i coincides with ºa

j whenever Υi = Υj; therefore, we can delete
repetitions and assume #I ≤ 2 for all maximal members of N. If #I = 1, we pick µΥi

representing ºa
i; if #I = 2, we apply Proposition 3.4. In either case, we have (3.9a) for

all B ∈ BI . For every other J ∈ N, there is a maximal I ∈ N and i ∈ I such that ΥJ ⊆ Υi

(Lemma 3.2.2). Proposition 3.4 and Lemma 3.4.10 imply that ºa
i admits a separable

projection to VΥj′∪Υj′′ whenever j′, j′′ ∈ J and j′ ./ j′′. Now Gorman additivity can be
derived in exactly the same way as in Gorman (1968): there was no outside reference
after the proof of Theorem 1 there.

Proposition 3.6. Lemma 3.4.2 is valid if #I = 3 and Υi∩Υj = Υi\Υk for all i, j, k ∈ I,
i 6= j 6= k 6= i.

Proof. Again, we assume I = {1, 2, 3}, B0 = Υ1∩Υ2 = Υ1\Υ3 = Υ2\Υ3, B1 = Υ1∩Υ3 =
Υ1 \ Υ2 = Υ3 \ Υ2, and B2 = Υ2 ∩ Υ3 = Υ2 \ Υ1 = Υ3 \ Υ1. Denoting I ′ = {1, 2}, we
obviously have AI = AI′ . By Proposition 3.4, there exists a binary net on I ′; we only
have to show that it is simultaneously a binary net on I. It is obviously sufficient to verify
the statement for an integer net.

There is no problem with (3.22a). Turning to (3.22b), we only have to prove one
statement:

(ψB1(m + 1) · 1B1 , ψB2(h) · 1B2) ∼a
3 (ψB1(m) · 1B1 , ψB2(h + 1) · 1B2) (3.37)

for all m−
B1 < m < m+

B1 − 1 and m−
B2 < h < m+

B2 − 1. From (3.22b) for I ′, we immediately
derive (ψB1(m+1)·1B1 , ψB0(0)·1B0) ∼a

1 (ψB1(m)·1B1 , ψB0(1)·1B0) and (ψB0(1)·1B0 , ψB2(h)·
1B2) ∼a

2 (ψB0(0) · 1B0 , ψB2(h + 1) · 1B2). Now Lemma 3.3.4 implies (3.37).

Finally, checking (3.22c) and (3.22d) (for i = 3) is done in essentially the same manner
as in the proof of Proposition 3.4.

In a similar style, Lemma 3.4.2 can be proven for other configurations involving three
players; connected sets of more than three players can also be dealt with successfully.
What is lacking is a uniform procedure proving the lemma for any number of players and
any configuration of Υi’s. Most likely, one should argue by induction, ordering I in the
way described in Lemma 3.2.3; it is also possible that a more detailed system of auxiliary
notions and lemmas is needed.

4 Acyclic Patterns

4.1 Preliminaries

As usual, we call a set endowed with a partial order a poset ; a set with a preorder will
be called a proset. With every proset X, we associate its reverse Xr, which is the same

31



set with the “reversed” preorder, y ºr x ⇐⇒ x º y, and a poset X/ ∼ consisting of
equivalence classes; there is a natural “projection” p mapping X onto X/ ∼.

Let X and Y be two prosets. A mapping f : X → Y is increasing if y ∼ x ⇒ f(y) =
f(x) and y º x ⇒ f(y) º f(x); f is decreasing if it is increasing as a mapping X → Y r

(or, the same, Xr → Y ).

Let X be a proset; we denote BX the set 2X \ {∅} with the following preorder º∗:

Y º∗ Z ⇐⇒ [∀y ∈ Y \ Z ∀x ∈ Y ∩ Z ∀z ∈ Z \ Y (y º x º z)]. (4.1)

It is easy to see that Y ∼∗ Z implies either Y = Z or y ∼ z for all y ∈ Y , z ∈ Z, and that
{y} º∗ {z} iff y º z. The last equivalence implies that a mapping f : X → Y is increasing
if and only if it is increasing as a mapping X → BY which happens to be single-valued.

Remark. When X is a chain, º∗ coincides with Veinott’s order on sublattices (Topkis,
1979). If X is only a lattice, they differ. If X is just a proset, or even a poset, Veinott’s
order cannot be defined at all.

A pseudochain is a finite sequence x0, . . . , xm ∈ X such that for each k = 0, 1, . . . , m−1
either xk+1 º xk or xk º xk+1. For every a, b ∈ X, we define deg(a, b), the degree of
comparability of a and b in the following way. If a and b are comparable, deg(a, b) = 0;
if a and b are incomparable, but there exist c, d ∈ X such that c º a, c º b, a º d, and
b º d, then deg(a, b) = −1; if there is no pseudochain such that x0 = a and xm = b,
then deg(a, b) = −∞. If none of the previous conditions is satisfied, then deg(a, b) =
−[minimal m for which there exists a pseudochain with x0 = a and xm = b]. In the
case of deg(a, b) = −2, it is useful to distinguish two situations: when a and b have
a common upper bound, we write deg(a, b) = −2u; when they have a common lower
bound, deg(a, b) = −2l. (When deg(a, b) = −m with m > 2, there are also two different
situations, but we never have to distinguish between them).

Thus, deg maps X ×X to D = {0,−1,−2u,−2l,−3, . . .−∞}, with a natural partial
order on the latter set (so that −2u and −2l are incomparable). Strictly speaking, a
notation like degX(a, b) would be more accurate, but we rely on the context. When
X is replaced with Xr, the degrees −2u and −2l replace each other whereas every other
deg(a, b) remains the same. It is worth noting thatD contains no infinite strictly increasing
sequence, hence every subset contains a maximal point.

Lemma 4.1.1. Let X and Y be prosets, and ϕ : X → Y be increasing; then deg(x, y) ≤
deg(ϕ(x), ϕ(y)) for all x, y ∈ X.

Proof. If x0, . . . , xm is a pseudochain in X, then ϕ(x0), . . . , ϕ(xm) is a pseudochain in
Y .

Lemma 4.1.2. Let A,B ∈ BX , a ∈ A, and b ∈ B \ A; then deg(a, b) ≥ deg(A,B).

Proof. If A º∗ B or B º∗ A, then a º b or b º a, respectively, by (4.1). Let deg(A,B) ∈
{−1,−2l}; then there is C such that A Â∗ C and B Â∗ C. If b ∈ C, then b ∈ C \A and the
previous argument implies a º b; if b /∈ C, then b º c for every c ∈ C. Now if a ∈ C, then
b º a; otherwise, a º c for every c ∈ C. Since C 6= ∅, we have deg(a, b) ≥ −2l. Dually,
if deg(A,B) ≥ −2u, then deg(a, b) ≥ −2u. It follows immediately that deg(a, b) ≥ −1
whenever deg(A,B) = −1. For deg(A,B) = −m < −2, a straightforward induction
works. Finally, if deg(A,B) = −∞, there is nothing to prove.
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Lemma 4.1.3. Let X be a poset and Y a proset; let x′′, x′ ∈ X, and y′′, y′ ∈ Y be such
that deg(x′′, x′) ≤ min{−1, deg(y′′, y′)} and deg(y′′, y′) ∈ {0,−1,−2l,−2u,−∞}. Then
there is an increasing mapping λ : X → Y such that λ(x′) = y′ and λ(x′′) = y′′.

Proof. Let deg(y′′, y′) = 0; since the roles of x′ and x′′ are symmetric, we may assume
y′′ º y′. We define λ(x) = y′′ if x ≥ x′′ and λ(x) = y′ otherwise. Clearly, if x2 > x1, then
λ(x2) = y′′ whenever λ(x1) = y′′, i.e., λ : X → Y is increasing.

Let deg(y′′, y′) = −1 and y− ≺ y′, y′′ ≺ y+. We define λ : X → Y by λ(x) = y+

whenever x > x′ and x > x′′, λ(x) = y′′ whenever x ≥ x′′ but not x > x′, λ(x) = y′

whenever x ≥ x′ but not x > x′′, and λ(x) = y− otherwise. It is easily checked that λ is
increasing.

Let deg(y′′, y′) = −2u ≥ deg(x′′, x′) and y′, y′′ ≺ y+. We define λ : X → Y by
λ(x) = y′′ whenever x′′ ≥ x, λ(x) = y′ whenever x′ ≥ x, and λ(x) = y+ otherwise. It is
easily checked that λ is increasing. For deg(y′′, y′) = −2l ≥ deg(x′′, x′), an appropriate λ
is defined dually.

Finally, let deg(y′′, y′) = −∞ = deg(x′′, x′). We define λ(x) = y′′ whenever deg(x′′, x) >
−∞ and λ(x) = y′ otherwise. λ is obviously increasing.

Lemma 4.1.4. Let X be a poset and Y a proset; let x′′, x′ ∈ X, and y′′, y′ ∈ Y be such
that y′′ º y′, but not x′ ≥ x′′. Then there is an increasing mapping λ : X → Y such that
λ(x′) = y′ and λ(x′′) = y′′.

Proof. We define λ(x) = y′′ if x ≥ x′′ and λ(x) = y′ otherwise. Clearly, λ : X → Y is
increasing.

4.2 Endomorphisms

Theorem 5 of Kukushkin (2003) establishes a condition on a proset necessary and suf-
ficient for every increasing mapping (or correspondence) of the proset to itself to be
acyclic. Clearly, acyclic endomorphisms may exist even when the condition is violated
and it would hardly make sense trying to describe all of them. Here we are interested
in endomorphisms acyclic because of their “indifference maps”; a trivial example is when
everything is mapped into the same point – it does not matter which point is chosen.

A ((weakly) Ω-)acyclic pattern for (multivalued) endomorphisms consists of a proset X
and a mapping ϕ of X onto a poset Φ such that, for every increasing mapping λ : Φ → X
(λ : Φ → BX), the superposition λ◦ϕ : X → X (λ◦ϕ : X → BX) is ((weakly) Ω-)acyclic.

Example 4.1. Let X = [0, 1]×[0, 1] with the standard order, and f(x1, x2) = (x1/2, x2/2).
Then f : X → X is acyclic, but there is no acyclic pattern here: defining λ(x1, x2) =
(2x2, 2x1) (for (x1, x2) ∈ f(X)) and g = λ ◦ f , we obtain g(x1, x2) = (x2, x1), which is
obviously not acyclic.

Proposition 4.1. Let ϕ be a mapping of a proset X onto a poset Φ. Then the following
statements are equivalent.

1. 〈X,ϕ, Φ〉 is an acyclic pattern for endomorphisms.

2. 〈X,ϕ, Φ〉 is an acyclic pattern for multivalued endomorphisms.
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3. The following conditions,
y º x ⇒ ϕ(y) ≥ ϕ(x) (4.2a)

and
deg(x, y) < 0 ⇒ deg(x, y) < deg(ϕ(x), ϕ(y)), (4.2b)

hold for all x, y ∈ X.

Proof. Sufficiency. Let (4.2) hold; we have to prove that 〈X,ϕ, Φ〉 is an acyclic pattern
for multivalued endomorphisms.

Let λ : Φ → BX be increasing and x0, x1, . . . be an infinite iteration path. Whenever
deg(xk, xk+1) < 0, we have deg(xk+1, xk+2) ≥ deg(λ ◦ ϕ(xk), λ ◦ ϕ(xk+1)) ≥ deg(ϕ(xk),
ϕ(xk+1)) > deg(xk, xk+1) by Lemma 4.1.2 and (4.2); so there may be only a finite number
of such steps. When deg(xk, xk+1) = 0, we can argue exactly as in the sufficiency proof
for Theorem 3 below.

Necessity. Now let 〈X, ϕ, Φ〉 be an acyclic pattern; we have to prove (4.2).

Supposing (4.2a) violated for a, b ∈ X such that b º a, we apply Lemma 4.1.4,
obtaining an increasing mapping λ : Φ → X such that λ(ϕ(a)) = b and λ(ϕ(b)) = a.
Obviously, λ ◦ ϕ admits a cycle (actually, it admits no fixed point).

Now let (4.2a) hold for all x, y ∈ X, but (4.2b) be violated for some a, b ∈ X. If
deg(a, b) ∈ {0,−1,−2l,−2u,−∞}, then deg(a, b) = deg(ϕ(a), ϕ(b)) by Lemma 4.1.1.
Invoking Lemma 4.1.3, we obtain an increasing mapping λ : Φ → X such that λ(ϕ(a)) = b
and λ(ϕ(b)) = a. Again, λ ◦ ϕ admits a cycle.

If deg(a, b) = −m < −2, let x0, . . . , xm be a pseudochain with x0 = a and xm = b.
Then deg(x0, x2) ∈ {−2l,−2r}, hence deg(ϕ(x0), ϕ(x2)) ≥ −1 by the previous argu-
ments, hence either ϕ(x0), ϕ(x1), ϕ(x3), . . . , ϕ(xm) or ϕ(x0), ϕ(x2), ϕ(x3), . . . , ϕ(xm) is a
pseudochain, hence deg(ϕ(a), ϕ(b)) ≥ 1−m.

Corollary. If X contains both a greatest and a least points, then ϕ : X → Φ is an acyclic
pattern for (multivalued) endomorphisms if and only if ϕ is increasing and Φ is a chain.

The corollary is applicable, in particular, to complete lattices.

Remark. Even when X is a lattice, Proposition 4.1 would not survive the replacement
of º∗ with Veinott’s order.

Example 4.2. Let X = {a, b, c, d} with the order a < b < d, a < c < d, and b and c
incomparable. We define F : X → 2X \ {∅} by F (a) = F (b) = {a, c} and F (c) = F (d) =
{b, d}; clearly, there is a cycle: b → c → b. On the other hand, F can be represented

as the superposition of two increasing mappings X
ϕ→ {0, 1} λ→ L, where L consists of

sublattices of X with Veinott’s order. Since {0, 1} is a chain, ϕ obviously satisfies (4.2b).

Proposition 4.2. For every proset X, the following statements are equivalent.

1. Every increasing mapping X → X is acyclic.

2. Every increasing mapping X → BX is acyclic.

3. The preorder º is complete.
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Proof. It follows immediately from the definitions that Statement 1 (2) holds if and only
if the projection p : X → X/∼ is an acyclic pattern for (multivalued) endomorphisms.
The projection is increasing and the equality deg(x′, x) = deg(p(x′), p(x)) is obvious. If º
is an ordering, (4.2b) holds by default. Conversely, º must be complete because otherwise
we would have to satisfy an inequality deg(x′, x) < deg(p(x′), p(x)).

Remark. Since our definition (4.1) is less exacting than the similar definition in Kukushkin
(2003, Section 4), Proposition 4.2 is a bit stronger than Theorem 5 from that paper.

A proset X and a mapping ϕ of X onto a poset Φ is a universal ((weakly) Ω-)acyclic
pattern for (multivalued) endomorphisms if every subset X ′ ⊆ X with the restriction of
ϕ to X ′ and ϕ(X ′) is a ((weakly) Ω-)acyclic pattern for (multivalued) endomorphisms.

Theorem 3. Let ϕ be a mapping of a proset X onto a poset Φ. Then the following
statements are equivalent.

1. 〈X,ϕ, Φ〉 is a universal acyclic pattern for endomorphisms.

2. 〈X,ϕ, Φ〉 is a universal acyclic pattern for multivalued endomorphisms.

3. ϕ is increasing and Φ is a chain.

Proof. Sufficiency. Let both conditions listed in Statement 3 hold. Since they are
obviously inherited by subsets of X, we only have to prove that λ ◦ϕ is acyclic whenever
λ : Φ → BX is increasing.

Let us assume that there is an iteration cycle, i.e., a mapping π : N → X such that
π(k) /∈ λ ◦ ϕ ◦ π(k) 3 π(k + 1) for all k, and π(0) = π(m) for an m > 0. We denote

Σ+ = {k ∈ N| ϕ ◦ π(k + 1) > ϕ ◦ π(k) & π(k + 1) Â π(k)};

Σ− = {k ∈ N| ϕ ◦ π(k + 1) < ϕ ◦ π(k) & π(k + 1) ≺ π(k)}.
Lemma 4.2.1. Let k > 0; then either k ∈ Σ+ or k ∈ Σ−. In the first case, (k + 1) ∈ Σ+;
in the second, (k + 1) ∈ Σ−.

Proof. Since Φ is a chain, ϕ ◦π(k− 1) and ϕ ◦π(k) must be comparable. If they coincide,
then λ ◦ϕ ◦π(k− 1) = λ ◦ϕ ◦π(k), hence π(k) ∈ λ ◦ϕ ◦π(k) and the path could not have
continued further. Let ϕ◦π(k) > ϕ◦π(k−1), hence λ◦ϕ◦π(k) º∗ λ◦ϕ◦π(k−1). Since
π(k + 1) ∈ λ ◦ϕ ◦π(k) and π(k) ∈ λ ◦ϕ ◦π(k− 1) \λ ◦ϕ ◦π(k), we have π(k + 1) º π(k),
hence ϕ ◦ π(k + 1) ≥ ϕ ◦ π(k). An equality would imply the impossibility to continue the
path further; therefore, k ∈ Σ+. Dually, if ϕ ◦ π(k) < ϕ ◦ π(k − 1), then k ∈ Σ−.

If k ∈ Σ+, then π(k + 2) ∈ λ ◦ ϕ ◦ π(k + 1) º∗ λ ◦ ϕ ◦ π(k) while π(k + 1) ∈
λ◦ϕ◦π(k)\λ◦ϕ◦π(k+1); therefore, π(k+2) º π(k+1), hence ϕ◦π(k+2) ≥ ϕ◦π(k+1).
Again, an equality would imply the impossibility to continue the path further; therefore,
(k + 1) ∈ Σ+. The case of k ∈ Σ− is treated dually.

Now if 1 ∈ Σ+, then the sequence {π(k)}k∈N is strictly increasing; if 1 ∈ Σ−, it is
strictly decreasing. In either case, no cycling is possible.

Necessity. Let 〈X, ϕ, Φ〉 be a universal acyclic pattern; we have to prove Statement 3.
First, ϕ must be increasing by (4.2a) from Proposition 4.1. If there are x, y ∈ X such
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that ϕ(x) and ϕ(y) are incomparable in Φ, we denote X ′ = {x, y}. Clearly, degX′(y, x) =
degϕ(X′)(ϕ(y), ϕ(x)) = −∞. Therefore, (4.2b) is violated, hence 〈X ′, ϕ|X′〉 cannot be an
acyclic pattern by Proposition 4.1.

Theorem 4. Let ϕ be a mapping of a metric proset X onto a poset Φ. Then the following
statements are equivalent.

1. 〈X,ϕ, Φ〉 is a universal weakly Ω-acyclic pattern for endomorphisms.

2. 〈X,ϕ, Φ〉 is a universal Ω-acyclic pattern for endomorphisms.

3. 〈X,ϕ, Φ〉 is a universal weakly Ω-acyclic pattern for multivalued endomorphisms.

4. 〈X,ϕ, Φ〉 is a universal Ω-acyclic pattern for multivalued endomorphisms.

5. The following conditions hold: ϕ is increasing (4.2a); Φ is a chain;

if xk → xω, xk+1 Â xk and ϕ(xk+1) > ϕ(xk) for all k, then ϕ(xω) ≥ ϕ(x0); (4.3a)

if xk → xω, xk+1 ≺ xk and ϕ(xk+1) < ϕ(xk) for all k, then ϕ(xω) ≤ ϕ(x0); (4.3b)

there is no pair of infinite sequences {xk}k=0,1,... and {yh}h=0,1,... such that

xk → xω, yh → yω, yh Â yh+1 Â xk+1 Â xk and

ϕ(yh) > ϕ(yh+1) > ϕ(xk+1) > ϕ(xk) for all k and h,

ϕ(xω) > ϕ(y0), and ϕ(yω) < ϕ(x0). (4.3c)

Proof. Sufficiency. Let all the conditions listed in statement 5 hold. Since they are
obviously inherited by subsets of X, we only have to prove that λ◦ϕ is Ω-acyclic whenever
λ : Φ → BX is increasing. Since λ◦ϕ is acyclic by Proposition 4.1, we only have to discard
the possibility of an infinite iteration cycle.

Let us assume that there is such a cycle, i.e., a mapping π : Σ → X (where Σ is
a countable well ordered set) satisfying (2.4) and such that π(0) = π(β̄) for a β̄ > 0.
Without restricting generality, β̄ ∈ Σlim and π(0) 6= π(β) for any β < β̄. It is more
convenient here not to assume β̄ = max Σ; we assume instead that (β̄ + k) ∈ Σ for
all natural k and denote Σ∗ = {β ∈ Σ| β ≤ β̄ + 1}. Without restricting generality,
π(β̄ + 1) = π(1). We define Σ+, Σ− ⊆ Σ as in the proof of Theorem 3, only replacing
k ∈ N with β ∈ Σ.

Lemma 4.2.2. Let β ∈ Σiso; then either β ∈ Σ+ or β ∈ Σ−. In the first case, (β + 1) ∈
Σ+; in the second, (β + 1) ∈ Σ−.

The proof is exactly the same as in Lemma 4.2.1.

Lemma 4.2.3. Let Σiso ∩ Σ∗ 3 γ > β ∈ Σ. Then: ϕ ◦ π(γ) > ϕ ◦ π(β) and π(γ) Â π(β)
whenever β ∈ Σ+; ϕ ◦ π(γ) < ϕ ◦ π(β) and π(γ) ≺ π(β) whenever β ∈ Σ−.

Proof. We argue by (transfinite) recursion. If γ = 1, only β = 0 is admissible, and the
statement immediately follows from the definition of Σ+ and Σ−.

Supposing the statement holding for some γ ∈ Σiso (and all β < γ), let us derive it for
γ + 1. If β = γ, the definition of Σ+ or Σ− suffices. Let Σ+ 3 β < γ; by Lemma 4.2.2,
(β + 1) ∈ Σ+ too. By the induction hypothesis, ϕ ◦ π(γ) ≥ ϕ ◦ π(β + 1), hence

λ ◦ ϕ ◦ π(γ) º∗ λ ◦ ϕ ◦ π(β + 1) Â∗ λ ◦ ϕ ◦ π(β). (4.4)

36



The middle term in (4.4) contains π(β+2), but does not contain π(β+1). Since π(β+2) Â
π(β +1), there must hold π(β +1) /∈ λ◦ϕ◦π(γ). Since the left hand side of (4.4) contains
π(γ+1), while the right hand side contains π(β+1), we obtain π(γ+1) º π(β+1) Â π(β),
hence ϕ ◦ π(γ + 1) ≥ ϕ ◦ π(β + 1) > ϕ ◦ π(β), i.e., the statement of the lemma holds for
β and γ + 1 as well. The case of β ∈ Σ− is treated dually.

Finally, let γω ∈ Σlim and the statement of the lemma hold for all β < γ < γω; we
have to prove it for γω + 1. Let Σ+ 3 β < γω. By Proposition 1 from Kukushkin (2005a),
there is a sequence γk → γω such that π(γk) → π(γω), γk+1 > γk and γk ∈ Σiso for
all k. Suppose first that there is an infinite number of k for which γk ∈ Σ+; without
restricting generality, γk ∈ Σ+ for all k and γ0 > β + 1. By the induction hypothesis,
π(γk+1) Â π(γk) Â π(β) for all k. Then (4.3a) is applicable (with xk = π(γk) ), implying
ϕ ◦ π(γω) ≥ ϕ ◦ π(γ0) > ϕ ◦ π(β + 1) > ϕ ◦ π(β) (both strict inequalities follow from the
induction hypothesis). Now we derive π(γω + 1) Â π(β) with a reasoning similar to that
of the previous paragraph: If π(β + 1) ∈ λ ◦ ϕ ◦ π(γω), then π(γω + 1) º π(β + 1) from
π(β + 1) /∈ λ ◦ ϕ ◦ π(β + 1) ¹∗ λ ◦ ϕ ◦ π(γω) 3 π(γω + 1); otherwise, π(γω + 1) º π(β + 1)
from π(β + 1) /∈ λ ◦ϕ ◦π(γω) º∗ λ ◦ϕ ◦π(β + 1) 3 π(β +1) and π(γω +1) ∈ λ ◦ϕ ◦π(γω).

Let us suppose that γk ∈ Σ+ only for a finite number of k; without restricting gen-
erality, γk ∈ Σ− for all k. Picking the least γ > β which belongs to Σ−, we notice
from Lemma 4.2.2 that it is either a limit point or an isolated point following a limit
one. In either case, there is γ∞ ∈ Σlim such that β < γ∞ < γω, (γ∞ + 1) ∈ Σ−, and
Σ− ∩ {γ ∈ Σ| β < γ < γ∞} = ∅. It is clear from the proof of Lemma 4.2.1 that
ϕ(γ∞) > ϕ(γ∞ + 1). By Proposition 1 from Kukushkin (2005a), there is a sequence
βk → γ∞ such that π(βk) → π(γ∞), βk+1 > βk and βk ∈ Σiso for all k; without re-
stricting generality, β0 > β + 2. By the choice of γ∞, we have γk ∈ Σ+ for all k, hence
π(βk+1) Â π(βk) and ϕ ◦ π(βk+1) > ϕ ◦ π(βk) by the induction hypothesis. Besides,
ϕ ◦ π(γ∞) > ϕ ◦ π(β) and π(γ∞ + 1) > π(β) for the same reason as in the previous para-
graph. Moreover, we have π(βk) ≺ π(γh) and ϕ◦π(βk) < ϕ◦π(γh) for all k and h, as well
as π(γh) Â π(γh+1) and ϕ◦π(γh) > ϕ◦π(γh+1) for all h, by the induction hypothesis. Now
an assumption that ϕ ◦ π(γω) ≤ ϕ ◦ π(β + 1) would imply ϕ ◦ π(γω) < ϕ ◦ π(β + 2), hence
xk = π(βk), yh = π(γh), xω = π(γ∞), and yω = π(γω) form a configuration prohibited by
(4.3c). Therefore, ϕ◦π(γω) > ϕ◦π(β +1) > ϕ◦π(β), hence π(γω +1) º π(β +1) Â π(β)
and ϕ ◦ π(γω + 1) > ϕ ◦ π(β).

Now if 1 ∈ Σ+, then π(β̄ +1) Â π(1) by Lemma 4.2.3; if 1 ∈ Σ−, then π(β̄ +1) ≺ π(1).
In either case, we have a contradiction with π(β̄ + 1) = π(1).

Necessity. Now let 〈X, ϕ, Φ〉 be a universal weakly Ω-acyclic pattern for endomor-
phisms. The necessity of the first two conditions was established in Proposition 4.1, we
only have to prove (4.3).

Supposing (4.3a) violated, we define X ′ = {xk}k ∪ {xω} ⊆ X and Φ′ = ϕ(Φ); they
must form a weakly Ω-acyclic pattern. Then we define λ : Φ′ → X ′ as follows: whenever
v < ϕ(x0), λ(v) = x0; otherwise, λ(v) = x1 whenever v < ϕ(x1); ... otherwise, λ(v) = xk

whenever v < ϕ(xk) ... By our assumption, λ is defined and increasing on the whole Φ′.
Now we pick z0 = xω; then z1 = λ ◦ ϕ(z0) = x0; by induction, zk+1 = λ ◦ ϕ(zk) = xk.
Therefore, zk → xω = z0, i.e., λ ◦ ϕ admits a narrow cycle “of the length ω.”

The proof of the necessity of (4.3b) is dual.

Supposing the existence of a pair of sequences prohibited by (4.3c), we define X ′ =
{xk}k ∪ {xω} ∪ {yh}h ∪ {yω} ⊆ X and Φ′ = ϕ(Φ); they must form a weakly Ω-acyclic
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pattern. Then we define λ : Φ′ → X in a similar way. Whenever v < ϕ(x0), λ(v) = x0;
otherwise, λ(v) = x1 whenever v < ϕ(x1); otherwise, ... λ(v) = xk whenever v < ϕ(xk) ...
If v ≥ ϕ(xk) for all k, we define λ(v) = y0 whenever ϕ(y0) < v; ... otherwise, λ(v) = yh

whenever ϕ(yh) < v; ... By our assumption, λ is defined and increasing on the whole Φ′.

Now we pick z0 = yω; then z1 = λ ◦ ϕ(z0) = x0; by induction, zk+1 = λ ◦ ϕ(zk) = xk.
Therefore, zk → xω = zω. Now zω+1 = λ ◦ ϕ(zω) = y0; by induction, zω+h+1 = λ ◦
ϕ(zω+h) = yh. Finally, zω+h → yω = z0, i.e., λ ◦ ϕ admits a narrow cycle “of the length
ω + ω.”

4.3 Two players

A pattern for reactions is defined by a finite set N (of players), and a set Xi, a poset Φi

and a mapping ϕi : X−i → Φi for each i ∈ N ; we usually assume that ϕi is onto. Given a
pattern for reactions, a derivative system of (multivalued) reactions is defined by subsets
X ′

i ⊆ Xi and increasing mappings λi : Φi → X ′
i (Φi → BX′

i
) for all i ∈ N ; in terms

of the definition of Section 2, we assume Ri = λi ◦ ϕi. A universal (Ω-)acyclic pattern
for (multivalued) reactions is a pattern for reactions such that every derivative system of
(multivalued) reactions is (Ω-)acyclic. If the acyclicity is only ensured when X ′

i = Xi, we
drop the adjective “universal.”

Remark. One could think that considering N ′ ⊂ N would widen the scope of derivative
systems; however, a singleton X ′

i is equivalent to the exclusion of player i.

In this subsection, we only consider #N = 2, using the term “bilateral reactions.” The
assumptions that N = {1, 2} while i and j are always distinct members of N simplify
notation considerably.

Proposition 4.3. Let ϕ1 and ϕ2 be surjective mappings ϕi : Xi → Φi, where each Xi is
a proset and each Φi is a poset. Then the following statements are equivalent.

1. 〈X1, X2, ϕ1, ϕ2, Φ1, Φ2〉 is an acyclic pattern for bilateral reactions.

2. 〈X1, X2, ϕ1, ϕ2, Φ1, Φ2〉 is an acyclic pattern for multivalued bilateral reactions.

3. At least one of the following conditions holds:

∃i [#Φi = 1]; (4.5a)

∃i [∀x′i, xi [deg(ϕi(x
′
i), ϕi(xi)) > −∞] &

∀x′j, xj [x′j º xj ⇒ ϕj(x
′
j) = ϕj(xj)]

]
; (4.5b)

∀i ∀x′i, xi [x
′
i º x ⇒ ϕi(x

′
i) ≥ ϕi(xi)] &

∀d ∈ D \ {0} ∃i∀x′i, xi [deg(x′i, xi) = d ⇒ deg(ϕi(x
′
i), ϕi(xi)) > d]; (4.5c)

or (4.5c) holds when Φ1 is replaced with Φr
1 and X2 with Xr

2. (4.5d)
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Proof. Sufficiency. Let us prove that Statement 3 implies Statement 2; let λ1, λ2 : Φj →
BXi

be fixed and x0, x1, . . . be an infinite iteration path. Deleting the first point from
the path if needed, we may always assume that x2k

i /∈ λi(ϕj(x
2k
j )) 3 x2k+1

i , x2k
j = x2k+1

j ,

x2k+1
i = x2k+2

j , and x2k+1
j /∈ λj(ϕi(x

2k+1
i )) 3 x2k+2

j for all k.

If (4.5a) holds, then xj can change only once, hence no iteration path can include
more than three steps (i.e., four points).

If (4.5b) holds, then, similarly, deg(ϕi(x
3
i ), ϕi(x

1
i )) > −∞, hence, by Lemmas 4.1.1

and 4.1.2, deg(x4
j , x

2
j) > −∞, hence the second term in (4.5b) implies that ϕj(x

4
j) =

ϕj(x
3
j), hence x4

i = x3
i ∈ λi(ϕj(x

4
j)), so the path must have stopped.

Suppose that (4.5c) holds. Then deg(x2k+2
i , x2k

i ) ≤ deg(ϕi(x
2k+2
i ), ϕi(x

2k
i )) ≤ deg(x2k+3

j ,

x2k+1
j ) ≤ deg(ϕj(x

2k+3
j ), ϕj(x

2k+1
j )) ≤ deg(x2k+4

i , x2k+2
i ) by Lemmas 4.1.1 and 4.1.2. When-

ever deg(x2k+2
i , x2k

i ) < 0, the second term in (4.5c) implies that at least one of the inequal-
ities is strict. Therefore, there may only be a finite number of steps with deg(x2k+2

i , x2k
i ) <

0. Once deg(x2k+2
i , x2k

i ) = 0, we argue exactly as in the sufficiency part of the proof of
Theorem 3.

Finally, if (4.5d) holds, then 〈X1, X
r
2, ϕ1, ϕ2, Φ

r
1, Φ2〉 is an acyclic pattern by the pre-

vious paragraph; but this is equivalent to 〈X1, X2, ϕ1, ϕ2, Φ1, Φ2〉 being an acyclic pattern
because λ2 : Φ1 → X2 is increasing if and only if it is increasing as a mapping Φr

1 → Xr
2.

Necessity. Now let 〈X1, X2, ϕ1, ϕ2, Φ1, Φ2〉 be an acyclic pattern for bilateral reac-
tions. We have to prove Statement 3. We assume (4.5a) does not hold, hence #Xi > 1
for each i.

First, let us prove that the second conjunctive term in (4.5b) implies the first (hence
the whole (4.5b)). Let there be j such that ∀x′j, xj [x′j º xj ⇒ ϕj(x

′
j) = ϕj(xj)]; since

(4.5a) does not hold, there are xj and x′j such that ϕj(x
′
j) 6= ϕj(xj), hence deg(x′j, xj) =

−∞. Without restricting generality, we may assume that the inequality ϕj(xj) ≥ ϕj(x
′
j)

does not hold. Suppose, to the contrary to (4.5b), that there are x′i and xi such that
deg(ϕi(x

′
i), ϕi(xi)) = −∞. If deg(x′i, xi) > −∞, there is a pseudochain xi = x0

i , x
1
i , . . . ,

xm
i = x′i; clearly, there must be k such that deg(ϕ(xk+1

i ), ϕ(xk
i )) = −∞. Therefore,

without restricting generality, we may assume x′i º xi. By Lemma 4.1.4, we have an
increasing mapping λi : Φj → Xi such that λi(ϕj(x

′
j)) = x′i and λi(ϕj(xj)) = xi. By

Lemma 4.1.3, we have an increasing mapping λj : Φi → Xj such that λj(ϕi(x
′
i)) = xj and

λj(ϕi(xi)) = x′j. Clearly, this contradicts Statement 1. If deg(x′i, xi) = −∞, we obtain λi

and λj with the same properties, just applying Lemma 4.1.3 twice.

Now we may assume, for each i, the existence of x′i and xi such that deg(x′i, xi) = 0
and ϕi(x

′
i) 6= ϕi(xi). If x′i º xi and deg(ϕi(x

′
i), ϕi(xi)) ≤ −1, then we pick x′j and xj such

that deg(x′j, xj) = 0 and not ϕj(xj) ≥ ϕj(x
′
j). By Lemma 4.1.4, there exist increasing

mappings λi : Φj → Xi and λj : Φi → Xj such that λi(ϕj(x
′
j)) = xi, λi(ϕj(xj)) = x′i,

λj(ϕi(x
′
i)) = x′j, and λj(ϕi(xi)) = xj, which clearly contradicts Statement 1.

Thus, we have deg(ϕi(x
′
i), ϕi(xi)) = 0 whenever deg(x′i, xi) = 0 (for each i). If there

existed x′i, xi, x′j, and xj such that x′i Â xi, ϕi(x
′
i) > ϕi(xi), x′j Â xj, and ϕj(x

′
j) < ϕj(xj),

we would apply Lemma 4.1.4 in the same way as in the previous paragraph, obtaining a
contradiction with Statement 1.

Suppose the implication x′i º xi ⇒ ϕi(x
′
i) ≥ ϕi(xi) holds for each i. Then we only have

to prove the second conjunctive term in (4.5c). Suppose the contrary: there is d ∈ D\{0}
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such that
∀i ∃x′i, xi [deg(x′i, xi) = d = deg(ϕi(x

′
i), ϕi(xi))]. (4.6)

Let d+ be a maximal d < 0 for which (4.6) is satisfied. If −∞ < d+ < −1, we
pick a pseudochain xi = x0

i , x
1
i , . . . , x

m
i = x′i of the minimal length; then ϕi(xi) =

ϕi(x
0
i ), ϕi(x

1
i ), . . . , ϕi(x

m
i ) = ϕi(x

′
i) is also a pseudochain of the minimal length. Ob-

viously, deg(x0
i , x

2
i ) ∈ {−2l,−2u} because otherwise either x1

i or x2
i could be deleted

from the pseudochain. The same consideration works for deg(ϕi(x
0
i ), ϕi(x

2
i )), implying

that we could replace x′i with x2
i . Therefore, d+ ∈ {−1,−2l,−2u,−∞}. Now we apply

Lemma 4.1.3, obtaining increasing mappings λi : Φj → Xi and λj : Φi → Xj such that
λi(ϕj(x

′
j)) = xi, λi(ϕj(xj)) = x′i, λj(ϕi(x

′
i)) = x′j, and λj(ϕi(xi)) = xj, which contradicts

Statement 1.

Finally, if both ϕi’s are decreasing, then the argument of the previous paragraph,
applied to 〈X1, X

r
2, ϕ1, ϕ2, Φ

r
1, Φ2〉, establishes (4.5d).

Corollary. If each Xi contains both a greatest and a least points, then 〈X1, X2, ϕ1, ϕ2, Φ1,
Φ2〉 is an acyclic pattern for (multivalued) bilateral reactions if and only if either (4.5a)
holds, or at least one of Φi’s is a chain and ϕi’s are either both increasing or both de-
creasing.

The corollary is applicable, in particular, to complete lattices.

Theorem 5. Let ϕ1 and ϕ2 be surjective mappings ϕi : Xi → Φi, where each Xi is a
proset and each Φi is a poset. Then the following statements are equivalent.

1. 〈X1, X2, ϕ1, ϕ2, Φ1, Φ2〉 is a universal acyclic pattern for bilateral reactions.

2. 〈X1, X2, ϕ1, ϕ2, Φ1, Φ2〉 is a universal acyclic pattern for multivalued bilateral reac-
tions.

3. At least one of the following conditions holds:

∃i [#Φi = 1]; (4.7a)

∃i [
[Φi is a chain] & ∀x′j, xj [x′j º xj ⇒ ϕj(x

′
j) = ϕj(xj)]

]
; (4.7b)

∃i [ Φi is a chain] & ∀i∀x′i, xi [x
′
i º x ⇒ ϕi(x

′
i) ≥ ϕi(xi)]; (4.7c)

∃i [ Φi is a chain] & ∀i∀x′i, xi [x
′
i º x ⇒ ϕi(x

′
i) ≤ ϕi(xi)]. (4.7d)

Proof. Sufficiency. Let us prove that Statement 3 implies Statement 2. If one of con-
ditions (4.7) holds for 〈X1, X2, ϕ1, ϕ2, Φ1, Φ2〉, then the corresponding condition (4.5) ob-
viously holds for every derivative system. Now a reference to the sufficiency part of
Proposition 4.3 settles the matter.

Necessity. Let 〈X1, X2, ϕ1, ϕ2, Φ1, Φ2〉 be a universal acyclic pattern for bilateral
reactions. We have to prove Statement 3.

If both Φi are not chains, i.e., there are x′i, xi ∈ Xi for both i such that ϕi(x
′
i) and

ϕi(xi) are incomparable, then we consider the restriction of our pattern to X ′
i = {x′i, xi}.

Conditions (4.5a) and (4.5b) do not hold. If the relation º holds for any pair in either
X ′

i, then the first conjunctive terms in (4.5c) and (4.5d) are also violated; if everything
is incomparable in each X ′

i, then the second conjunctive terms in (4.5c) and (4.5d) are
violated for d = −∞. In either case, we cannot have an acyclic pattern by Proposition 4.3.
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Let Φi be a chain, but both (4.7a) and (4.7b) not hold: there are x′j º xj such that
ϕj(x

′
j) 6= ϕj(xj). We pick X ′

i = Xi and X ′
j = {x′j, xj}. For the restricted pattern, (4.5a)

and (4.5b) cannot hold, hence either (4.5c) or (4.5d) holds. By the way, the second
conjunctive term in either condition holds by default since Φi is a chain; what matters is
that ϕi and ϕj are either both increasing or both decreasing. Since X ′

i = Xi and #Φi > 1,
the monotonicity must be the same for any other pair {x′′′j , x′′j}, i.e., we have either (4.7c)
or (4.7d).

4.4 More than two players

Theorem 6. Let #N = 3 (we always assume that i, j, and k are distinct members of
N); let, for each i ∈ N , Vi be an open interval in R (bounded or not), V−i = Vj × Vk, and
ϕi : V−i → R be continuous and strictly increasing in each argument. Then the following
statements are equivalent.

1. 〈Vi, ϕi, ϕi(V−i)〉i∈N is a universal acyclic pattern for singleton reactions.

2. 〈Vi, ϕi, ϕi(V−i)〉i∈N is a universal acyclic pattern for multivalued reactions.

3. 〈Vi, ϕi, ϕi(V−i)〉i∈N is a universal Ω-acyclic pattern for singleton reactions.

4. There are continuous and strictly increasing functions µi : Vi → R and κi :
(
µj(Vj)+

µk(Vk)
) → R such that

ϕi(vj, vk) = κi

(
µj(vj) + µk(vk)

)
(4.8)

for all i ∈ N , vj ∈ Vj, and vk ∈ Vk.

Proof. The sufficiency part consists of references. By Theorem 1 from Kukushkin (2004a),
Statement 4 implies Statement 2. By Theorem 2 from Kukushkin (2005b), Statement 4
implies Statement 3 (actually, multivalued reactions were also allowed there, but under a
stronger monotonicity condition than here). Either obviously implies Statement 1.

Let us prove that Statement 1 implies Statement 4; let 〈Vi, ϕi, ϕi(V−i)〉i∈N be a uni-
versal acyclic pattern for singleton reactions.

Lemma 4.4.1. Let v′, v ∈ V ,

ϕi(v
′
j, vk) = ϕi(vj, v

′
k) (4.9a)

and
ϕj(v

′
i, vk) = ϕj(vi, v

′
k); (4.9b)

then
ϕk(v

′
i, vj) = ϕk(vi, v

′
j). (4.9c)

Proof. Without restricting generality, v′h > vh for all h ∈ N . Suppose the contrary, say,
ϕk(v

′
i, vj) > ϕk(vi, v

′
j). There is δi > 0 such that v′i − δi > vi and

ϕk(v
′
i − δi, vj) > ϕk(vi, v

′
j). (4.10a)

From (4.9b), we have ϕj(v
′
i − δi, vk) < ϕj(vi, v

′
k); by continuity, we may pick δk > 0 such

that v′k − δk > vk and
ϕj(v

′
i − δi, vk) < ϕj(vi, v

′
k − δk). (4.10b)
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By monotonicity from (4.9a),

ϕi(v
′
j, vk) > ϕi(vj, v

′
k − δk). (4.10c)

Now we define X ′
j = {vj, v

′
j} and Xh = {vh, v

′
h − δh} for h = i, k. We also define

λh : ϕh(V−h) → Xh, h ∈ N , by λi(t) = vi if t < ϕi(v
′
j, vk) and λi(t) = v′i − δi otherwise;

λj(t) = vj if t < ϕj(vi, v
′
k − δk) and λj(t) = v′j otherwise; λk(t) = vk if t < ϕk(v

′
i − δi, vj)

and λk(t) = v′k − δk otherwise. It is easy to see that the system defined by the same N ,
the same Xh and rh = λh ◦ ϕh (h ∈ N) admits an iteration cycle:

(vi, v
′
j, vk)

i→ (v′i − δi, v
′
j, vk)

j→ (v′i − δi, vj, vk)
↑k ↓k

(vi, v
′
j, v

′
k − δk)

j← (vi, vj, v
′
k − δk)

i← (v′i − δi, vj, v
′
k − δk)

Actually, Lemma 4.4.1 is sufficient for (4.8). This is not quite obvious, but we do not
have to produce the shortest proof. Therefore, we invoke the proof of Theorem 2. Let us
assume A = N , Υi = N \ {i}, and preferences ºa

i represented by ϕi. There is no obvious
way to check the acyclicity of the aggregate improvement relation, but we can argue in an
indirect way, checking the Basic Lemmas from Subsection 3.3. Lemmas 3.3.1 and 3.3.2
hold by default. Lemma 4.4.1 is equivalent to Lemma 3.3.4 in this particular case. Let
us prove Lemma 3.3.3 in our situation.

Lemma 4.4.2. Let v′, v ∈ V , v′′i ∈ Vi,

ϕk(v
′
i, vj) = ϕk(vi, v

′
j), (4.11a)

ϕk(v
′′
i , vj) = ϕk(v

′
i, v

′
j), (4.11b)

and
ϕj(v

′
i, vk) = ϕj(vi, v

′
k); (4.11c)

then
ϕj(v

′′
i , vk) = ϕj(v

′
i, v

′
k). (4.11d)

Proof. Applying Lemma 4.4.1 to (4.11a) and (4.11c), we obtain

ϕi(v
′
j, vk) = ϕi(vj, v

′
k). (4.12)

The same Lemma 4.4.1 applied to (4.12) and (4.11b), gives us (4.11d).

Now the rest of the proof of Theorem 2, taking into account Proposition 3.6, works
without any problem. Since all sets Υi overlap, Gorman additivity means exactly (4.8).

Example 4.3. Let N = {1, 2, 3, 4}, Vi = R for all i ∈ N , and the functions be as follows:

ϕ1(v−1) = 2v2 + v3 + v4;

ϕ2(v−2) = 2v1 + v3 + v4;

ϕ3(v−3) = v1 + v2 + v4;

ϕ4(v−4) = v1 + v2 + v3.
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Each function ϕi is continuous and properly monotonic; they form a universal acyclic
pattern by Theorem 2 from Kukushkin (2005b). (It should be noted that the proof was
based on a trick invented by Huang, 2002, for the study of fictitious play, and used
by Dubey et al., 2006, to produce “pseudo-potentials”). Let us show that the func-
tions cannot be represented in the form (4.8). Supposing the contrary, we notice that
ϕ1(1, 0, 0) = ϕ1(0, 1, 1), hence µ2(1) + µ3(0) + µ4(0) = µ2(0) + µ3(1) + µ4(1). Similarly,
ϕ3(1, 1, 0) = ϕ3(1, 0, 1), hence µ1(1) + µ2(1) + µ4(0) = µ1(1) + µ2(0) + µ4(1). Adding
µ1(1) to both sides of the first equality and µ3(1) to the second equality, we obtain
µ1(1)+µ2(1)+µ3(0)+µ4(0) = µ1(1)+µ2(0)+µ3(1)+µ4(1) = µ1(1)+µ2(1)+µ3(1)+µ4(0).
Now µ3(0) = µ3(1), contradicting the assumed strong monotonicity of µ3(·).
Theorem 7. Let #N = 3; let, for each i ∈ N , Vi be an open interval in R (bounded
or not), V−i = Vj × Vk, and ϕi : V−i → R be continuous and strictly decreasing in each
argument. Then the following statements are equivalent.

1. Every derivative system of 〈Vi, ϕi, ϕi(V−i)〉i∈N where each player has at most two
strategies admits a fixed point.

2. 〈Vi, ϕi, ϕi(V−i)〉i∈N is a universal acyclic pattern for singleton reactions.

3. 〈Vi, ϕi, ϕi(V−i)〉i∈N is a universal Ω-acyclic pattern for singleton reactions.

4. There are continuous and strictly increasing functions µi : Vi → R and κi :
(
µj(Vj)+

µk(Vk)
) → R such that

ϕi(vj, vk) = −κi

(
µj(vj) + µk(vk)

)
(4.13)

for all i ∈ N , vj ∈ Vj, and vk ∈ Vk.

Proof. The implications Statement 3 ⇒ Statement 2 ⇒ Statement 1 are straightforward.
The implication Statement 4⇒ Statement 3 follows from Theorem 2 of Kukushkin (2005b)
(again, there were multivalued reactions there under a stronger monotonicity condition,
and Example 4 of the same paper showed that it could not be weakened to that of this
paper).

Let us prove that Statement 1 implies Statement 4.

Lemma 4.4.3. Let v′, v ∈ V ,

ϕi(v
′
j, vk) = ϕi(vj, v

′
k) (4.14a)

and
ϕj(v

′
i, vk) = ϕj(vi, v

′
k); (4.14b)

then
ϕk(v

′
i, vj) = ϕk(vi, v

′
j). (4.14c)

Proof. Without restricting generality, v′h > vh for all h ∈ N . Suppose the contrary, say,
ϕk(v

′
i, vj) > ϕk(vi, v

′
j). There is δi > 0 such that

ϕk(v
′
i + δi, vj) > ϕk(vi, v

′
j). (4.15a)

From (4.14b), we have ϕj(v
′
i + δi, vk) < ϕj(vi, v

′
k); by continuity, we may pick δk > 0 such

that
ϕj(v

′
i + δi, vk) < ϕj(vi, v

′
k + δk). (4.15b)
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By monotonicity from (4.14a),

ϕi(v
′
j, vk) > ϕi(vj, v

′
k + δk). (4.15c)

Now we define X ′
j = {vj, v

′
j} and Xh = {vh, v

′
h + δh} for h = i, k. We also define

λh : ϕh(V−h) → Xh, h ∈ N , by λi(t) = vi if t < ϕi(v
′
j, vk) and λi(t) = v′i + δi otherwise;

λj(t) = vj if t < ϕj(vi, v
′
k + δk) and λj(t) = v′j otherwise; λk(t) = vk if t < ϕk(v

′
i + δi, vj)

and λk(t) = v′k + δk otherwise.

Suppose that (ui, uj, uk) is a fixed point of the derivative system of reactions. If ui = vi,
then ϕi(uj, uk) < ϕi(v

′
j, vk), hence uk = v′k + δk, hence ϕk(ui, uj) ≥ ϕk(v

′
i + δi, vj), hence

uj = vj. However, λj ◦ ϕj(ui, uk) = λj ◦ ϕj(vi, v
′
k + δk) = v′j 6= uj. Quite similarly, if

ui = v′i + δi, then uk = vk, hence uj = v′j 6= λj ◦ ϕj(ui, uk).

Replacing each ϕi with −ϕi, we see that the rest of the proof of Theorem 6 can run
without a hitch, establishing (4.13).

Remark. An analogue of Statement 1 could not have been added to the formulation of
Theorem 6: every system of increasing reactions with finite chains as the strategy sets
admits a fixed point by Tarski’s (1955) fixed point theorem.

Changing all the signs in Example 4.3, we see that an analogue of Theorem 7 for
#N > 3 is wrong.
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