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Abstract

An abstract theory of improvement dynamics for binary relations in metric spaces
is developed, providing a general framework for studying various improvement rela-
tions and tâtonnement processes in strategic games. Special attention is paid to
interrelationships between finite, infinite, and transfinite tâtonnement paths.
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1 Introduction

Quite often, solution concepts in game theory are defined through the absence of “ob-
jections” or “blocking.” For instance, Nash equilibrium assumes the absence of profitable
individual deviations. A dynamic scenario of consecutively putting forward and implement-
ing such objections naturally emerges in such situations, and a question arises of whether
such a process leads to an equilibrium.

A positive answer to the question ensures the existence of a solution. But we then have
much more than pure existence: we have a natural procedure leading to a solution from
any initial point; we have reasonable grounds to believe that a solution will be adopted by
the players themselves.

The study of such “tâtonnement” processes can be traced back to Cournot (1838). Sim-
ilar research in various contexts was done by, e.g., Topkis (1979), Bernheim (1984), Moulin
(1984), Vives (1990), Milgrom and Roberts (1990), Kandori and Rob (1995), Monderer
and Shapley (1996a), and Milchtaich (1996). Numerous classes of strategic games have
been found where consecutive improvements (in one sense or another) lead to equilibria.
This paper strives to push forward an approach started in Kukushkin (2000), which is
characterized by the following principal features.

First, we work in a purely ordinal framework. Mixed extensions of (finite or infinite)
games can be included, naturally, by specific assumptions about strategy sets (simplexes)
and preferences (polylinear utilities). However, those assumptions are not conducive to
good behavior of our processes; a different kind of adaptation is much more promising
under them (Monderer and Shapley, 1996b; Huang, 2002).

Second, we try to treat various notions of equilibrium and improvement (Nash or strong
equilibrium; best response or better response dynamics) as uniformly as possible. Accord-
ingly, considerable attention is paid to abstract binary relations without any reference to
games as such.

Thirdly, we embrace tâtonnement paths parameterized with transfinite numbers. When-
ever an infinite number of steps have been made, a limit point can be taken and, if the
point is still not a maximizer (equilibrium), the process can continue further. The main
justification is that transfinite paths seem to allow a simpler theory. If we cannot reach an
equilibrium with a finite path in a finite game, there would be no point in going beyond
natural numbers. However, in an infinite game, a failure to reach an equilibrium in the first
limit does not mean that the situation is hopeless. If one accepts the idea of actual infinity,
why not accept transfinite convergence as well? All hope is only lost when the whole range
of countable ordinals has been exhausted.

Since Kukushkin (2000) is not available on the Net (there is no pdf version), all results
from that paper quoted here are given complete proofs. There have been considerable
changes in terminology, but they are not discussed here. A number of results are quoted
from Kukushkin (2003); since that paper is available on the Net, their proofs are not
reproduced.
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Two features distinguish this paper from its predecessors. First, we describe preferences
by binary relations (without any a priori restrictions) rather than by utility functions. This
fact allows us, in particular, to include ε-improvement and ε-equilibria into the same general
scheme. Second, we pay considerable attention to conditions under which transfinite paths
become redundant, in one sense or another; typically, continuity of some sort is needed.

In Section 2, the basic definitions are given: improvement relations in a strategic game;
finite tâtonnement paths of an abstract binary relation. Section 3 is about tâtonnement
paths of abstract binary relations on a metric space. First, we consider the possibility
to approximate a maximizer with a finite tâtonnement path; then we proceed to paths
parameterized with countable transfinite numbers. The last Subsection 3.5 deals with
relations associated with endomorphisms, i.e., mappings (or correspondences) from a set
to itself.

Section 4 starts with a list of properties of strategic games defined in terms of improve-
ment relations. Then we study how, and to what extent, (quasi)continuity assumptions
may help to dispense with transfinite (individual or coalition) improvement paths. Subsec-
tion 4.3 deals with specific properties of best response dynamics.

The last two sections consider improvement dynamics in strategic games with certain
structural properties: dominance solvability in Section 5 and strategic complementarities
in Section 6.

2 Basic notions

2.1 Preliminaries

A binary relation on a set X is a Boolean function on X × X. As usual, we write y B x
when the relation B is true on a pair (y, x) and y 6B x when it is false; we also write
z B y B x instead of z B y and y B x. Given a binary relation B on a set X and Y ⊆ X,
we denote

M(Y, B) := {x ∈ Y | @ y ∈ Y [y B x]}, (2.1)

the set of maximizers of B on Y . Given x ∈ X, we denote Up(x, B) := {y ∈ X | y B x} and
Lo(x, B) := {y ∈ X | x B y} – upper and lower contours of B. Clearly, x ∈ M(Y, B) ⇐⇒
Up(x, B) ∩ Y = ∅. A relation Â on X is an extension of B if

∀x, y ∈ X [y B x ⇒ y Â x]. (2.2)

The most popular in mathematical literature seem to be order relations. A preorder is a
reflexive and transitive binary relation. If º is a preorder, then its asymmetric component,
y Â x ­ y º x & x 6º y is irreflexive and transitive (“strict order”); its symmetric
component, y ∼ x ­ y º x & x º y is an equivalence relation. If a preorder º is total,
i.e., either y º x or x º y holds for all x, y ∈ X, its asymmetric component is called
an ordering ; equivalently, Â is an ordering if it is irreflexive, transitive, and negatively
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transitive (z 6Â y 6Â x ⇒ z 6Â x). A linear order is an ordering such that every two distinct
points are comparable.

An antisymmetric preorder (y ∼ x ⇒ y = x) is called a partial order. A set with a given
partial order is called a poset ; when the order is linear, the poset is called a chain. A poset
is well ordered if every subset contains a least point (then the poset obviously must be a
chain). When X is a poset and a, b ∈ X, we use notations [a, b] := {x ∈ X | a ≤ x ≤ b},
[a, b[:= {x ∈ X | a ≤ x < b}, etc.

The Axiom of Choice, which we adopt throughout, implies the Zermelo Theorem: Every
set can be well ordered. Therefore, a well ordered set of an arbitrary cardinality can be
found whenever needed. Considering any well ordered set Λ, we denote 0 the least point
of the whole Λ. Given α ∈ Λ \ {max Λ}, we define the successor of α as α + 1 := min{β ∈
Λ | β > α}. α ∈ Λ \ {0} is called a limit if it is not a successor to any β ∈ Λ.

Besides finite chains, these three well ordered sets are most important for us here: the
chain N of natural numbers (starting from 0) with the standard order; the chain N∪{ω} with
the standard order on N and ω > k for each k ∈ N; the “chain of all countable ordinals,”
denoted Ω. Technically, Ω can be defined (up to isomorphism) as an uncountable well
ordered set such that every [0, α] (α ∈ Ω) is countable. Natanson (1974, Chapter XIV),
can be used as a reference book. Readers unfamiliar with the concept and suspicious of
it may be reassured by the fact that every [0, α] (α ∈ Ω) can be interpreted as a subset
of rational numbers with their natural order (Natanson, 1974, Chapter XIV, Section 1,
Theorem 4).

It is convenient to assume N ∪ {ω} ⊂ Ω. Then ω is the least limit in Ω; ω and greater
ordinals are called transfinite numbers. Every countable subset of Ω has a least upper
bound in Ω (Natanson, 1974, Chapter XIV, Section 5, Theorem 2). Every limit α ∈ Ω
is the least upper bound of a strictly increasing infinite sequence in Ω (Natanson, 1974,
Chapter XIV, Section 5, Theorem 4).

2.2 Strategic games

Our basic model is a strategic game with ordinal preferences. It is defined by a finite set
of players N (we denote n = #N), and strategy sets Xi and preference relations ÂÂi on
XN :=

∏
i∈N Xi for all i ∈ N . We denote N := 2N \ {∅} (the set of potential coalitions)

and XI :=
∏

i∈I Xi for each I ∈ N ; instead of XN\{i} and XN\I , we write X−i and X−I ,
respectively. If n = 2, then −i refers to the partner/rival of player i.

Each ÂÂi is interpreted as strict preference. Weak preference relation <i may be defined
by yN <i xN ­ xN 6ÂÂi yN ; however, we invoke that relation only when ÂÂi is an ordering,
hence <i is a total preorder. This happens, in particular, when the preferences are described
by a utility function ui : XN → R, i.e.,

yN ÂÂi xN ­ ui(yN) > ui(xN); (2.3)

then yN <i xN ⇐⇒ ui(yN) ≥ ui(xN). Natural examples of preference relations that are
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not orderings are provided by ε-dominance,

yN ÂÂi xN ­ ui(yN) > ui(xN) + ε (ε > 0), (2.4)

or Pareto dominance

yN ÂÂi xN ­ ∀α ∈ A [uα
i (yN) ≥ uα

i (xN)] & ∃α ∈ A [uα
i (yN) > uα

i (xN)]. (2.5)

With every strategic game, a number of improvement relations on XN are associated
(i ∈ N , I ∈ N , yN , xN ∈ XN):

yN BInd
i xN ­ [y−i = x−i & yN ÂÂi xN ]; (2.6a)

yN BInd xN ­ ∃i ∈ N [yN BInd
i xN ] (2.6b)

(individual improvement relation);

yN BsCo
I xN ­

[
y−I = x−I & ∀i ∈ I [yN ÂÂi xN ]

]
; (2.7a)

yN BsCo xN ­ ∃I ∈ N [yN BsCo
I xN ] (2.7b)

(strict coalition improvement relation);

yN BwCo
I xN ­

[
y−I = x−I & ∃i ∈ I [yN ÂÂi xN ] & @i ∈ I [xN ÂÂi yN ]

]
; (2.8a)

yN BwCo xN ­ ∃I ∈ N [yN BwCo
I xN ] (2.8b)

(weak coalition improvement relation).

It is often convenient to speak of just “an improvement relation” B without specifying
which of the above-defined relations is meant. A maximizer of an improvement relation B
is an equilibrium: a Nash equilibrium if B is BInd; a (“very”) strong equilibrium if B is BsCo

(BwCo). A strategy profile xN ∈ XN is a strong (weak) Pareto optimum if and only if it is
a maximizer of BwCo

N (BsCo
N ).

A subgame Γ′ of Γ is a strategic game with the same set of players N , nonempty
subsets ∅ 6= X ′

i ⊆ Xi for all i ∈ N , and the restrictions of the same preference relations to
X ′

N =
∏

i∈N X ′
i.

Proposition 2.1. Let Γ′ be a subgame of Γ. Then each improvement relation BInd, BsCo,
or BwCo in Γ′ coincides with the restriction of the appropriate relation in Γ to X ′

N .

Proof. Straightforward.

It is often convenient to have a specific notation, ÂÂx−i

i , for the projection to Xi of the
restriction of ÂÂi to Xi × {x−i}. Defining the best response correspondence Ri : X−i → 2Xi

for each i ∈ N in the usual way,

Ri(x−i) := M(Xi,ÂÂx−i

i ),
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we may introduce two more relations:

yN BBR
i xN ­ [yN BInd xN & yi ∈ Ri(x−i)]; (2.9a)

yN BBR xN ­ ∃i ∈ N [yN BBR
i xN ] (2.9b)

(best response improvement relation);

yN BsBR xN ­
[
yN 6= xN & ∀i ∈ N [yi = xi ∈ Ri(x−i) or (yi, x−i) BBR

i xN ]
]

(2.10)

(simultaneous best response relation). There is a principal difference between the last
relation and all others: yN BsBR xN is compatible with xN ÂÂi yN for all i ∈ N .

Every Nash equilibrium is a maximizer of both BBR and BsBR. We call a game BR-con-
sistent if, for every xN ∈ XN and i ∈ N , either xi ∈ Ri(x−i) or there is yi ∈ Ri(x−i) such
that yi ÂÂx−i

i xi. The property implies that Ri(x−i) 6= ∅ for all i ∈ N and x−i ∈ X−i, but
is stronger than that. In a BR-consistent game, every maximizer of BBR or BsBR is a Nash
equilibrium.

A game is called strongly BR-consistent if, for each i ∈ N , Ri(x−i) 6= ∅ for all x−i ∈ X−i,
and there holds yi ÂÂx−i

i xi whenever xN ∈ XN and xi /∈ Ri(x−i) 3 yi. Evidently, a strongly
BR-consistent game is BR-consistent. In a strongly BR-consistent game, (2.9a) can be
replaced with

yN BBR
i xN ­ [y−i = x−i & xi /∈ Ri(x−i) 3 yi], (2.9a′)

while (2.10) with

yN BsBR xN ­
[
yN 6= xN & ∀i ∈ N [yi = xi ∈ Ri(x−i) or xi /∈ Ri(x−i) 3 yi]

]
. (2.10′)

When the preferences of the players are defined by semiorders, e.g., by ε-dominance
(2.4), the existence of the best responses (which is automatically ensured in a finite game) is
equivalent to BR-consistency. When the preferences are defined by orderings, e.g., by utility
functions, the existence of the best responses is equivalent to strong BR-consistency. If the
game is not even BR-consistent, the relations BBR and BsBR provide a dubious framework
for studying adaptive dynamics.

2.3 Finite tâtonnement paths

Let B be a binary relation on a set X. Having in mind improvement relations from the
previous subsection, we interpret y B x as an indication that somebody prefers y to x and
is able to replace x with y. A dynamic process (or rather, a family of potential dynamic
processes) suggests itself.

A simple tâtonnement path of B is a (finite or infinite) sequence 〈xk〉k=0,1,... such that
xk+1 B xk whenever k ≥ 0 and xk+1 is defined. If xk is defined exactly for k = 0, . . . ,m,
we call m ≥ 0 the length of the path (thus a path of length 0 is just a single point). A
finite tâtonnement cycle is a finite tâtonnement path of length m > 0 for which x0 = xm.
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A relation is acyclic if it admits no finite tâtonnement cycle. Obviously, B is acyclic if and
only if its transitive closure is irreflexive.

A relation B is strictly acyclic if it admits no infinite tâtonnement path; as a synonym,
we sometimes say that B has the finite tâtonnement property (FTP). The property implies
that every tâtonnement path, if continued whenever possible, reaches a maximizer in a
finite number of steps. A relation B is weakly acyclic, or has the weak FTP, if every
x ∈ X is connected to a maximizer of B with a tâtonnement path, i.e., there is a finite
tâtonnement path 〈x0, . . . , xm〉 (m ≥ 0) such that x0 = x and xm ∈ M(X, B). B has the
von Neumann-Morgenstern (NM ) property if the previous condition holds with m ≤ 1;
this actually means that the set M(X, B) is NM-stable (hence the unique NM-solution).
Either of NM and FTP implies the weak FTP; generally, they do not imply each other.
Each of the three properties implies the existence of a maximizer of B.

The weak FTP does not exclude the possibility that a tâtonnement process may continue
indefinitely without reaching a rest point. When X is finite, however, this is improbable
under reasonable assumptions. Let a (time-homogeneous) Markov chain on X be defined
by transition probabilities Πxx′ such that

[
Πxx′ > 0 ⇒ [x′ = x or x′ B x]

]
and

[
x′ B x ⇒

Πxx′ > 0
]
. Once the process reaches a maximizer, it stays there forever. The weak FTP

of B implies that every non-maximizer is a transient state, hence the tâtonnement process
will end at a maximizer with the probability one. If X is not finite, such a strong statement
cannot be justified, but the property still deserves attention.

Regardless of dynamic interpretations, both strict and weak acyclicity are relevant to
the existence of maximizers.

Proposition 2.2. A binary relation B on a set X has the property that M(Y, B) 6= ∅ for
every nonempty subset Y ⊆ X if and only if B is strictly acyclic.

Proof. An infinite tâtonnement path would be a subset of X without a maximizer. Con-
versely, the absence of maximizers on Y ⊂ X would allow us to construct an infinite
tâtonnement path of B.

A subset Y ⊆ X is undominated if y ∈ Y whenever y ∈ X, y B x, and x ∈ Y . Whenever
x ∈ Y is a maximizer of B on an undominated Y , it is a maximizer of B on X. Note that
X itself is undominated by definition.

Proposition 2.3. A binary relation B on a set X has the property that M(Y, B) 6= ∅ for
every nonempty undominated subset Y ⊆ X if and only if B is weakly acyclic.

Proof. If B is not weakly acyclic, then there is x0 ∈ X such that no finite tâtonnement
path starting at x0 reaches a maximizer of B on X. We denote Y ⊆ X the union of all
finite tâtonnement paths starting at x0; clearly, Y is undominated. On the other hand,
M(Y, B) = ∅ by the choice of x0.

Conversely, let B be weakly acyclic, x0 ∈ Y ⊆ X, and Y be undominated. Let
x0, x1, . . . , xm be a tâtonnement path and xm be a maximizer of B on X. A straight-
forward inductive reasoning shows that xm ∈ Y , hence xm ∈ M(Y, B).
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The difference between strict and weak acyclicity disappears if we demand either prop-
erty to hold on every finite subset.

Proposition 2.4. Let B be a binary relation on a set X. Then the following statements
are equivalent:

B is strictly acyclic on every finite subset Y ⊆ X; (2.11a)

B has the weak FTP on every nonempty finite subset Y ⊆ X; (2.11b)

M(Y, B) 6= ∅ for every nonempty finite subset Y ⊆ X; (2.11c)

B is acyclic on X. (2.11d)

Proof. Straightforward.

Remark. If X itself is not finite, the strict acyclicity on X cannot be added to the list:
consider, e.g., the standard order on R.

A strict order potential of B is a strictly acyclic and transitive extension, in the sense
of (2.2), of B. A strict numeric potential of B is a function P : X → (−N) such that

∀x, y ∈ X
[
y B x ⇒ P (y) > P (x)

]
. (2.12)

Proposition 2.5. A binary relation is strictly acyclic if and only if it admits a strict order
potential. If a binary relation B admits a strict numeric potential, then it is strictly acyclic.

Proof. If Â is a strict order potential of B, then (2.2) implies that every tâtonnement path
of B is a tâtonnement path of Â; therefore, a relation admitting a strict order potential
has the FTP. Conversely, if B is strictly acyclic, then we denote Â its transitive closure;
clearly, Â is strictly acyclic as well. The second statement is straightforward.

Remark. On a finite set, every strictly acyclic relation admits a strict numeric potential
(Kukushkin, 2004, Proposition 6.1). On the other hand, if we consider a well-order on an
uncountable set, say, [0, 1], and define B as its reverse, then no real-valued function P could
satisfy (2.12).

Proposition 2.6 (“Szpilrajn’s Theorem for strictly acyclic relations”). Let B be
a strictly acyclic binary relation on a set X. Then it can be extended to a strictly acyclic
linear order on X.

Proof. Let Λ be a well ordered set of a cardinality greater than that of X. By (transfinite)
recursion, we construct a mapping λ : Λ → X ∪ {x∗}, where x∗ /∈ X. First, we pick
λ(0) ∈ M(X, B). Having λ(β) defined for all β < α ∈ Λ, we denote X(α) := X\{λ(β)}β<α.
If X(α) = ∅, we set λ(α) := x∗; otherwise, we pick λ(α) ∈ M(X(α),B) arbitrarily.

The assumption about the cardinality of Λ ensures that λ(Λ) ⊃ X; moreover, λ−1(x) is a
singleton for every x ∈ X. Now we define a relation Â on X by: y Â x ­ λ−1(y) < λ−1(x).
Clearly, Â is a strictly acyclic linear order on X, and y B x ⇒ y Â x.
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Corollary. A binary relation B on a set X is strictly acyclic if and only if there are a well
ordered set Λ and an injective mapping µ : X → Λ such that [y B x ⇒ µ(y) < µ(x)] for all
y, x ∈ X.

A weak order potential of B is a strictly acyclic and transitive binary relation Â on X
such that

∀x ∈ X
[∃y ∈ X [y B x] ⇒ ∃z ∈ X [z B x & z Â x]

]
. (2.13)

A weak numeric potential of B is a function P : X → (−N) such that

∀x ∈ X
[∃y ∈ X [y B x] ⇒ ∃z ∈ X [z B x & P (z) > P (x)]

]
.

Proposition 2.7. For any binary relation B on a set X, the following statements are
equivalent:

B admits a weak numeric potential on X; (2.14a)

B admits a weak order potential on X; (2.14b)

B has the weak FTP on X. (2.14c)

Proof. (2.14a) obviously implies (2.14b). Assuming that (2.14b) holds, we define the fol-
lowing rule for the extension of tâtonnement paths: if xk is not a maximizer, we pick xk+1

such that xk+1 B xk and xk+1 Â xk. Starting with an arbitrary x0 and applying the rule,
we obtain a tâtonnement path of both B and Â, which must stop after a finite number
of steps, hence reaches a maximizer of both B and Â. Therefore, we have the weak FTP
indeed.

Assuming that (2.14c) holds, we define p(x) := [the minimal length of a tâtonnement
path of B starting at x and ending at a maximizer] and P (x) := −p(x) for every x ∈ X.
Now y B x implies p(x) > 0; we pick a tâtonnement path 〈xk〉k=0,...,p(x) such that x0 = x
and xp(x) is a maximizer, and define z := x1. Clearly, p(z) = p(x)− 1, hence P (z) > P (x);
on the other hand, z = x1 B x0 = x.

Remark. Proposition 2.7 for finite X was obtained in Kukushkin (2004, Proposition 6.2).

Proposition 2.8. A binary relation Â on X has the NM property on every finite subset
Y ⊆ X if and only if Â is irreflexive and transitive on X.

Proposition 2.9 (Kukushkin, 2008b, Theorem 2). A binary relation Â on a set X has
the NM property on every subset Y ⊆ X if and only if Â is strictly acyclic and transitive
on X.

Corollary. A strategic game Γ has the property that every subgame of Γ is BR-consistent
if and only if every relation ÂÂx−i

i (i ∈ N ; x−i ∈ X−i) is strictly acyclic and transitive on
Xi.

Proposition 2.10. A strategic game Γ has the property that every subgame of Γ is strongly
BR-consistent if and only if every relation ÂÂx−i

i (i ∈ N ; x−i ∈ X−i) is a strictly acyclic
ordering on Xi.
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3 Binary relations on a metric space

Throughout most of the paper, X is assumed a metric space with the metric d. Quite
often, an assumption that X is a first countable Hausdorff topological space would be
sufficient: as is well known, topology on X is then adequately described by convergent
sequences. However, the availability of distance simplifies presentation everywhere and
may be indispensable for some results.

3.1 Infinite tâtonnement paths

A relation B has the very weak FTP if, whenever x0 ∈ X, there is y ∈ M(X, B) such that
for every ε > 0 there is a finite tâtonnement path x0, x1, . . . , xm for which d(xm, y) < ε. An
infinite tâtonnement path 〈xk〉k∈N is maximal if its set of limit points is a nonempty subset
of M(X, B). A relation B has the approximate FTP if every infinite tâtonnement path
of B is maximal. A relation B has the weak approximate FTP if for every x0 ∈ X, there
is either a finite tâtonnement path x0, x1, . . . , xm such that xm ∈ M(X, B), or a maximal
tâtonnement path starting at x0.

Proposition 3.1. For every binary relation on a metric space, these implications hold:

FTP ⇒ approximate FTP ⇒ acyclicity
⇓ ⇓

weak FTP ⇒ weak approximate FTP ⇒ very weak FTP.

Proof. Straightforward.

None of the implications can be reversed: the standard order > on X := {−1/(k +
1)}k∈N∪{0} ⊂ R has the approximate FTP, but not the FTP; the same order on X := [0, 1]
is acyclic and has the weak approximate FTP, but does not have the approximate FTP;
the interval order in Example 3 of Kukushkin (2008b) has the weak approximate FTP, but
not the weak FTP; Example 3.35 below presents a relation having the very weak FTP, but
not the weak approximate FTP.

Proposition 3.2. A binary relation B on a metric space X has the very weak FTP if and
only if M(X, B) ∩ Y 6= ∅ whenever Y is the closure of a nonempty undominated subset of
X.

Proof. Straightforward.

An approximate potential of B is an irreflexive and transitive binary relationÂ satisfying
(2.2) on X and strictly acyclic on every set

X(δ) := {x ∈ X | ∀x′ ∈ X
[
d(x, x′) < δ ⇒ ∃y ∈ X [y B x′]

]} (δ > 0). (3.1)
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Proposition 3.3. Let B be a binary relation on a compact metric space X. If B has the
approximate FTP, then it admits an approximate potential. If B admits an approximate
potential, then M(X, B) 6= ∅; if, additionally, M(X, B) is closed in X, then B has the
approximate FTP.

Proof. Assuming that B has the approximate FTP, we define Â as its transitive closure.
Since B is acyclic, Â is irreflexive; (2.2) is straightforward. Suppose there is δ > 0 such
that Â is not strictly acyclic on X(δ), i.e., there is an infinite tâtonnement path of Â within
X(δ). By the definition of Â, there is an infinite tâtonnement path 〈xk〉k∈N of B such that
for every k ∈ N there is m ≥ k for which xm ∈ X(δ). Since X(δ) is closed in X, hence
compact, there is a limit point of 〈xk〉k∈N in X(δ). Since X(δ) ∩M(X, B) = ∅, the path is
not maximal.

Let B admit an approximate potential Â. If M(X, B) = ∅, then X(δ) = X, hence Â is
strictly acyclic on X; therefore, ∅ 6= M(X,Â) ⊆ M(X, B): a contradiction. By (2.2), every
tâtonnement path of B is a tâtonnement path of Â; therefore, every tâtonnement path of
B leaves every X(δ) for good after a finite number of steps. Therefore, every limit point of
the path belongs to X \⋃

δ>0 X(δ) = cl M(X, B). Thus, if M(X, B) is closed, then B has
the approximate FTP indeed.

A weak approximate potential of B is a function P : X → (−R) such that:

∀x ∈ X [P (x) = 0 ⇒ x ∈ M(X, B)]; (3.2a)

∀x ∈ X
[
P (x) < 0 ⇒ ∃y ∈ X [y B x & P (y) > P (x)]

]
; (3.2b)

∀ε > 0
[{v ∈ R | (−v) ∈ P (X) & v > ε} is a well ordered subset of R

]
; (3.2c)

correspondence v 7→ {x ∈ X | P (x) ≥ v} is upper hemicontinuous at v = 0. (3.2d)

Proposition 3.4. A binary relation B on a compact metric space X has the weak approx-
imate FTP if and only if it admits a weak approximate potential.

Proof. Let a function P satisfying (3.2) exist. Then (3.2a) and (3.2b) immediately imply
that M(X, B) = {x ∈ X | P (x) = 0}. By (3.2b), there is a mapping f : {x ∈ X |
P (x) < 0} → X such that f(x) B x and P (f(x)) > P (x). Whenever P (x0) < 0, we
start a tâtonnement path recursively defining xk+1 := f(xk). If P (xk) = 0 at some stage,
we are home; otherwise, we have an infinite tâtonnement path along which P (xk) strictly
increases. Now (3.2c) implies that P (xk) → 0 as k → ∞. Therefore, every limit point
of 〈xk〉k∈N belongs to M(X, B) by (3.2d). Finally, there are limit points because X is
compact.

Let B have the weak approximate FTP; we have to produce a weak approximate poten-
tial. First of all, X is partitioned into three subsets: X0 := M(X, B); X1 is the set of x ∈ X
from which M(X, B) can be reached with a finite tâtonnement path; X2 := X \ (X0∪X1).
Now we define P (x) := 0 for x ∈ X0 and P (x) := −[the minimal length of a tâtonnement
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path leading from x to X0 ] for x ∈ X1. If it happens that X2 = ∅, then B actually has the
weak FTP, and our P is a weak numeric potential as defined in the proof of Proposition 2.7.

The definition of P on X2 is more complicated. Given x ∈ X2 and a maximal
tâtonnement path π starting at x, we denote κ(π) := min{k ∈ N | ∃h ∈ N [d(π(h), X0) ≥
1/(k + 1)]} and η(π) := min{k ∈ N | ∀h > k [d(π(h), X0) < 1/(κ(π) + 1)]}. Then we
define κ+(x) as the maximum of κ(π) over all maximal tâtonnement paths π starting at
x, and η−(x) as the minimum of η(π) over all maximal tâtonnement paths π starting at x
such that κ(π) = κ+(x); κ+(x) is well defined because π(0) = x is the same for all π in
question. Finally, we set

P (x) := − 1

κ+(x) + 1
+

1

(κ+(x) + 1)(κ+(x) + 2)(η−(x) + 1)

for all x ∈ X2.

If P (x) < 0, then x ∈ X1 ∪ X2; in the first case, (3.2b) holds for the same reason
as in the proof of Proposition 2.7, while (3.2c) and (3.2d) for the restriction of P to
X0∪X1 are trivial. Considering P on X2, we make these straightforward observations: (1)
P (x) = −1/(κ+(x) + 2) if η−(x) = 0; (2) whenever κ+(y) = κ+(x), P (y) ≥ P (x) if and
only if η−(y) ≤ η−(x); (3) −1/(κ+(x) + 1) < P (x) ≤ −1/(κ+(x) + 2) for all x ∈ X2. Since
d(x,X0) < 1/κ+(x) for every x ∈ X2 by definition, (3.2c) and (3.2d) follow immediately.
To check (3.2b), we assume x ∈ X2 given, fix a maximal tâtonnement path π starting at x
such that κ(π) = κ+(x) and η(π) = η−(x), and set y := π(1). We have y B x by definition;
besides, κ+(y) ≥ κ+(x). If κ+(y) > κ+(x), then P (y) > P (x); if κ+(y) = κ+(x), then
η−(y) < η−(x), hence P (y) > P (x) again.

A binary relation B is upper semicontinuous if all its lower contours are open: if y B x,
then there is δ > 0 such that y B x′ whenever d(x, x′) < δ. A binary relation B is
continuous if its graph, {(x, y) ∈ X2 | y B x}, is open: if y B x, then there is δ > 0 such
that y′ B x′ whenever d(x, x′) < δ and d(y, y′) < δ.

Theorem 3.5. An upper semicontinuous and acyclic binary relation B on a compact metric
space X has the weak approximate FTP.

Proof. For each k ∈ N, we define Xk := {x ∈ X | ∀x′ ∈ X
[
d(x, x′) < 1/(k + 1) ⇒ ∃y ∈

X [y B x′]
]}; clearly, X0 ⊆ X1 ⊆ . . . . Since B is upper semicontinuous, each Xk is closed;

their union, X∞ :=
⋃

k∈NXk, is open and X∞ = X \ M(X, B). If M(X, B) = ∅, then
X0 = X1 = · · · = X; otherwise, Xk = {x ∈ X | d(x,M(X, B)) ≥ 1/(k + 1)}.

Given k ∈ N and x ∈ Xk, we pick y(x) ∈ X such that y(x) B x. There is an open
neighborhood U(x) of x such that y(x) B x′ for every x′ ∈ U(x). Since Xk is compact,
it is covered by a finite number of such open neighborhoods Uk

0 , Uk
1 , . . . , Uk

mk
. Denoting

Ξ := {(k, h) ∈ N2 | h ≤ mk}, we obtain a mapping f : Ξ → X such that f(k, h) B x for
every (k, h) ∈ Ξ and x ∈ Uk

h . Given x ∈ X∞, we pick the least k ∈ N such that x ∈ Xk

and the least h ∈ N such that x ∈ Uk
h , obtaining a mapping g : X∞ → Ξ.
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Now we are ready to prove the weak approximate FTP. Let x0 ∈ X. If x0 ∈ M(X, B)
we are already home; otherwise, we define x1 := f ◦ g(x0). If x1 ∈ M(X, B) we are
home; otherwise, we define x2 := f ◦ g(x1) and so on. If the process never stops, we
obtain an infinite tâtonnement path 〈xk〉k∈N. Given ε > 0, we pick k̄ ∈ N such that
1/(k̄ + 1) < ε. Since B is acyclic, all g(xk) must be different, hence the first component of
g(xk) remains greater than k̄ after a finite number of steps. And this means that xk /∈ X k̄,
hence d(xk,M(X, B)) < ε, after a finite number of steps.

Remark. Derivation from the assumptions of Theorem 3.5 of just the existence of a max-
imizer is a common practice (Bergstrom, 1975; Walker, 1977); the weak approximate FTP,
however, is a much stronger property. (To be fair, Walker did not have to assume that
the topology is defined with a metric.) It seems an assumption that B in Theorem 3.5 is
continuous would not help obtain any stronger statement.

3.2 Transfinite tâtonnement paths

A deeper analysis of tâtonnement processes associated with a binary relation on a metric
space becomes possible if the properties defined in Subsection 3.1 are supplemented with
those concerning tâtonnement paths parameterized with countable ordinal numbers.

Let B be a binary relation on a metric space X. A tâtonnement path of B is a mapping
π : Dom π → X, where Dom π is either Ω or [0, ᾱ[ for ᾱ ∈ Ω, satisfying these two conditions:

π(α + 1) B π(α) whenever α, α + 1 ∈ Dom π; (3.3a)

if α ∈ Dom π, and α is a limit, then there exists a sequence 〈βk〉k∈N for which

βk+1 > βk for all k, α = sup
k

βk, and π(α) = lim
k→∞

π(βk). (3.3b)

Let π′ and π′′ be tâtonnement paths (of the same B) such that Dom π′ = [0, α′],
Dom π′′ = [0, α′′], and π′(α′) = π′′(0). Then the concatenation of π′ and π′′ goes from
π′(0), “along π′,” to π′(α′), and then from π′(α′) = π′′(0), “along π′′,” to π′′(α′′). Formally
speaking, we consider {0, 1}×Ω with the lexicographic order where the first component mat-
ters first; then we define mappings σ′ : [0, α′] → ({0, 1}×Ω) and σ′′ : [0, α′′] → ({0, 1}×Ω)
by σ′(β) := (0, β) and σ′′(β) := (1, β). Denoting Λ := σ′([0, α′])∪σ′′([1, α′′]) ⊆ ({0, 1}×Ω),
we define τ : Λ → X by τ(σ′(β)) := π′(β) and τ(σ′′(β)) := π′′(β). It is easily checked that
Λ is well ordered and τ is a tâtonnement path [the condition π′(α′) = π′′(0) is essential for
(3.3a) to hold at α = (0, α′): α + 1 (in Λ!) is then (1, 1) = σ′′(1)]. Since Λ is a countable
well ordered set, there is an isomorphism θ : Λ → [0, α∗] ⊂ Ω for a unique α∗ ∈ Ω. Now we
can define a (“standard”) tâtonnement path π : [0, α∗] → X by π(β) := τ ◦ θ−1(β).

The concatenation of any finite number, or even an infinite sequence, of tâtonnement
paths of the same B can be defined in a similar way. Let each πk be defined on Dom πk =
[0, αk], and let πk(αk) = πk+1(0) for each relevant k ∈ N. Then we define mappings
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σk : [0, αk] → (N × Ω) (with the same lexicographic order on the latter set) by σk(β) :=
(k, β). Denoting Λ := σ0([0, α0]) ∪⋃

k>0 σk([1, αk]) and defining τ : Λ → X by τ(σk(β)) :=
πk(β), we again see that Λ is a countable well ordered set and τ is a tâtonnement path.
Therefore, there is an isomorphism θ : Λ → [0, α∗] when the number of πk is finite, or θ : Λ →
[0, α∗[ otherwise. α∗ ∈ Ω is unique in either case. Again, we can define a (“standard”)
tâtonnement path π := τ ◦ θ−1. Finally, if, in the infinite case, there is a limit point y∗ of
〈πk(αk)〉k∈N, then we may additionally set π(α∗) := y∗ – (3.3b) is easily checked – and call
the extended π a closed concatenation of πk.

Lemma 3.6. Let π be the concatenation of a finite number, or an infinite sequence, of
tâtonnement paths πk of the same B as defined in the previous paragraph. Then α∗ ≥ αk

for each relevant k ∈ N.

Proof. Supposing the contrary, α∗ < αk for some k, we denote B := {β ∈ [0, αk] | β >
θ ◦ σk(β)}. We have B 6= ∅ because αk ∈ B. Let β∗ := min B; clearly, β∗ > 0.

If β∗ is a successor, β∗ = β∗∗ + 1, then we must have β∗∗ ≤ θ ◦ σk(β∗∗) by the definition
of β∗, but then θ ◦ σk(β∗) = θ ◦ σk(β∗∗ + 1) ≥ θ(σk(β∗∗) + 1) ≥ β∗∗ + 1 = β∗, contradicting
β∗ ∈ B.

If β∗ is a limit, we have β ≤ θ ◦ σk(β) for all β < β∗ by the definition of β∗, hence
θ ◦ σk(β∗) ≥ supβ<β∗ θ ◦ σk(β) ≥ β for all β < β∗, hence θ ◦ σk(β∗) ≥ supβ<β∗ β = β∗ with
the same contradiction.

We say that B has the countable tâtonnement property (CTP) on X if there exists no
tâtonnement path π of B with Dom π = Ω. B has the weak CTP if, for every x ∈ X, there
exists a tâtonnement path π such that π(0) = x, Dom π ⊂ Ω, and π admits no extension,
i.e., there is no tâtonnement path π′ such that Dom π ⊂ Dom π′ and π′(α) = π(α) for every
α ∈ Dom π.

Remark. On a compact space X, where the only obstacle to extending a tâtonnement
path further is the fact that it has reached a maximizer, weak CTP means that, given any
point x ∈ X, a tâtonnement path π can be found such that π(0) = x and π(α) ∈ M(X, B)
(α ∈ Dom π), cf. the implication [(3.5e)⇒(3.5f)] in Theorem 3.21 below. If X is not
compact, an “unextendable” path may “go to infinity,” as, e.g., on the real line with the
standard order.

Proposition 3.7. Let B be a binary relation on a metric space X. If B has the (weak)
approximate FTP, then it has the (weak) CTP.

Proof. Let B have the approximate FTP and π be a tâtonnement path of B with Dom π ⊇
N ∪ {ω}. By (3.3b), π(ω) is a limit point of the sequence π(k) (k ∈ N), hence π(ω) ∈
M(X, B) by the approximate FTP. Therefore, Dom π = N ∪ {ω} by (3.3a).

Let B have the weak approximate FTP and x0 ∈ X. If there is a finite tâtonnement
path x0, x1, . . . , xm such that xm ∈ M(X, B), then the path cannot be extended because of
(3.3a), and we are home. Otherwise, there is a maximal tâtonnement path 〈xk〉k∈N starting
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at x0. We pick a limit point xω of the path and define a transfinite tâtonnement path π
by Dom π := N ∪ {ω}, π(k) := xk for all k ∈ N, and π(ω) := xω. The path π cannot be
extended because of (3.3a).

Remark. Proposition 3.7 would remain valid if we weakened the requirements in the
definitions of the (weak) approximate FTP, allowing a maximal tâtonnement path to have
no limit point at all. However, the last implication in Proposition 3.1, weak approximate
FTP ⇒ very weak FTP, would then become wrong. For Propositions 3.3 and 3.4, nothing
would change because their assumptions include the compactness of X anyway.

We finish this subsection with a technical lemma.

Lemma 3.8. If π is a tâtonnement path and β ∈ Dom π is a limit, then there exists an
infinite sequence 〈βk〉k∈N such that βk+1 > βk for all k, β = supk βk, π(βk) → π(β), and
each βk is a successor.

Proof. By transfinite recursion in α, we prove that the statement is valid for all β ≤ α.
For α ≤ ω, it is obvious.

Suppose the statement is valid for all α′ < α. If α is a successor, α = α∗ + 1, then we
have β ≤ α∗ whenever β ≤ α and β is a limit; therefore, the statement of the lemma is
true for β by the induction hypothesis.

Let α be a limit; we have to prove the statement of the lemma for β = α. By the
definition of an improvement path, there exists an infinite sequence 〈γk〉k∈N such that
γk+1 > γk for all k, β = supk γk, and π(β) = limk→∞ π(γk). Now we may construct
the sequence 〈βk〉k∈N by the following “algorithm:” fix a numeric sequence rh → 0 (e.g.,
rh = 1/h); pick the first k1 for which d(π(β), π(γk1)) < r1; if γk1 is a successor, define
β1 = γk1 ; otherwise, invoke the induction hypothesis, pick β′ < γk1 which is a successor
and satisfies d(π(β), π(β′)) < r1, and define β1 = β′. Then repeat the same procedure
with just two additional conditions: each new kh+1 must be greater than kh chosen on the
previous step and, when β′ is being chosen at the step h + 1, it must also satisfy β′ > γkh .
Clearly, π(βk) → π(β), β = supk βk, βk+1 > βk for all k, and each βk is a successor.

3.3 ω-Transitive relations

A binary relation Â on a metric space X is called ω-transitive if it is transitive and the
conditions xω = limk→∞ xk and xk+1 Â xk for all k ∈ N always imply xω Â x0.

Remark. Gillis (1959) and Smith (1974) considered this condition for orderings.

Lemma 3.9 (Kukushkin, 2003, Lemma 2.3). Let Â be an ω-transitive relation on a
metric space X and π be a tâtonnement path of Â; then π satisfies the condition:

∀α, β ∈ Dom π
[
α > β ⇒ π(α) Â π(β)

]
. (3.4)
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For a given relation B, its ω-transitive closure is the conjunction of all ω-transitive
extensions of B; clearly, the ω-transitive closure is itself an ω-transitive extension of B.

Lemma 3.10 (Kukushkin, 2003, Lemma 2.4). Let B be a binary relation on X, D be
its ω-transitive closure, and y, x ∈ X. Then y D x if and only if there exist a tâtonnement
path π of B and α ∈ Dom π satisfying π(0) = x, α > 0, and π(α) = y.

Proposition 3.11 (Kukushkin, 2003, Proposition 2.1). Let Â be an irreflexive and
ω-transitive relation on a metric space X. Let X be second countable. Then there exists
no mapping π : Ω → X satisfying (3.4).

Corollary. Every irreflexive and ω-transitive relation on a separable metric space X has
the CTP.

Remark. A compact metric space is separable, hence Corollary to Proposition 3.11 applies.
The set Ω with its order-induced topology is first countable, but Proposition 3.11 does not
hold there; however, it is not metrizable. I have no example of a metric space where
Proposition 3.11 would not hold.

Theorem 3.12 (Kukushkin, 2008b, Theorem 1). A binary relation Â on X has the
NM property on every compact subset Y ⊆ X if and only if Â is irreflexive and ω-transitive
on X.

Corollary. A strategic game Γ has the property that every subgame with compact sets X ′
i

of Γ is BR-consistent if and only if every relation ÂÂx−i

i (i ∈ N ; x−i ∈ X−i) is irreflexive
and ω-transitive on Xi.

Proposition 3.13. A strategic game Γ has the property that every subgame with compact
sets X ′

i of Γ is strongly BR-consistent if and only if every relation ÂÂx−i

i (i ∈ N ; x−i ∈ X−i)
is an ω-transitive ordering on Xi.

The following simple results describe natural “mechanisms” generating ω-transitive bi-
nary relations.

Proposition 3.14. Let º be a preorder on X such that every upper contour Up(x,º) is
closed. Then º is ω-transitive.

Proof. Let xω = limk→∞ xk and xk+1 º xk for each k ∈ N. Then xk ∈ Up(xh,º) whenever
k ≥ h, hence xω ∈ Up(xh,º) for all h ∈ N; in particular, xω ∈ Up(x0,º).

Proposition 3.15. Let º be an ω-transitive preorder on X. Then its asymmetric compo-
nent Â is ω-transitive too.

Proof. Let xk → xω and xk+1 Â xk for each k ∈ N. Then xk+2 º xk+1 for each k ∈ N,
hence xω º x1 because º is ω-transitive, hence xω Â x0 by transitivity.
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Corollary. Let º be an upper semicontinuous total preorder on X. Then both º and its
asymmetric component Â are ω-transitive.

Proposition 3.16. Let {ºα}α∈A be a family of ω-transitive binary relations on X. Then
their conjunction, y º x ­ ∀α ∈ A [y ºα x] is ω-transitive too.

Proof. Straightforward.

Example 3.17. Let 〈uα〉α∈A be a family of upper semicontinuous functions X → R.
Then each of them defines a total preorder on X, which is ω-transitive, together with its
asymmetric component, by Corollary to Propositions 3.14 and 3.15. Therefore, both weak
Pareto dominance,

y º x ­ ∀α ∈ A [uα(y) ≥ uα(x)],

and strong Pareto dominance,

y Â> x ­ ∀α ∈ A [uα(y) > uα(x)],

are ω-transitive by Proposition 3.16. Now “normal” Pareto dominance (2.5), which is the
asymmetric component of the weak Pareto dominance, is ω-transitive by Proposition 3.15.

Another common mechanism producing a new ω-transitive preorder from a family of
previously given ones is lexicography (Kukushkin, 2003, Section 3.2).

Proposition 3.18. Let B be a binary relation on a compact metric space X. If B has the
very weak FTP, then it has the weak CTP.

Proof. We denote D the ω-transitive and reflexive closure of B and Â the asymmetric
component of D. Similarly to Lemma 3.10, y D x if and only if there exist a tâtonnement
path π of B and α ∈ Dom π such that π(0) = x and π(α) = y; y Â x if and only if
there exists a tâtonnement path π such that π(0) = x and π(α) = y, but no tâtonnement
path π such that π(0) = y and π(α) = x. Â is obviously irreflexive and ω-transitive by
Proposition 3.15.

Let x0 ∈ X. By Theorem 3.12, there is y0 ∈ M(X,Â) such that y0 Â x0, hence a
tâtonnement path π0 of B connects x0 to y0. If we are lucky and y0 ∈ M(X, B), then
we are already home: π0 cannot be extended further by (3.3a). Otherwise, we invoke the
very weak FTP of B, obtaining an appropriate y∗ ∈ M(X, B). For every k ∈ N \ {0},
there is a finite tâtonnement path πk of B connecting y0 to yk such that d(y∗, yk) < 1/k;
therefore, yk D y0. Since y0 ∈ M(X,Â), we must have y0 D yk too, hence there is a finite
tâtonnement path πk

∗ of B connecting yk to y0.

Now we consider the concatenation of the tâtonnement paths π0, π1, π1
∗, π2, π2

∗, etc.
Since y∗ is a limit point, the concatenation can be extended there.

Remark. Without the compactness of X, the proof collapses. Nothing is known about
the validity of the statement itself.
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Open Problem 3.19 (“Szpilrajn’s Theorem for ω-transitive relations”). Let Â be
an irreflexive and ω-transitive relation on a metric space X. Is it necessarily possible to
extend Â to an ω-transitive linear order on X? If not, would the assumption that X is
compact help?

Proposition 3.20. Let Â be an ω-transitive ordering on a metric space X. Then it can
be extended to an ω-transitive linear order on X.

Proof. Invoking the Zermelo Theorem, we denote < a well-order on X. Then we define a
relation À on X by:

y À x ­
[
y Â x or [y ∼ x & y < x]

]
.

Clearly,À is a linear order on X, and y Â x ⇒ y À x. We only have to check ω-transitivity.

Let xk → xω and xk+1 À xk for all k. By the definition of À, either xk+1 Â xk or
xk+1 ∼ xk and xk+1 < xk for each k ∈ N. Since < is a well order, the latter relation is only
possible a finite number of times in a row; therefore, we have xkh+1 Â xkh for a subsequence
kh. Since xkh → xω as well, xω Â x0 by the ω-transitivity of Â.

3.4 Ω-Acyclic relations

A tâtonnement cycle of B is a tâtonnement path π such that Dom π = [0, α], α > 0, and
π(α) = π(0). B is called Ω-acyclic if it admits no tâtonnement cycle. A tâtonnement path
π : Dom π → X is called narrow if π(βk) → π(α) for every limit α ∈ Dom π and every
strictly increasing sequence 〈βk〉k∈N such that α = supk βk; in other words, if each π(α) is
the limit of the preceding path rather than a limit point. B is called quasi-Ω-acyclic if it
admits no narrow tâtonnement cycle.

An ω-potential of B is an irreflexive and ω-transitive relation Â satisfying (2.2). A weak
ω-potential of B is an irreflexive and ω-transitive relation Â satisfying (2.13).

Remark. As long as Problem 3.19 remains open, there would be no point in defining a
“generalized numeric” ω-potential in the style of Corollary to Proposition 2.6.

If we revise Proposition 2.4 assuming that X is a metric space and replacing “finite”
with “compact” and “FTP” with “CTP” throughout, then the equivalence of all conditions
(2.11) will be replaced with a chain of implications.

Theorem 3.21 (Kukushkin, 2003, Theorem 2). For a binary relation B on a metric
space X, let us consider the following conditions:

B is Ω-acyclic on X; (3.5a)

B admits an ω-potential on X; (3.5b)

B has the CTP on X; (3.5c)

B has the CTP on every compact subset Y ⊆ X; (3.5d)
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B has the weak CTP on every compact subset Y ⊆ X; (3.5e)

M(Y, B) 6= ∅ for every nonempty compact subset Y ⊆ X; (3.5f)

B is quasi-Ω-acyclic on X. (3.5g)

Then this chain of implications holds:

(3.5a) ⇐⇒ (3.5b) ⇐⇒ (3.5c) ⇒ (3.5d) ⇒ (3.5e) ⇐⇒ (3.5f) ⇒ (3.5g).

None of the one-sided implications in Theorem 3.21 can be reversed (Kukushkin, 2003,
Examples 2.1 – 2.4).

Comparing the formulations of Proposition 2.4 and Theorem 3.21, we see that in the new
situation the acyclicity condition “splits” into several properties, each of which deserving
some attention. However, none of them is equivalent to the existence of a maximizer in
every compact subset. Theorem 1 of Kukushkin (2008a) shows that the latter property
cannot be expressed as the prohibition of any kind of cycles.

Proposition 3.22. If B admits a weak ω-potential Â, then B has the weak CTP.

Proof. We denote BB the conjunction of B and Â, and Â> the ω-transitive closure of BB.
By definition, y Â x whenever y Â> x, hence Â> is irreflexive too. By (2.13), M(X,Â>) =
M(X, BB) ⊆ M(X, B). By Theorem 3.12, Â> has the NM property, which is the same as
the weak CTP of B.

Theorem 3.23. An upper semicontinuous binary relation B is Ω-acyclic if and only if it
is acyclic.

Proof. The necessity is tautological. Let B be upper semicontinuous and acyclic.

Claim 3.23.1. Whenever π is a tâtonnement path and (α + 1) ∈ Dom π, there exists a
finite tâtonnement path π∗ of length m such that π∗(0) = π(0) and π∗(m) = π(α + 1).

Proof. The proof goes by transfinite induction; if α is finite, the restriction of π to [0, α]
will do. Assuming the statement valid for all α < α′, let us prove it for α′.

If α′ is a successor, α′ = α + 1, we have π(α′ + 1) B π(α′) = π(α + 1). Applying the
induction hypothesis to α, we obtain a finite tâtonnement path π∗ of length m such that
π∗(0) = π(0) and π∗(m) = π(α + 1). Defining π∗(m + 1) := π(α′ + 1) [B π∗(m)], we obtain
a finite tâtonnement path (of length m + 1) ending at π(α′ + 1).

Let α′ be a limit. There is δ > 0 such that π(α′ + 1) B x whenever d(π(α′), x) < δ. We
pick α < α′ such that d(π(α′), π(α + 1)) < δ, and apply the induction hypothesis to α in
the same manner as in the previous paragraph. There is a finite tâtonnement path π∗ of
length m such that π∗(0) = π(0) and π∗(m) = π(α + 1). Adding π∗(m + 1) := π(α′ + 1),
we again obtain a finite tâtonnement path (of length m + 1) ending at π(α′ + 1).
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To finish with the proof of the theorem, we suppose the contrary: there is a tâtonnement
path π such that π(α) = π(0) for an α > 0 (α ∈ Dom π). Since B is acyclic, α must be
infinite; without restricting generality, α = max Dom π. If α is a successor, α = α′ + 1,
we apply Claim 3.23.1, obtaining a finite tâtonnement path π∗ of length m such that
π∗(0) = π(0) and π∗(m) = π(α′ + 1) = π(α) = π(0), which contradicts the acyclicity of B.

If α is a limit, we obtain the same contradiction simply changing the origin of the
cycle. Technically speaking, we first define a mapping σ : Dom π → Dom π by recursion:
σ(0) := 1; whenever σ(β) is defined and (β + 1) ∈ Dom π, σ(β + 1) := σ(β) + 1; whenever
β ∈ Dom π is a limit and σ(β′) is defined for all β′ < β, σ(β) := supβ′<β σ(β′). It is
immediately seen that σ(β) = β + 1 if β is finite, and σ(β) = β otherwise. Then we define
a tâtonnement path π′ on the same Dom π by π′(β) := π(σ(β)) for all β ∈ Dom π; thus we
have π′(α) = π(α) = π(0). Finally, we add one more point, α + 1, to Dom π and extend π′

by π′(α + 1) := π(1) = π′(0). Now we have, with π′, the same situation as in the previous
paragraph, hence obtain the same contradiction.

Remark. Unlike Theorem 3.23, Theorem 3.5 cannot claim equivalence, only one-way im-
plication. It is also worth noting that Ω-acyclicity does not generally imply the weak
approximate FTP, nor even very weak FTP.

3.5 Endomorphisms and fixed points

With every mapping f : X → X, we may associate the relation Df by y Df x ­ [y = f(x)]
(it may be argued that the relation is the mapping). A slight modification, however, is
much more convenient for our purposes here: y Bf x ­ [y = f(x) 6= x]. The point
is that maximizers of Bf are exactly fixed points of f . In the case of a correspondence
F : X → 2X \ {∅}, we define a binary relation BF by y BF x ­ [x /∈ F (x) 3 y]; again,
maximizers of BF are fixed points of F and vice versa.

Tâtonnement paths of BF (Bf ) combine iterating F (or f) and picking limit points, so
they may also be called iteration paths. We call a mapping F , or f , (strictly, weakly, Ω-,
etc.) acyclic if so is BF (Bf ).

Proposition 3.24. A mapping f : X → X is strictly acyclic if and only if it is weakly
acyclic.

Given a mapping f : X → X, a subset Y ⊆ X is f -invariant if f(Y ) ⊆ Y . There are
two natural ways to extend the notion to correspondences F : X → 2X \ {∅}: a subset
Y ⊆ X may be called F -invariant if F (y) ⊆ Y for every y ∈ Y or if F (y)∩Y 6= ∅ for every
y ∈ Y . The second version proves more convenient here, so we adopt it.

Proposition 3.25. A correspondence F : X → 2X \ {∅} is strictly acyclic if and only if
every F -invariant subset of X contains a fixed point of F . A correspondence F : X →
2X \ {∅} is acyclic if and only if every finite F -invariant subset of X contains a fixed
point of F . A correspondence F : X → 2X \ {∅} is very weakly acyclic if and only if the
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closure of every F -invariant subset of X contains a fixed point of F . If a correspondence
F : X → 2X \{∅} is Ω-acyclic, then every compact F -invariant subset of X contains a fixed
point of F .

Example 3.26. Let X be a circle parameterized with a real number 0 ≤ ϕ < 2π. We fix
ϕ0 incommensurable with 2π and define a mapping f : X → X by

f(ϕ) :=

{
0, ϕ = 0;

ϕ⊕ ϕ0, otherwise,

where ⊕ denotes addition modulo 2π. Clearly, ϕ = 0 is a unique fixed point. f is acyclic
and very weakly acyclic, but not Ω-acyclic. The only compact f -invariant subset of X is
X itself. Therefore, the converse to the last statement in Proposition 3.25 is wrong.

The only well-known fixed point theorem that ensures universal convergence of iterations
is that of Banach’s.

Proposition 3.27. Let X be a complete metric space and f be a mapping X → X such
that d(f(x), f(y)) ≤ δ · d(x, y) for some δ ∈]0, 1[ and all x, y ∈ X. Then BF has the
approximate FTP.

The assumptions of the Brouwer, Lefschetz, or Kakutani theorems do not guarantee
anything of this kind. It is sufficient to consider the rotation of a circle around its center.
As to the (Knaster-)Tarski theorem, roughly speaking, it ensures (Ω-)acyclicity on a chain,
but not otherwise.

Example 3.28. Let X := {(0, 0), (0, 1), (1, 0), (1, 1)} ⊂ R2 and f : X → X be defined by
f(0, 0) = (0, 0), f(1, 0) = (0, 1), f(0, 1) = (1, 0), and f(1, 1) = (1, 1). X is a finite lattice, f
is increasing, there are even two fixed points, but iterations of f started at (1, 0) will never
reach a fixed point.

Let X be a chain. A correspondence F : X → 2X\{∅} is ascending if min{y′, y′′} ∈ F (x′)
and max{y′, y′′} ∈ F (x′′) whenever x′, x′′ ∈ X, x′′ > x′, y′ ∈ F (x′), and y′′ ∈ F (x′′).

Let X be simultaneously a metric space and a chain. We say that the order on X is
quasicontinuous if both relations > and < are ω-transitive, and there are no two sequences
〈xk〉k∈N and 〈yh〉h∈N such that xk → xω, yh → yω, and

∀k ∀h [
xω > yh > yh+1 > xk+1 > xk > yω

]
. (3.6)

Clearly, a continuous order is quasicontinuous as well. The lexicographic order on Rm is
quasicontinuous, but not continuous (provided m > 1).

Theorem 3.29 (Kukushkin, 2000, Theorem 4.2). Let X be simultaneously a metric
space and a chain such that the order on X is quasicontinuous. Let a correspondence
F : X → 2X \ {∅} be ascending. Then F is Ω-acyclic.
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Proof. Let π be a tâtonnement path of BF . We partition Dom π \{max Dom π} into B↑ :=
{β ∈ Dom π \ {max Dom π} | π(β + 1) > π(β)} and B↓ := {β ∈ Dom π \ {max Dom π} |
π(β + 1) < π(β)} (π(β + 1) = π(β) is obviously impossible).

Claim 3.29.1. Let β ∈ B↑ and β + 2 ∈ Dom π; then (β + 1) ∈ B↑ too.

Proof. We have π(β+1) > π(β), π(β+1) ∈ F (π(β)), and π(β+1) /∈ F (π(β+1)) 3 π(β+2).
Since F is ascending, an assumption π(β+1) ≥ π(β+2) would imply π(β+1) ∈ F (π(β+1))
hence π(β + 2) could not have been defined.

Claim 3.29.2. Let β ∈ B↓ and β + 2 ∈ Dom π; then (β + 1) ∈ B↓ too.

The proof is dual to that of Claim 3.29.1.

The key role is played by the following statement.

Claim 3.29.3. Let α ∈ Dom π and β < α. Then π(α) > π(β) if β ∈ B↑ whereas π(α) <
π(β) if β ∈ B↓.

Proof. The proof goes by transfinite induction in α. For α = 0, the statement holds by
default. Assuming it true for α, let us prove it for α + 1.

Let us assume that α ∈ B↑. Then π(α+1) > π(α) > π(β) whenever β < α and β ∈ B↑.
Let β < α and β ∈ B↓; we have to prove that π(β) > π(α + 1). By Claim 3.29.2, we have
(β + 1) ∈ B↓, hence β + 1 < α. Now the induction hypothesis implies π(β) > π(β + 1) >
π(α). Then we argue similarly to the proof of Claim 3.29.1: we have π(α + 1) ∈ F (π(α))
and π(β) /∈ F (π(β)) 3 π(β + 1); since F is ascending and π(β) > π(α), an assumption
π(α + 1) ≥ π(β) would imply π(β) ∈ F (π(α)); but then π(β) ∈ F (π(β)) because F is
ascending and π(β) > π(β + 1) ∈ F (π(β)).

The case of α ∈ B↓ is treated dually.

To complete the induction step, let us assume that α is a limit and the statement of
the lemma holds for all α′ < α. We pick a sequence 〈βk〉k∈N in Dom π such that βk+1 > βk

for all k, α = supk∈N βk, and π(βk) → π(α). Without restricting generality, we may
assume βk ∈ B↑ for all k – the case of βk ∈ B↓ for all k is treated dually. The induction
hypothesis implies π(βk+1) > π(βk) for each k ∈ N, hence π(α) > π(βk) for each k by the
ω-transitivity of the order. Whenever β < α and β ∈ B↑, there is k ∈ N such that β > βk,
hence π(βk) > π(β) by the induction hypothesis.

Finally, let us assume, to the contrary, that there is β∗ < α such that β∗ ∈ B↓ and
π(β∗) ≤ π(α). Without restricting generality, βk > β∗ for all k. We define γ∗ := min{γ ∈
B↑ | γ > β∗}; clearly, β∗ < γ∗ ≤ β0, hence π(β0) > π(γ∗) by the induction hypothesis.
Further, γ∗ must be a limit: if γ∗ = γ+1, then γ ∈ B↑ by Claim 3.29.2, hence γ > β∗ as well,
which contradicts the definition of γ∗. Therefore, we can pick a sequence 〈γh〉h∈N in Dom π
such that γh+1 > γh > β∗ for all h, γ∗ = suph∈N γh, and π(γh) → π(γ∗). Then γh ∈ B↓ for
each h ∈ N by the definition of γ∗, hence π(β∗) > π(γh) > π(βk) for each h and k by the
induction hypothesis. Denoting xk := π(βk), xω := π(α), yh := π(γh), and yω := π(γ∗), we
obtain a configuration (3.6) prohibited in the definition of a quasicontinuous order.
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The end of the proof is straightforward. If α ∈ Dom π and α > 0, then either π(α) >
π(0) or π(α) < π(0) by Claim 3.29.3, hence no cycle is possible.

Remark. If the order is continuous, then, for every ascending correspondence F and every
tâtonnement path π of BF , one of the sets B↑ and B↓ must be empty. If X is, say, Rm

(m > 1) with the lexicographic order, then, indeed, both may be non-empty simultaneously.

Concerning quasicontinuous orders, Kukushkin (2003) contains a couple of funny char-
acterization results.

Theorem 3.30 (Kukushkin, 2003, Theorem 6). Let X be simultaneously a metric
space and a poset. Then the following conditions are equivalent:

1. The order on X is a quasicontinuous linear order.

2. Every ascending correspondence F : X → 2X \ {∅} is Ω-acyclic.

3. Every increasing mapping f : X → X is Ω-acyclic.

4. Every ascending correspondence F : X → 2X \ {∅} is quasi-Ω-acyclic.

5. Every compact subset Y ⊆ X has the fixed point property.

Theorem 3.31 (Kukushkin, 2003, Theorem 3). A linear order on a separable metric
space X is quasicontinuous if and only if for every nonempty compact Y ⊆ X and every
Z ⊆ Y there exists a supremum of Z in Y .

Taking into account the well-known characterization of chains compact in their intrinsic
topology (Birkhoff, 1967), we immediately obtain the following

Corollary (Kukushkin, 2003). A linear order on a separable metric space X is quasi-
continuous if and only if every compact subset Y ⊆ X is compact in its intrinsic topology.

Theorem 3.29 implies that iterations of an increasing mapping (or ascending correspon-
dence) from a chain to itself eventually lead to a fixed point. The convergence may take
quite some time though.

Proposition 3.32 (Kukushkin, 2000, Theorem 4.3). For every α ∈ Ω, there exist an
increasing mapping fα : [0, 1] → [0, 1] such that Dom π ⊇ [0, α] for every iteration path of
fα starting at 0 and ending at a fixed point of fα.

Proof. We define increasing mappings fα : [0, 1] → [0, 1] (α ∈ Ω) by transfinite recursion
in such a way that fα(x) > x whenever 0 ≤ x < 1, fα(1) = 1, and there is a unique
tâtonnement path πα of Bfα

starting at πα(0) = 0 and ending at πα(α∗) = 1 with α∗ ≥ α.
The uniqueness of the path immediately follows from the inequality fα(x) > x since all
limit points in (3.3b) must be actually limits. We start with f 0(x) := 1 for all x ∈ [0, 1];
then Dom π0 = {0, 1}, π0(0) = 0, and π0(1) = 1.
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Assuming fα already defined, we define fα+1 by

fα+1(x) :=

{
fα(2x)/2, 0 ≤ x < 1/2;

1, 1/2 ≤ x ≤ 1.

Its monotonicity is obvious. For every β ≤ α, we have πα+1(β) = πα(β)/2; in particular,
πα+1(α∗) = 1/2, hence πα+1(α∗ + 1) = 1.

Let α be a limit and fβ and πβ be already defined for all β < α. We pick a sequence
〈βk〉k∈N in Ω such that βk+1 > βk for all k and α = supk∈N βk. Then we define Ik :=
[1− 1/2k, 1− 1/2k+1[ for each k ∈ N and

fα(x) :=

{
fβk(

2k+1(x− 1 + 1/2k)
)
/2k+1 + (1− 1/2k), x ∈ Ik;

1, x = 1.

On every Ik, fα is increasing as a monotone transformation of fβk
; besides, 1 − 1/2k ≤

fα(x) < 1− 1/2k+1 whenever x ∈ Ik. Therefore, fα is increasing on [0, 1].

For each k ∈ N, we define an iteration path of fα by πk(β) := 1− 1/2k + πβk
(β)/2k+1.

Clearly, πk starts at 1 − 1/2k and ends at πk(αβk

∗ ) = 1 − 1/2k+1. Finally, we define πα

as a closed concatenation of all πk with πα(α∗) = 1. Applying Lemma 3.6, we obtain
α∗ ≥ α.

Transfinite iteration paths become redundant, in a sense, under a closed graph assump-
tion. However, the assumption does not have as strong implications as upper semicontinuity
of an abstract binary relation, cf. Theorems 3.5 and 3.23.

Example 3.33. Let X be a circle in the plane with polar coordinates, {(ρ, ϕ) | ρ = 1}
(0 ≤ ϕi < 2π), and let f : X → X be defined by f(ρ, ϕ) := (ρ, ϕ ⊕ ϕ0), where ⊕ denotes
addition modulo 2π, and ϕ0 is incommensurable with 2π. Clearly, f is continuous and
acyclic; however, there is no fixed point.

Theorem 3.34 (Kukushkin, 2000, Theorem 4.4). Let X be a compact metric space.
Let a correspondence F : X → 2X \{∅} be upper hemicontinuous and Ω-acyclic. Let 〈xk〉k∈N
be a tâtonnement path of DF , i.e., xk+1 ∈ F (xk) for each k ∈ N. Then there is a fixed
point of F among limit points of the sequence.

Remark. The statement of the theorem implies that BF has the very weak FTP, but it
is more than that. On the other hand, it is weaker than the weak approximate FTP, see
Example 3.35 below.

Proof. We denote Y ⊆ X the set of limit points of 〈xk〉k∈N. Y is compact, hence M(Y, BF ) 6=
∅ by Theorem 3.21 [(3.5a) ⇒ (3.5f)]. Let xω ∈ M(Y, BF ). If xω ∈ F (xω), we are home;
let xω /∈ F (xω). Since xω ∈ Y , there is a strictly increasing sequence 〈kh〉h∈N such that
xkh → xω. We denote yh := xkh+1 (h ∈ N); without restricting generality, yh → yω ∈ Y .
By our assumption, yh ∈ F (xkh); since F is upper hemicontinuous, yω ∈ F (xω). Thus,
yω BF xω, contradicting the choice of xω.
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Example 3.35 (Kukushkin, 2000, Example 4.3). We start with the definition of a
compact subset in a plane with polar coordinates (ρ, ϕ) (ρ ≥ 0, 0 ≤ ϕ < 2π):

X :=
{
(ρ, ϕ) | ρ ∈ {1}∪{1+1/(m+1)}m∈N & ϕ ∈ {0}∪{π/(m+1), 2π−π/(m+1)}m∈N &

ρ ≤ min{ϕ, 2π − ϕ}/π + 1
}

Then we define a mapping f : X → X by

f(ρ, ϕ) :=





(1, 0), ρ = 1 & ϕ = 0;

(ρ, π/(m + 2)), ρ ≤ 1 + 1/(m + 2) & ϕ = π/(m + 1);

(1 + 1/(m + 2), 2π − π/(m + 2)), ρ = 1 + 1/(m + 1) & ϕ = π/(m + 1);

(ρ, 2π − π/(m + 1)), ρ ≤ 1 + 1/(m + 2) & ϕ = 2π − π/(m + 2).

Clearly, f is continuous and (1, 0) is its unique fixed point. f is Ω-acyclic: if (ρ, ϕ) 6= (1, 0),
then f(ρ, ϕ) either has a lesser ρ, or the same ρ and a lesser ϕ; the appropriate lexicographic
order on the plane is ω-transitive. An iteration path started on the circle ρ = 1 remains
on the circle and converges to the fixed point (1, 0). An iteration path started outside the
circle ρ = 1 converges to it so that every point on the circle is a limit point of the path.
Thus, Bf has the very weak FTP, but not the weak approximate FTP.

Proposition 3.36. Let X be simultaneously a compact metric space and a chain such that
the order on X is continuous; let a correspondence F : X → 2X \ {∅} be upper hemicontin-
uous and ascending. Then BF has the approximate FTP.

Proof. Let π be a tâtonnement path of BF with Dom π = N. Since Claims 3.29.1 and 3.29.2
are obviously applicable, we have either π(k +1) > π(k) for all k, or π(k +1) < π(k) for all
k. Since X is compact and the order is continuous, we have π(k) → x∗ as k →∞. Since the
graph of F is closed and π(k +1) ∈ F (π(k)), we have x∗ ∈ F (x∗), i.e., x∗ ∈ M(X, BF ).

Remark. Most likely, Proposition 3.36 is wrong if the order is only quasicontinuous; how-
ever, I have not elaborated a complete counterexample. The mapping in Example 3.35 is
increasing w.r.t. a lexicographic order which is ω-transitive, but not quasicontinuous.

4 Improvement dynamics in strategic games

4.1 A review of basic properties

Applying the notions developed in Sections 2.3 and 3 to improvement relations from Sec-
tion 2.2, we obtain plenty of properties of strategic games. Artificial examples of games
with or without the properties are easy to produce. Much more interesting is the fact that
those properties are exhibited by natural classes of games, many of which had attracted
attention for independent reasons.
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Monderer and Shapley (1996a) called the FTP of the individual improvement relation
BInd (2.6) in a strategic game Γ the finite individual improvement property (FIP) of Γ.
They defined a generalized ordinal potential of a finite game as a function P : XN → R
satisfying (2.12). Their Lemma 2.5 proves that a finite game has the FIP if and only if it
admits such a potential (cf. our Proposition 2.5 and the following remark). The best-known
class of games having the FIP are Rosenthal’s (1973) congestion games, see also Kukushkin
(2007).

Friedman and Mezzetti (2001) called the weak FTP of the individual improvement
relation BInd (2.6) in a strategic game Γ the weak FIP of Γ. That property of a finite game
with strategic complementarities was established by Kukushkin et al. (2005).

When each Xi is a metric space with a metric di, we define a distance function on XN

by
d(xN , yN) := min

i
di(xi, yi).

Then we will use, by analogy, the terms very weak FIP and (weak) approximate FIP, as
well as countable improvement property (CIP) and weak CIP.

Continuing the analogy, we will use the terms finite coalition improvement property
(FCP) and countable coalition improvement property (CCP), as well as (very) weak FCP,
(weak) approximate FCP, and weak CCP, when referring to the strong coalition improve-
ment relation BsCo defined by (2.7). The weak FCP of a certain subclass of congestion
games was established by Holzman and Law-Yone (1997); the same property of a modifi-
cation of congestion games was established by Konishi et al. (1997). When referring to the
weak coalition improvement relation BwCo defined by (2.8), we will use the term FC+P, as
well as weak, very weak, approximate FC+P etc.

When it comes to the best response improvements, some degree of caution is required.
Suppose a game Γ is such that Ri(x−i) = ∅ for all i ∈ N and x−i ∈ X−i. The FTP of
the best response improvement relation BBR defined by (2.9) is obvious; however, there
is no Nash equilibrium, so it cannot be reached after a finite number of best response
improvements. There may be different ways to cope with that problem. We adopt the
simplest of them: we only consider the relations BBR or BsBR when the game is BR-con-
sistent. And then we use terminology quite similar to that introduced above: the (weak)
finite best response improvement property ((weak) FBRP) is the (weak) FTP of BBR, while
the (weak) finite simultaneous best response property ((weak) FSBRP) is the (weak) FTP
of the finite simultaneous best response relation BsBR defined by (2.10). The weak FBRP of
a modification of congestion games was established by Milchtaich (1996). The meaning of
the terms very weak, (weak) approximate FBRP, very weak, (weak) approximate FSBRP,
(weak) CBRP, and (weak) CSBRP should be clear now.

Proposition 4.1. Let Γ′ be a subgame of Γ and let Γ have the FIP, or FC(+)P; then Γ′

possesses a Nash equilibrium, or a (very) strong equilibrium. The same conclusion holds if
Γ has the CIP, or CC(+)P, while each X ′

i is compact.

Proof. Immediately follows from Proposition 2.1.
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Remark. If every subgame of Γ possesses a Nash equilibrium, then Γ need not have the
FIP (Takahashi and Yamamori, 2002).

It is easy to see that the following implications hold (the fourth and fifth rows assume
BR-consistency):

FC+P ⇒ appr FC+P ⇒ CC+P
⇓ ⇓ ⇓

FCP ⇒ appr FCP ⇒ CCP
⇓ ⇓ ⇓

FIP ⇒ appr FIP ⇒ CIP
⇓ ⇓ ⇓

FBRP ⇒ appr FBRP ⇒ CBRP
⇓ ⇓ ⇓

weak FBRP ⇒ weak appr FBRP ⇒ weak CBRP
⇓ ⇓ ⇓

weak FIP ⇒ weak appr FIP ⇒ weak CIP

.

These properties admit straightforward dynamic interpretations in the same style as the
abstract (weak, etc.) FTP. They are also conducive to the convergence of more complicated
scenarios (Young, 1993; Kandori and Rob, 1995).

Since an analog of Proposition 2.1 for the relations BBR and BsBR is obviously wrong, we
obtain a partition of our improvement relations into two classes: “hereditary” ones (BInd,
BsCo, and BwCo) and “non-hereditary” ones (BBR and BsBR). The first class is considered in
the next subsection; the second, in Subsection 4.3. Actually, BwCo is not considered here
at all because our continuity assumptions do not make it much nicer. Instead, we consider
a common generalization of individual and strong coalition improvements. Its use here is
purely technical, but it may deserve attention for its own sake under proper circumstances.

Let I ⊆ N ; we define a relation BI on XN by an analog of (2.7):

yN BI xN ­ ∃I ∈ I [yN BsCo
I xN ]. (4.1)

A tâtonnement path of BI is called an I-improvement path; a maximizer of BI , an I-equi-
librium. Clearly, BsCo is BN while BInd is BI with I consisting of singleton subsets of N ;
accordingly, the notions of Nash and strong equilibrium are particular cases of I-equilib-
rium. The relations BI are hereditary in the sense of Proposition 2.1, hence an analog of
Proposition 4.1 is valid for them too.

Whenever π is an I-improvement path and (α + 1) ∈ Dom π, we denote ι(α) ∈ I the
coalition who move at the step α, i.e., π(α + 1) BsCo

ι(α) π(α).
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4.2 “Quasi-continuous” preferences

Throughout this subsection, we make the following “quasi-continuity” assumption about
the preference relations:

∀i ∈ N ∀yN , xN ∈ XN

[
yN ÂÂi xN ⇒

∃δ ∈ R++

[∀y′N , x′N ∈ XN [d(xN , x′N) < δ & d(yN , y′N) < δ ⇒ (yi, y
′
−i) ÂÂi x′N ]

]]
. (4.2)

The assumption has an immediate corollary for (individual or coalition) improvements:

∀I ∈ N ∀yN , xN ∈ XN

[
yN BsCo

I xN ⇒

∃δ ∈ R++

[∀x′N ∈ XN [d(xN , x′N) < δ ⇒ (yI , x
′
−I) BsCo

I x′N ]
]]

. (4.3)

A sufficient condition for (4.2) is the continuity of each preference relation. It is not
necessary; e.g., when preferences are described by utility functions, (4.2) holds if each ui is
upper semicontinuous in xN and continuous in x−i.

Proposition 4.2. Let a strategic game Γ satisfy condition (4.2), I ⊆ N , π be an I-im-
provement path, α ∈ Dom π, and ε > 0. Then there exists a finite I-improvement path π∗

of length m such that π∗(0) = π(0) and d(π(α), π∗(m)) < ε.

Proof. The proof goes by transfinite induction; if α is finite, the restriction of π to [0, α]
will do. Assuming the statement valid for all α < α′, let us prove it for α′. If α′ is a
limit, there is α < α′ such that d(π(α′), π(α)) < ε/2. Applying the induction hypothesis
to α, we obtain a finite I-improvement path π∗ of length m such that π∗(0) = π(0) and
d(π(α), π∗(m)) < ε/2. Therefore, d(π(α′), π∗(m)) < ε and we are home.

Let α′ be a successor, α′ = α + 1. We invoke (4.3) with I := ι(α), yN := π(α′) and
xN := π(α), and obtain δ > 0 such that (πι(α)(α

′), x′−ι(α)) BsCo
ι(α) x′N whenever d(π(α), x′N) <

δ. Then we apply the induction hypothesis to α, obtaining a finite I-improvement path π∗

of length m such that π∗(0) = π(0) and d(π(α), π∗(m)) < min{ε, δ}. Finally, we extend π∗

to {0, . . . , m + 1} defining π∗(m + 1) := (πι(α)(α
′), π∗−ι(α)(m)).

Corollary. Let a strategic game Γ satisfy condition (4.2). Then the weak CIP implies the
very weak FIP, and the weak CCP implies the very weak FCP.

Theorem 4.3. Let a strategic game Γ satisfy condition (4.2), #N = 2, and I ⊆ N . Then
the relation BI is Ω-acyclic if and only if it is acyclic.

Proof. Suppose the contrary: BI is acyclic, but there is an I-improvement path π and
α ∈ Dom π such that π(α) = π(0) and α > 0. Since BI is acyclic, α must be infinite; without
restricting generality, α = max Dom π. Applying (4.3) to the relations π(1) BsCo

ι(0) π(0) and

π(2) BsCo
ι(1) π(1), we obtain appropriate δ1 and δ2. Then we define ε := min{δ1, δ2} and apply
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Proposition 4.2 with that ε to the restriction of π to Dom π \ {0, 1}, obtaining a finite
I-improvement path π∗ of length m such that π∗(0) = π(2) and d(π(α), π∗(m)) < ε. Then
we extend π∗ to {0, . . . , m+2} defining π∗(m+1) := (πι(0)(1), π∗−ι(0)(m)) and π∗(m+2) :=

(πι(1)(2), π∗−ι(1)(m + 1)); recalling the definition of ε and that π(α) = π(0), we see that the

extended π∗ remains a finite I-improvement path. Finally, π∗ι(0)∪ι(1)(m+2) = πι(0)∪ι(1)(2) =

π∗ι(0)∪ι(1)(0); since ι(0)∪ ι(1) = N , we have π∗(m+2) = π∗(0), i.e., a contradiction with the
supposed acyclicity.

Theorem 4.4. Let a strategic game Γ satisfy condition (4.2); let each Xi be compact; let
I ⊆ N and BI be acyclic. Then BI has the very weak FTP.

Proof. Given x0
N ∈ XN , we denote Y ⊆ XN the set of strategy profiles that can be reached

from x0
N with finite I-improvement paths. Then we define Z := cl Y ; clearly, Z is compact.

We have to prove that Z contains an I-equilibrium, i.e., a maximizer of BI on XN .

Claim 4.4.1. If zN ∈ Z and yN BI zN , then yN ∈ Z.

Proof. Let yN BsCo
I zN ; by (4.3), there is δ > 0 such that (yI , x−I) BsCo

I xN whenever
d(zN , xN) < δ. Given ε > 0, there is a finite I-improvement path π of length m such that
π(0) = x0

N and d(π(m), zN) < min{δ, ε}. We extend π, defining π(m + 1) := (yI , π−I(m));
the extended π remains a finite I-improvement path, hence π(m + 1) ∈ Y . Since d(π(m +
1), yN) < ε and ε was arbitrary, we have yN ∈ Z indeed.

Now we may forget about XN \ Z, and prove the existence of a maximizer of BI on Z.
Supposing the contrary, we fix, for every xN ∈ Z, a yN(xN) ∈ Z and an I(xN) ∈ I such
that yN(xN) BsCo

I(xN ) xN , and denote U(xN) the open ball around xN of radius δ from (4.3).

Since Z is compact, it is covered by a finite number of U(xN); we pick a finite set X∗ ⊆ Z
accordingly, and define X ′

i := {yi(xN) | xN ∈ X∗ & i ∈ I(xN)}∪{x0
i } and X ′

N :=
∏

i∈M X ′
i.

Then we recursively construct an infinite sequence 〈xk
N〉k∈N, starting with x0

N already
given. Having xk

N ∈ Z defined, we pick xN ∈ X∗ such that xk
N ∈ U(xN) and define

xk+1
N := (yI(xN )(xN), xk

−I(xN )). By (4.3), we have xk+1
N BI xk

N , hence xk+1
N ∈ Z by Claim 4.4.1.

Therefore, 〈xk
N〉k∈N is an infinite I-improvement path; moreover, xk

N ∈ X ′
N for each k ∈ N

by definition. Now the existence of an infinite I-improvement path in a finite subgame
contradicts the supposed acyclicity of BI .

Corollary. If a game with compact Xi’s and utilities ui upper semicontinuous in xN and
continuous in x−i admits a generalized ordinal potential as defined by Monderer and Shapley
(1996a), then it has the very weak FIP.

Open Problem 4.5. Let the preferences of the players in a strategic game Γ satisfy con-
dition (4.2); let each Xi be compact; let I ⊆ N and BI be acyclic. Must BI then have
the weak approximate FTP? If the answer is negative, would the assumption of continuous
preferences or restriction to two person games or to individual improvements help?
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What we can be sure of is that the assumptions of Problem 4.5 do not imply the CIP,
nor even CBRP, if n > 2.

Example 4.6. Let us consider a strategic game Γ with N := {1, 2, 3}, Xi := {−1 +
1/2k, 1−1/2k}k∈N∪{−1, 1} for each i ∈ N, and utility functions ui : XN → R defined by the
following constructions. First, we define a mapping N → N by 1′ := 2, 2′ := 3, and 3′ := 1;
a mapping η : Xi → N∪{∞} by η(±1) := ∞ and η(±1∓ 1/2k) := k; a mapping η+ : Xi →
N ∪ {∞} by η+(xN) := maxi η(xi); mappings κ, ν : (N ∪ {∞}) × (N ∪ {∞}) → N ∪ {∞}
by κ(k, h) := min{k, h + 1, max{k, h, 1} − 1} and ν(k, h) := min{k, h, max{k, h, 1} − 1}.
Then, for each i ∈ N , we define a mapping ri : X−i → Xi by

ri(x−i) :=





−1 + 1/2κ(η(xi′′ ),η(xi′ )), 0 ≤ xi′ ≤ 1, 0 ≤ xi′′ ≤ 1;

−1 + 1/2ν(η(xi′ ),η(xi′′ )), 0 ≤ xi′ ≤ 1, −1 ≤ xi′′ ≤ 0;

0, −1 ≤ xi′ < 0, 0 < xi′′ ≤ 1;

1− 1/2κ(η(xi′ ),η(xi′′ )), −1 ≤ xi′ ≤ 0, −1 ≤ xi′′ ≤ 0.

Finally we define

ui(xN) :=

{
1/2η(xi), xi = ri(x−i);

0, otherwise.

It is easily checked that both ri and ui are continuous. The best response correspondence
is Ri(x−i) = {ri(x−i)} if η(ri(x−i)) < ∞ and Ri(x−i) = Xi otherwise. There are three
Nash equilibria: (−1,−1,−1), (0, 0, 0), and (1, 1, 1).

The relation BInd, even BBR, is not Ω-acyclic. For instance, let us consider the following
mapping [0, ω + ω] → XN : π(0) := (1,−1,−1); π(1) := (1, 0,−1); π(2k + 2) := (1,−1 +
1/2k, 1 − 1/2k); π(2k + 3) := (1,−1 + 1/2k+1, 1 − 1/2k); π(ω) := (1,−1, 1); π(ω + 1) :=
(0,−1, 1); π(ω+2k+2) := (1−1/2k,−1,−1+1/2k); π(ω+2k+3) := (1−1/2k+1,−1,−1+
1/2k); π(ω + ω) := (1,−1,−1). It is easy to check that π(2k + 1) BBR

2 π(2k), π(2k + 2) BBR
3

π(2k + 1), π(ω + 2k + 1) BBR
1 π(ω + 2k), and π(ω + 2k + 2) BBR

3 π(ω + 2k + 1) for all k ∈ N.
Moreover, π(k) → π(ω) and π(ω + k) → π(ω + ω) = π(0). Therefore, π is a best response
improvement cycle.

On the other hand, whenever yN BInd
i xN , we must have yi = ri(x−i) and η(yi) < ∞;

furthermore, η(yi) < η+(yN). It is easy to see now that BInd is acyclic.

4.3 Cournot tâtonnement

Throughout this subsection, we restrict attention to BR-consistent strategic games; suffi-
cient conditions for the property are given by Corollary to Proposition 2.9 and Corollary
to Theorem 3.12. Henceforth, tâtonnement paths of BBR are called just Cournot paths ;
tâtonnement paths of BsBR, simultaneous Cournot paths. A strict/weak order potential of
BBR is called a strict/weak Cournot potential ; a strict/weak order potential of BsBR, a strict/
weak simultaneous Cournot potential. By Proposition 2.5, a game has the FBRP (FSBRP)
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if and only if it admits a strict (simultaneous) Cournot potential; by Proposition 2.7, a
game has the weak FBRP (FSBRP) if and only if it admits a weak (simultaneous) Cournot
potential.

A (weak) ω-potential of BBR is called a (weak) Cournot ω-potential ; A (weak) ω-poten-
tial of BsBR, a (weak) simultaneous Cournot ω-potential. By Theorem 3.21 [(3.5b) ⇐⇒
(3.5c)], a game has the CBRP (CSBRP) if and only if it admits a (simultaneous) Cournot
ω-potential; by Proposition 3.22, a game has the weak CBRP (CSBRP) if it admits a weak
(simultaneous) Cournot potential.

Proposition 4.7. If a two person game Γ has the (approximate) FSBRP, then it has the
(approximate) FBRP.

Proof. By definition, yN BsBR xN whenever yN BBR xN and xi ∈ Ri(x−i) for an i ∈
N . Therefore, every Cournot path becomes a simultaneous Cournot path after the first
step.

Besides best response improvements, it sometimes makes sense to consider best response
“pseudo-improvements.” We define

yN DBR xN ­ ∃i ∈ N [xi 6= yi ∈ Ri(x−i) & y−i = x−i]; (4.4)

yN DsBR xN ­
[
yN 6= xN & ∀i ∈ N [yi ∈ Ri(x−i)]

]
. (4.5)

A (simultaneous) pseudo-Cournot path is a tâtonnement path of DBR (DsBR). A game has
the pseudo-FBRP (pseudo-FSBRP) if, for every xN ∈ XN , there exists a finite (simultane-
ous) pseudo-Cournot path 〈x0

N , . . . , xm
N〉 such that x0

N = xN and xm
N is a Nash equilibrium.

A game has the pseudo-CBRP (pseudo-CSBRP) if, for every xN ∈ XN , there exists a (si-
multaneous) pseudo-Cournot path π such that π(0) = xN , Dom π = [0, α] ⊂ Ω, and π(α)
is a Nash equilibrium.

Remark. A Nash equilibrium need not be a maximizer of DBR, nor DsBR; therefore, we
cannot define pseudo-FBRP, pseudo-FSBRP, etc. as the weak FTP of DBR, etc.

A (simultaneous) pseudo-Cournot potential of a game Γ is a strictly acyclic and tran-
sitive binary relation Â on XN such that, whenever xN is not a Nash equilibrium, there
is yN ∈ XN such that yN Â xN and yN DBR xN (respectively, yN DsBR xN). A (simul-
taneous) ω-pseudo-potential of Γ is an irreflexive and ω-transitive relation Â on XN such
that, whenever xN is not a Nash equilibrium, there is yN ∈ XN such that yN Â xN and
yN DBR xN (respectively, yN DsBR xN). Arguing quite similarly to the proofs of Proposi-
tions 2.7 and 3.22, we can show that Γ has the pseudo-FBRP (pseudo-FSBRP) if and only
if it admits a (simultaneous) Cournot pseudo-potential, and that Γ has the pseudo-CBRP
(pseudo-CSBRP) if it admits a (simultaneous) Cournot ω-pseudo-potential.

Defining a correspondence RN : XN → 2XN \ {∅} by RN(xN) :=
∏

i∈N Ri(x−i), we
immediately see that every simultaneous pseudo-Cournot path is an iteration paths of RN .
If we agree never to extend a simultaneous pseudo-Cournot path beyond a Nash equilibrium,
the converse becomes true as well.
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Proposition 4.8. If a two person game Γ is strongly BR-consistent and has the pseudo-
FSBRP, then it has the weak FBRP and weak FSBRP.

Proof. Let Γ have the pseudo-FSBRP and x0
N ∈ XN ; then there is a simultaneous pseudo-

Cournot path 〈x0
N , . . . , xm

N〉 such that xm
N is a Nash equilibrium. We define a sequence

〈y0
N , y1

N , . . . , ym+1
N 〉 in this way: y0

N := x0
N ; y2k+1

1 := x2k+1
1 ; y2k+1

2 := x2k
2 ; y2k+2

1 := x2k+1
1 ;

y2k+1
2 := x2k+2

2 ; if 2k = m, we set ym+1
1 := xm

1 ; if 2k + 1 = m, we set ym+1
2 := xm

2 . Thus,
ym+1

N = xm
N in either case.

By our construction, for each k = 0, 1, . . . ,m we have yk+1
i ∈ Ri(y

k
−i) and yk+1

−i = yk
−i

for an i ∈ N ; therefore, for each k = 1, . . . ,m we have yk
i ∈ Ri(y

k
−i) for at least one i ∈ N .

If yk
i ∈ Ri(y

k
−i) for both i ∈ N , which inevitably occurs when k = m+1, then yk

N is a Nash

equilibrium. Otherwise, yk+1
N BBR yk

N . We see that 〈y0
N , y1

N , . . . , yk̄
N〉 (k̄ ≤ m) is a Cournot

path starting at x0
N = y0

N and ending at a Nash equilibrium. Since x0
N ∈ XN was arbitrary,

Γ has the weak FBRP.

Let us show that Γ has the weak FSBRP as well. Given x0
N ∈ XN , there is again

a simultaneous pseudo-Cournot path 〈x0
N , . . . , xm

N〉 such that xm
N is a Nash equilibrium. If

xk+1
N BsBR xk

N for each k = 1, . . . , m, “pseudo” can be dropped, and we are home. Otherwise,
let k̄ be the first moment when “pseudo” was essential, i.e., xk

i ∈ Ri(x
k
−i), but xk+1

i 6= xk
i for

an i ∈ N ; then xk
−i /∈ Ri(x

k
i ) because xk

N would be a Nash equilibrium otherwise. Denoting
y0

N := (xk
i , x

k+1
−i ), we have y0

N BsBR xk
N . Since Γ has the weak FBRP, there is a Cournot

path starting at y0
N and ending at a Nash equilibrium. Since y0

−i ∈ R−i(y
0
i ), the path is a

simultaneous Cournot path as well, exactly as in the proof of Proposition 4.7.

Remark. The Battle of Sexes has the FBRP (even the FIP), but not the pseudo-FSBRP.

It is unclear whether any analog of Proposition 4.8 could be obtained without strong
BR-consistency; on the other hand, the very notion of a pseudo-Cournot path becomes
especially dubious in this case. When there are more than two players, there seems to be
no relation between the convergence of Cournot paths and simultaneous Cournot paths
even if the preferences are described by utility functions (see Moulin, 1986).

Two sorts of properties intermediate between the FBRP (CBRP) and weak FBRP
(CBRP) deserve attention. The first of them is meaningful for n > 2; the second, closely
related to the sequential tâtonnement process as defined by Moulin (1984, p. 87), for n ≥ 2.

We call a Cournot path π inclusive if for each player i ∈ N and each α ∈ Dom π, there
is α′ ≥ α such that πi(α

′) ∈ Ri(π−i(α
′)). A game has the finite inclusive best response

improvement property (FIBRP) if it admits no infinite inclusive Cournot path. A game
has the approximate FIBRP if the set of limit points of every inclusive Cournot path π
such that Dom π = N is a nonempty subset of the set of Nash equilibria. A game has the
countable inclusive best response improvement property (CIBRP) if it admits no inclusive
Cournot path π such that Dom π = Ω. Clearly,

FBRP ⇒ approximate FBRP ⇒ CBRP
⇓ ⇓ ⇓

FIBRP ⇒ approximate FIBRP ⇒ CIBRP.
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Proposition 4.9. If a two person game has the FIBRP, then it has the FBRP.

Proof. In a two person game, every infinite Cournot path is inclusive.

A Cournot cycle π (π(0) = π(α), α > 0) is complete if for each player i ∈ N there is
β ∈ [0, α] such that πi(β) ∈ Ri(π−i(β)).

A Cournot quasipotential is a preorder (i.e., a reflexive and transitive binary relation)
º on XN such that its asymmetric component Â is strictly acyclic and for every xN ∈ XN

there exists a subset M(xN) ⊆ N satisfying

yN BBR xN ⇒ [
yN Â xN or [yN ∼ xN & M(yN) ⊆ M(xN) 6= ∅] ]; (4.6a)

i ∈ M(xN) ⇒ xi /∈ Ri(x−i). (4.6b)

If Â is a strict Cournot potential, then its reflexive closure º is a Cournot quasipotential
with M(xN) = ∅ for all xN ∈ XN . If º is a Cournot quasipotential, then its asymmetric
component Â is a weak Cournot potential.

Proposition 4.10. Given a BR-consistent strategic game Γ, let us consider these state-
ments:

Γ admits a Cournot quasipotential; (4.7a)

Γ has the FIBRP; (4.7b)

Γ admits no finite complete Cournot cycle. (4.7c)

Then (4.7a) ⇒ (4.7b) ⇒ (4.7c). If Γ is finite, (4.7c) ⇒ (4.7a).

Proof. Let º be a Cournot quasipotential and 〈xk
N〉k∈N be an infinite Cournot path; we

have to show that the path is not inclusive. Since Â is strictly acyclic, (4.6a) implies
that xk+1

N ∼ xk
N and M(xk+1

N ) ⊆ M(xk
N) 6= ∅ for each k ≥ k̄. Since N is finite, we have

M(xk+1
N ) = M(xk

N) 6= ∅ for all k ≥ m [≥ k̄]. By (4.6b), xk
i /∈ Ri(x

k
−i) for all i ∈ M(xm

N) and
k ≥ m. Thus, 〈xk

N〉k∈N is not inclusive indeed.

Infinite repetition of a finite complete Cournot cycle generates an infinite inclusive
Cournot path, hence the FIBRP implies the absence of complete Cournot cycles.

Finally, let Γ be finite and there be no complete Cournot cycle. We denote º the
reflexive and transitive closure of BBR: yN º xN if and only if there is a finite Cournot path
x0

N , x1
N , . . . , xm

N such that x0
N = xN and xm

N = yN (m ≥ 0). Let Y ⊆ XN be an equivalence
class of ∼ with #Y > 1; we denote D(Y ) = {i ∈ N | ∀xN ∈ Y [xi /∈ Ri(x−i)]}. Since all
xN ∈ Y can be arranged into a single Cournot cycle and that cycle cannot be complete,
D(Y ) 6= ∅. Now we define M(xN) = D(Y ) if xN belongs to a non-singleton equivalence
class Y , and M(xN) = ∅ otherwise. The conditions (4.6) are checked easily.

Remark. In the proof of Theorem 3 of Kukushkin (2004), the FBRP was derived from
the presence of a “quasipotential” in an even weaker sense than (4.6). The point is that
whenever a game satisfies the conditions of that theorem, so do all its subgames. Generally,
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we only obtain FIBRP. In particular, dominance solvability (in any sense) need not be
inherited by the subgames, hence Theorem 5.3 below also asserts only FIBRP. It may
also be noted that Proposition 4.10 is actually about an arbitrary binary relation with a
disjunctive structure; its analogs are valid for BInd or even BsCo for that matter. The only
difference is that no interesting applications of such analogs are known at the moment.

An approximate Cournot quasipotential of Γ is a preorder º on XN such that its asym-
metric component Â is strictly acyclic on every set

X(δ) := {xN ∈ XN | ∀x′N ∈ XN

[
d(xN , x′N) < δ ⇒

∃yN ∈ XN [yN BBR x′N ]
]} (δ > 0), (4.8)

while for every xN ∈ XN there exists a subset M(xN) ⊆ N satisfying (4.6).

Proposition 4.11. Let Γ be a BR-consistent game where each Xi is a compact metric
space and the set of Nash equilibria is closed in XN . Let Γ admit an approximate Cournot
quasipotential. Then Γ has the approximate FIBRP.

Proof. We employ a combination of the proofs of Propositions 3.3 and 4.10. Let º be an
approximate Cournot quasipotential and 〈xk

N〉k∈N be an infinite inclusive Cournot path;
(4.6a) implies that xk+1

N º xk
N for all k. Let yN be a limit point of the path. An assumption

that yN does not belong to the closure of the set of Nash equilibria would imply the
existence of δ > 0 such that xk

N ∈ X(δ) for infinitely many k. Since Â is strictly acyclic
on X(δ), (4.6a) would imply that xk+1

N ∼ xk
N and M(xk+1

N ) ⊆ M(xk
N) 6= ∅ for each k ≥ k̄.

Since N is finite, we would have M(xk+1
N ) = M(xk

N) 6= ∅ for all k ≥ m [≥ k̄]. By (4.6b),
xk

i /∈ Ri(x
k
−i) for all i ∈ M(xm

N) and k ≥ m, which contradicts the assumption that 〈xk
N〉k∈N

is inclusive.

A Cournot ω-quasipotential is an ω-transitive preorder º on XN such that for every
xN ∈ XN there exists a subset M(xN) ⊆ N satisfying (4.6) and this condition:

[
xω = lim

k→∞
xk & ∀k ∈ N [xk+1 ∼ xk & M(xk+1) = M(xk) ]

] ⇒
[xω Â x0 or M(xω) = M(x0) ]. (4.9)

If Â is a Cournot ω-potential, then its reflexive closure º is a Cournot ω-quasipotential
with M(xN) = ∅ for all xN ∈ XN . If º is a Cournot ω-quasipotential, then its asymmetric
component Â is a weak Cournot ω-potential.

Proposition 4.12. Let Γ be a BR-consistent strategic game where each Xi is a compact
metric space. Then these statements are equivalent:

Γ admits a Cournot ω-quasipotential; (4.10a)

Γ has the CIBRP; (4.10b)

Γ admits no complete Cournot cycle. (4.10c)

35



Proof. Let º be a Cournot ω-quasipotential and π be a Cournot path with Dom π = Ω. By
(4.6a), ω-transitivity, and Lemma 3.9, π(α) º π(β) whenever α > β. We have to show that
π is not inclusive. By Proposition 3.15, the asymmetric component Â of º is ω-transitive
too, hence Proposition 3.11 implies the existence of α∗ ∈ Ω such that π(α) ∼ π(β) whenever
α, β ≥ α∗. Now (4.6a) implies that ∅ 6= M(π(α + 1)) ⊆ M(π(α)) whenever α ≥ α∗. The
finiteness of N and (4.9) imply that M(π(α)) = M(π(β)) 6= ∅ whenever α, β ≥ α∗∗[≥ α∗].
By (4.6b), πi(α) /∈ Ri(π−i(α)) for all i ∈ M(π(α∗∗)) and α ≥ α∗∗. Thus, π is not inclusive
indeed.

Endless repetition of a complete Cournot cycle generates an inclusive Cournot path
with Dom π = Ω; formalism is the same as in the proof of Theorem 3.21. Therefore, the
CIBRP implies the absence of complete Cournot cycles.

Assuming (4.10c), we denote º the reflexive and ω-transitive closure of BBR and Â its
asymmetric component. º is ω-transitive by definition. For every xN ∈ XN , we define
N(xN) := {i ∈ N | xi /∈ Ri(x−i)} and M(xN) :=

⋂
yN∼xN

N(yN). Clearly, N(xN) = ∅ if
and only if xN is a Nash equilibrium; let us show that the same holds for M(xN). Indeed,
let M(xN) = ∅ while N(xN) 6= ∅. Since N is finite, there is a finite set {y1

N , . . . , ym
N} ⊆ XN

(m ≤ n) such that yk
N ∼ xN for each k and

⋂
k N(yk

N) = ∅. We denote π the concatenation
of Cournot paths going from xN to y1

N , then back to xN , then to y2
N , then back to xN , . . . ,

then to ym
N , then, finally, back to xN . Clearly, π is a Cournot cycle; moreover, it is complete

because for each i ∈ N there is yk
N such that i /∈ N(yk

N). The contradiction with (4.10c)
proves that N(xN) = ∅. Now it is clear that º with M(·) is a Cournot ω-quasipotential.

For each one-to-one mapping σ : {1, . . . , n} → N , we define a correspondenceRσ : XN →
2XN \ {∅} by

[
yN ∈ Rσ(xN) if and only if there exists a mapping τ : {0, 1, . . . , n} → XN

such that: τ(0) = xN ; for each k ∈ {0, 1, . . . , n − 1}, either τ(k + 1) BBR
σ(k) τ(k), or

τσ(k)(k) ∈ Rσ(k)(τ−σ(k)(k)) and τ(k + 1) = τ(k); τ(n) = yN

]
. Naturally, we call the [weak]

FTP (CTP) of BRσ
the [weak] FσBRP (CσBRP) of the game. Since every iteration path

of Rσ is a Cournot path, while every infinite iteration path of Rσ is inclusive, we have
[FIBRP ⇒ FσBRP]; [weak FσBRP ⇒ weak FBRP]; [CBRP ⇒ CσBRP]; [weak CσBRP
⇒ weak CBRP]; etc. for any σ.

An obvious similarity between (simultaneous) Cournot paths and iteration paths of the
best response correspondence(s) may inspire hope that a closed graph assumption could
be used to dispense with transfinite (simultaneous) Cournot paths. It turns out, however,
that the assumption is even less biting here than in Section 3.5, although some “positive”
results can be derived nonetheless.

Proposition 4.13. If a preference relation ÂÂi satisfies condition (4.2), then the best re-
sponse correspondence Ri is upper hemicontinuous.

Proof. We have to show that the complement of the graph of Ri is open. Let xN ∈ XN and
xi /∈ Ri(x−i). By definition, there is yi ∈ Xi such that yi ÂÂx−i

i xi. By (4.2), there is an open

neighborhood U of xN such that yi ÂÂx′−i

i x′i whenever x′N ∈ U . Therefore, x′i /∈ Ri(x
′
−i) for

all x′N ∈ U .
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Example 4.14. Let us consider an analog of Example 3.33. Let N := {1, 2} and X1 = X2

be circles in the plane with polar coordinates, {(ρi, ϕi) | ρi = 1} (0 ≤ ϕi < 2π), while utility
functions be u1(x1, x2) := −d(ϕ1, ϕ2) and u2(x1, x2) := −d(ϕ1 ⊕ ϕ0, ϕ2), where d(ϕ, ψ) is
the distance between points (1, ϕ) and (1, ψ) in the plane, ⊕ denotes addition modulo 2π,
and ϕ0 is incommensurable with 2π. Both utility functions are continuous; both relations
BBR and BsBR are acyclic. However, there is no Nash equilibrium, to say nothing of stronger
properties.

Theorem 4.15 (Kukushkin, 2000, Theorem 5.1). Let Γ be a BR-consistent game
where #N = 2, each Xi is a compact metric space, and each Ri is upper hemicontinuous.
Let Γ have the CBRP. Let 〈xk

N〉k∈N be an infinite pseudo-Cournot path. Then there is a
Nash equilibrium among limit points of the path.

Remark. Similarly to Theorem 3.34, the statement of the theorem describes a property
of Γ intermediate between the very weak FBRP and the weak approximate FBRP, see
Example 4.16 below.

Proof. There may be a way to derive our statement from Theorem 3.34, but it seems simpler
just to argue similarly to that proof. Again we denote Y ⊆ XN the set of limit points of
〈xk

N〉k∈N and pick xω
N ∈ M(Y, BBR). If xω

N ∈ RN(xω
N), we are home; let xω

i /∈ Ri(x
ω
−i).

Since xω
N ∈ Y , there is a strictly increasing sequence 〈kh〉h∈N such that xkh

N → xω
N . We

denote yh
N := xkh+1

N (h ∈ N); without restricting generality, yh
N → yω

N ∈ Y . Since Ri is
upper hemicontinuous, there holds xkh

i /∈ Ri(x
kh
−i) for all h large enough; without restricting

generality, for all h. Therefore, xkh
N BBR

−i xkh−1
N , hence yh

N BBR
i xkh

N , hence yh
i ∈ Ri(x

kh
−i). Since

Ri is upper hemicontinuous, yω
i ∈ Ri(x

ω
−i). Thus, yω

N BBR
i xω

N , contradicting the choice of
xω

N .

Example 4.16. Let N := {1, 2}, each player’s strategy set be the same compact subset X
of the plane as in Example 3.35, and the utilities be u1(xN) := −d(x1, f(x2)) and u2(xN) :=
−d(x1, x2), where d denotes distance in the plane and f : X → X is defined in Example 3.35.
Clearly, both utilities are continuous; R1(x2) = {f(x2)} and R2(x1) = {x1}. The strategy
profile ((1, 0), (1, 0)) is a unique Nash equilibrium. Since each Ri(x−i) is a singleton, at
most two Cournot paths can be started from any strategy profile. In projection to either
Xi, every Cournot path reproduces an iteration path from Example 3.35. Therefore, the
analysis remains essentially the same: the game does not have the weak approximate FBRP
although it has the very weak FBRP, in accordance with Theorem 4.15.

Example 4.17. Let us consider a game Γ where N := {1, 2}, X1 := X2 := [−1, 1], and
the preferences are defined by the utility functions ui(xN) := −d(xN , Gi) − si(xN), where
d denotes distance in the plane and the sets Gi and functions si are these:

G1 := {(x1, x2) ∈ XN | max{2x1+x2+1, 2x1−x2+1}·min{2x1+x2−1, 2x1−x2−1} = 0};

G2 := {(x1, x2) ∈ XN | max{2x2+x1+1, 2x2−x1+1}·min{2x2+x1−1, 2x2−x1−1} = 0};
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s1(x1, x2) :=





min{x1, x2, 1− x1, 1− x2}/2, 0 ≤ x1 ≤ 1, 0 ≤ x2 ≤ 1;

0, −1 ≤ x1 ≤ 0, 0 ≤ x2 ≤ 1;

0, 0 ≤ x1 ≤ 1, −1 ≤ x2 ≤ 0;

−max{x1, x2}/2, −1 ≤ x1 ≤ 0, −1 ≤ x2 ≤ 0;

s2(x1, x2) :=





min{x1, x2}/2, 0 ≤ x1 ≤ 1, 0 ≤ x2 ≤ 1;

0, −1 ≤ x1 ≤ 0, 0 ≤ x2 ≤ 1;

0, 0 ≤ x1 ≤ 1, −1 ≤ x2 ≤ 0;

min{−x1,−x2, x1 + 1, x2 + 1}/2, −1 ≤ x1 ≤ 0, −1 ≤ x2 ≤ 0.

Each utility function ui is continuous in xN . The best responses are:

R1(x2) =





{−1, 1}, x2 = 1;

{(−1− x2)/2}, 0 < x2 < 1;

{−1/2, 1/2}, x2 = 0;

{(1− x2)/2}, −1 ≤ x2 < 0;

R2(x1) =





{(−1− x1)/2}, 0 < x1 ≤ 1;

{−1/2, 1/2}, x1 = 0;

{(1− x1)/2}, −1 < x1 < 0;

{−1, 1}, x1 = −1.

There are two Nash equilibria: (1,−1) and (−1, 1).

Whenever x1 · x2 6= 0, a unique simultaneous Cournot path can be started from xN .
If x1 · x2 < 0, the path converges to a Nash equilibrium; otherwise, it does not converge.
Let 〈xk

N〉k∈N be an infinite simultaneous Cournot path such that x0
1 > 0 < x0

2. We have
x2k+1

i = −(x2k
−i + 1)/2 and x2k+2

i = (1 − x2k+1
−i )/2 for both i and all k. Therefore, x2k+1

i =
−1+(1−x0

−i)/2
2k+1 and x2k

i = 1−(1−x0
i )/2

2k for both i and all k. We see that x2k
N → (1, 1),

while x2k+1
N → (−1,−1). None of the limit points is an equilibrium, hence the game does

not have even the very weak FSBRP. (On the other hand, the game has the approximate
FBRP.)

It is easy to see that the path inevitably reaches a Nash equilibrium after the first
transfinite step, regardless of which limit point is chosen as xω

N : (1,−1) BsBR (1, 1) and
(1,−1) BsBR (−1,−1). Thus, the game has the CSBRP, which fact shows that the appro-
priate analog of Theorem 4.15 is just wrong.

Example 4.18. Let us consider a game Γ where N := {1, 2, 3}, Xi := [−1, 1], and the pref-
erences are defined by the utility functions ui(xN) := −d(xN , Gi)−min{δ, d(xN , (1, 1, 1))},
where d denotes distance in R3, δ > 0 is small enough, and the sets Gi are these:

G1 := {xN ∈ XN | 2x1 + x3 = 1 & x1 ≥ 0}∪
{xN ∈ XN | 2x1 + x3 = −1 & x1 ≤ 0} ∪ {(1,−1, 1), (1, 1, 1)};

G2 := {xN ∈ XN | x1 + x2 = 0} ∪ {(1, 1,−1), (1, 1, 1)};
G3 := {xN ∈ XN | x2 + x3 = 0} ∪ {(−1, 1, 1), (1, 1, 1)};

Each utility function ui is continuous in xN . The best responses are easy to compute.
There is a unique Nash equilibrium, (1, 1, 1).
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If we choose the identity mapping as σ, we easily see that every infinite iteration path of
Rσ, if started far enough from the equilibrium, has six limit points: (1,−1, 1), (−1, 1,−1),
(1, 1,−1), (−1,−1, 1), (−1, 1, 1), and (1,−1,−1), none of which is an equilibrium. There-
fore, Γ does not even have the very weak FσBRP, although it has CσBRP. In other words,
Theorem 4.15 cannot be extended to n > 2 even if we agree to restrict attention to sequen-
tial tâtonnement.

5 Dominance solvability

Moulin (1984) demonstrated connections between dominance solvability and nice behavior
of best response dynamics. However, he worked in a rather restricted framework. Here we
depict a broader picture. On the other hand, we consider only implications in one direction.

5.1 Strict dominance and strong BR-dominance

Let Γ be a strategic game, i ∈ N , and xi, yi ∈ Xi. We say that yi strictly dominates xi,
yi ≫i xi, if for every x−i ∈ X−i, there holds yi ÂÂx−i

i xi. A strategy yi ∈ Xi is strictly
dominant if yi ≫i xi for every xi 6= yi. A strategy xi ∈ Xi is strictly dominated if there
exists yi ∈ Xi such that yi ≫i xi.

Given a strategic game Γ, we denote GΓ the set of all subgames of Γ. If Γ′, Γ′′ ∈ GΓ and
X ′

i ⊆ X ′′
i for each i ∈ N , then we write Γ′ ≤ Γ′′. Thus, GΓ becomes a poset; actually, it

would be a lattice if we allowed empty strategy sets in subgames, but it is more convenient
not to do that.

An elimination scheme in Γ is a decreasing mapping λ : Λ → GΓ such that:

Λ is a well ordered set; (5.1a)

λ(0) = Γ; (5.1b)

λ(α) =
⋂

β<α

λ(β) whenever α ∈ Λ is a limit. (5.1c)

Given an elimination scheme λ, we use notation X
λ(α)
i for the strategy set of player i in

λ(α). If there exists max Λ, we may define an “inverse” mapping µi : Xi → Λ by

µi(xi) = max {α ∈ Λ | xi ∈ X
λ(α)
i } (5.2)

(the maximum is attained because of (5.1c)). We also define µ− : XN → Λ by

µ−(xN) = min
i∈N

µi(xi). (5.3)

An elimination scheme is perfect if there exists max Λ and every strategy profile in
λ(max Λ) is a Nash equilibrium there. An SD-scheme is an elimination scheme such that
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every deleted strategy xi ∈ X
λ(α)
i \X

λ(α+1)
i is strictly dominated in λ(α) whenever (α+1) ∈

Λ. It is worth noting that the relation yi ≫i xi in Γ implies the same relation in every
subgame Γ′ of Γ such that xi, yi ∈ X ′

i.

A game Γ is strictly dominance solvable if it admits a perfect SD-scheme.

Remark. Two, at least, stronger definitions of strict dominance solvability should be
mentioned. First, in the definition of a perfect elimination scheme we may demand that
yN ÂÂi xN does not hold for any i ∈ N and yN , xN ∈ X

λ(maxΛ)
N . Second, in the definition of

an SD-scheme we may demand that every deleted strategy xi ∈ X
λ(α)
i \X

λ(α+1)
i be strictly

dominated in λ(α) by yi ∈ X
λ(α+1)
i . However, none of the stronger requirements seems to

have stronger implications for improvement dynamics.

Obviously, a BR-consistent two-person game is strictly dominance solvable if one player
has a strictly dominant strategy x+

i ; however, the behavior of improvement paths with
xi 6= x+

i may be arbitrary, hence we cannot hope to derive too much from dominance
solvability (say, the FIP). It turns out that some implications for Cournot dynamics can
be derived nonetheless. Moreover, a distinctly weaker property of “strong BR-dominance
solvability” is sufficient for everything.

To the end of this section, we restrict attention to BR-consistent games; the defini-
tion is in Subsection 2.2; sufficient conditions for the property are given by Corollary to
Proposition 2.9 and Corollary to Theorem 3.12. Given i ∈ N and xi ∈ Xi, we denote
R−1

i (xi) := {x−i ∈ X−i | xi ∈ Ri(x−i)}. A strategy xi ∈ Xi is strongly BR-dominated if
R−1

i (xi) = ∅.
An SBR-scheme is an elimination scheme such that every deleted strategy xi ∈ X

λ(α)
i \

X
λ(α+1)
i is strongly BR-dominated in λ(α) whenever (α + 1) ∈ Λ. A game Γ is strongly

BR-dominance solvable (SBRDS ) if it admits a perfect SBR-scheme. It is immediately
clear that a strictly dominated strategy is strongly BR-dominated, hence every SD-scheme
is SBR-scheme, hence every strictly dominance solvable game is SBRDS.

Proposition 5.1. Let Γ be a BR-consistent game and λ : Λ → GΓ be an SBR-scheme.
Then, for every α ∈ Λ :

∀i ∈ N ∀x−i ∈ X
λ(α)
−i [Ri(x−i) ⊆ X

λ(α)
i ]; (5.4a)

if x0
N is a Nash equilibrium in Γ, then x0

N ∈ X
λ(α)
N ; (5.4b)

if x0
N is a Nash equilibrium in λ(α), then x0

N is a Nash equilibrium in Γ. (5.4c)

Proof. Supposing (5.4a) wrong, we pick the minimal α ∈ Λ for which there exist i ∈ N ,

x−i ∈ X
λ(α)
−i , and yi ∈ Ri(x−i)\X

λ(α)
i . Clearly, α = α′+1, hence yi ∈ X

λ(α′)
i \X

λ(α)
i because

α is minimal. However, yi cannot be strongly BR-dominated in λ(α′), which contradicts
the definition of SBR-scheme.

Supposing (5.4b) wrong, we pick the minimal α ∈ Λ such that x0
N /∈ X

λ(α)
N and imme-

diately obtain a contradiction with (5.4a).
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Supposing (5.4c) wrong, we pick i ∈ N and yi ∈ Xi such that yi ÂÂx0
−i

i x0
i . Since Γ is

BR-consistent, there is zi ∈ Ri(x
0
−i) such that zi ÂÂx0

−i

i x0
i . Now zi ∈ X

λ(α)
i by (5.4a), hence

x0
N cannot be a Nash equilibrium in λ(α).

Corollary. Let Γ be a BR-consistent game and λ : Λ → GΓ be a perfect SBR-scheme. Then
X

λ(maxΛ)
N is the set of Nash equilibria in Γ.

Lemma 5.2. If λ is a perfect SBR-scheme and xN ∈ XN is not a Nash equilibrium, then
for every i ∈ N and yi ∈ Ri(x−i), there holds µi(yi) > µ−(xN).

Proof. Since x−i ∈ X
λ(µ−(xN ))
−i , we have yi ∈ X

λ(µ−(xN ))
i by (5.4a). Since xN is not a Nash

equilibrium, we have µ−(xN) < max Λ. Therefore, yi ∈ X
λ(µ−(xN )+1)
i because yi cannot be

BR-dominated in λ(µ−(xN)).

Theorem 5.3. If a BR-consistent game Γ is SBRDS with a finite set Λ, then it has the
FSBRP and the FIBRP.

Proof. Fixing a perfect SBR-scheme with a finite Λ, we consider the functions µi and µ−

defined by (5.2) and (5.3). We also denote m := max Λ.

Let us consider the total preorder represented by µ− and its asymmetric component:

yN º xN ­ µ−(yN) ≥ µ−(xN); (5.5a)

yN Â xN ­ µ−(yN) > µ−(xN). (5.5b)

First, we show that Â is a strict simultaneous Cournot potential. If yN BsBR xN , then
µi(yi) > µ−(xN) for every i ∈ N by Lemma 5.2, hence µ−(yN) > µ−(xN) as well.

Second, we show that º is a Cournot quasipotential with M(xN) = Argmini∈N µi(xi)

when µ−(xN) < m and M(xN) = ∅ otherwise. If µ−(xN) = m, then xN ∈ X
λ(m)
N , hence xN

is a Nash equilibrium in Γ by Corollary to Proposition 5.1.

Let yN BBR
i xN ; then Lemma 5.2 is applicable. If i /∈ M(xN), then µ−(yN) = µ−(xN) and

M(yN) = M(xN). Let i ∈ M(xN); then µi(yi) > µ−(xN), hence either µ−(yN) > µ−(xN) or
µ−(yN) = µ−(xN) and M(yN) = M(xN) \ {i}. We see that condition (4.6a) holds. Finally,
if xN ∈ XN and i ∈ M(xN), then µi(xi) = µ−(xN) < m; if xi ∈ Ri(x−i), then Lemma 5.2
would imply µi(xi) > µi(xi). Thus, (4.6b) holds as well.

Corollary. If a two person BR-consistent game Γ is SBRDS with a finite set Λ, then it
has the FBRP.

Proof. The statement immediately follows from Theorem 5.3 and Proposition 4.9.

If there are more than two players, the FIBRP in the formulation of Theorem 5.3 cannot
be replaced with the FBRP: if one player has a strictly dominant strategy x+

i , then any
behavior of the best responses of the other players is compatible even with strict dominance
solvability. Without the finiteness of Λ, Theorem 5.3 is simply wrong.
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Example 5.4. Let us consider a game Γ where N := {1, 2}, X1 := X2 := [0, 1] ∪ {2}, and
the preferences are defined by these utility functions:

u1(x1, x2) :=





−x1, 0 ≤ x1 ≤ 1, x2 = 2;

1, x1 = 2, x2 = 2;

− |2x1 − x2| , 0 ≤ x1 ≤ 1, 0 < x2 ≤ 1;

−x2/4, x1 = 2, 0 < x2 ≤ 1;

x1, 0 ≤ x1 ≤ 1, x2 = 0;

1, x1 = 2, x2 = 0;

u2(x1, x2) := u1(x2, x1).

Each utility function ui is upper semicontinuous in xN and continuous in xi (given x−i).
The best responses are:

R1(x2) =





{2}, x2 = 2;

{x2/2}, 0 < x2 ≤ 1;

{1}, x2 = 0;

R2(x1) =





{2}, x1 = 2;

{x1/2}, 0 < x1 ≤ 1;

{1}, x1 = 0.

The strategy profile (2, 2) is a unique Nash equilibrium.

If xi ∈ Ri(x−i) and x−i ≤ 1, then xi ≤ 1 too. Denoting X−
N := [0, 1] × [0, 1], we see

that X−
N is an undominated set w.r.t. either BBR or BsBR; besides, X−

N is closed. Since it
contains no Nash equilibrium, Γ has neither weak CSBRP nor weak CBRP, to say nothing
of the FSBRP or FBRP.

On the other hand, Γ is SBRDS, even strictly dominance solvable. Let us define λ : (N∪
{ω}) → GΓ by λ(0) := Γ, X

λ(1)
i := Xi \ {0}, X

λ(k)
i := ]0, 1/2k−1] ∪ {2} for all k > 1, and

X
λ(ω)
i := {2}. We have 2 ≫i 0 for either i in Γ. Once 0 is deleted from both Xi, we

have 1/2 ≫i xi whenever 1/2 < xi ≤ 1; by induction, 1/2k−1 ≫i xi in λ(k) whenever

1/2k−1 < xi ≤ 1/2k. Finally, X
λ(ω)
i =

⋂
k∈NX

λ(k)
i . Thus, λ is a perfect SD-scheme.

The convergence of Cournot dynamics to Nash equilibria can be derived from “infinite”
or “transfinite” strong BR-dominance solvability (in particular, strict dominance solvabil-
ity) under an additional assumption that each best response correspondence is upper hemi-
continuous. By Proposition 4.13, (4.2) is sufficient for that. In the case of preferences
described by utility functions, we may assume that each ui is upper semicontinuous in xN

and continuous in x−i; it is the last condition that is lacking in Example 5.4.

Given a BR-consistent game Γ, we define the most radical strong BR-dominance elimi-
nation scheme λSBRD : N→ GΓ, setting λSBRD(0) := Γ and then, recursively,

X
λSBRD(k+1)
i := {xi ∈ X

λSBRD(k)
i | (RλSBRD(k)

i

)−1
(xi) 6= ∅ }

for each k ∈ N and i ∈ N . In other words, X
λSBRD(k+1)
i consists of all xi ∈ X

λSBRD(k)
i that

are not strongly BR-dominated in λSBRD(k). Clearly, λSBRD is an SBR-scheme.
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Proposition 5.5. Let a game Γ be BR-consistent, each Xi be compact, and the graph of
each best response correspondence Ri be closed. Then the following statements hold:

λSBRD can be extended to an SBR-scheme N ∪ {ω} → GΓ,

i.e., ∀i ∈ N
[
X

λSBRD(ω)
i :=

⋂

k∈N
X

λSBRD(k)
i 6= ∅]; (5.6a)

there is no strongly BR-dominated strategy in λSBRD(ω); (5.6b)

for every SBR-scheme λ : Λ → GΓ, every α ∈ Λ and i ∈ N,

there holds X
λSBRD(ω)
i ⊆ X

λ(α)
i ; (5.6c)

Γ is SBRDS if and only if every strategy profile

in λSBRD(ω) is a Nash equilibrium. (5.6d)

Proof. First, let us show that the set of strongly BR-dominated strategies of each player i
is open in Xi. Indeed, if R−1

i (xi) = ∅, then the compact subset {xi} ×X−i ⊆ XN does not
intersect the (compact) graph of Ri; denoting δ the distance between them, we see that
δ > 0. Therefore, whenever d(xi, x

′
i) < δ, x′i is strongly BR-dominated as well. (Recall that

d was defined as mini di.)

Since Xi \ X
λSBRD(1)
i is open, X

λSBRD(1)
i is closed in Xi, hence compact; it cannot be

empty since Γ is BR-consistent. Thus, λSBRD(1) satisfies all assumptions imposed on Γ,

and we can continue by induction, obtaining that X
λSBRD(k)
i is nonempty and compact for

each k ∈ N. (5.6a) immediately follows.

To prove (5.6b), we pick i ∈ N and xi ∈ X
λSBRD(ω)
i . For each k ∈ N, there is xk

−i ∈
X

λSBRD(k)
−i such that xi ∈ Ri(x

k
−i). Without restricting generality, xk

−i → xω
−i ∈ X−i; since

the graph of Ri is closed, xi ∈ Ri(x
ω
−i). Since each X

λSBRD(k)
−i is closed in X−i, we have

xω
−i ∈ X

λSBRD(ω)
−i . Thus, xi is not strongly BR-dominated in λSBRD(ω).

Supposing that (5.6c) is violated, let there be an SBR-scheme λ : Λ → GΓ, α ∈ Λ, i ∈ N ,

and xi ∈ Xi such that xi ∈ X
λSBRD(ω)
i \X

λ(α)
i [6= ∅]. Without restricting generality, we may

assume that X
λSBRD(ω)
j ⊆ X

λ(β)
j for all j ∈ N and β < α. By (5.6b), we have xi ∈ Ri(x−i) for

some x−i ∈ X
λSBRD(ω)
−i ⊆ X

λ(β)
−i for all β < α. Therefore, xi is not strongly BR-dominated in

any λ(β) (β < α), hence xi ∈ X
λ(α)
i because λ is an SBR-scheme, contradicting our original

assumption.

(5.6d) immediately follows from (5.6c) and Proposition 5.1.

Theorem 5.6. Let a game Γ be BR-consistent and SBRDS, each Xi be compact, and the
graph of each best response correspondence Ri be closed. Then Γ has the approximate
FSBRP and approximate FIBRP.
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Proof. By (5.6d) and (5.4b), M(XN ,BsBR) coincides with X
λSBRD(ω)
N , which is closed by

Proposition 5.5. In the light of Proposition 3.3, the approximate FSBRP will be established
if we produce an approximate potential of BsBR. Let us show that Â defined by (5.5b) fits
the role if we define µi and µ− by (5.2) and (5.3) with λ := λSBRD, understood as a mapping
N ∪ {ω} → GΓ.

Condition (2.2) immediately follows from Lemma 5.2 exactly as in Theorem 5.3. Let

δ > 0; X(δ) defined in (3.1) coincides with {xN ∈ XN | d(xN , X
λSBRD(ω)
N ) ≥ δ}. An

assumption that X(δ) ∩ X
λSBRD(k)
N 6= ∅ for all k ∈ N would lead to X(δ) ∩ X

λSBRD(ω)
N 6= ∅

as well because X(δ) is closed, hence compact. Therefore, there is m ∈ N such that

X(δ) ∩ X
λSBRD(k)
N = ∅ for all k ≥ m, hence X(δ) ⊆ {xN ∈ XN | µ−(xN) ≤ m}. Strict

acyclicity of Â on X(δ) is now obvious.

Turning to the approximate FIBRP, we show thatº defined by (5.5a) with λ := λSBRD is
an approximate Cournot quasipotential with M(xN) := Argmini∈N µi(xi) when µ−(xN) <
ω and M(xN) := ∅ otherwise. First, Â is strictly acyclic on every X(δ) (δ > 0) as shown
above; second, both conditions (4.6) hold for the same reasons as in Theorem 5.3. Now
Proposition 4.11 applies.

Corollary. If a two person game Γ is BR-consistent and SBRDS, each Xi is compact, and
the graph of each best response correspondence Ri is closed, then Γ has the approximate
FBRP.

Upper hemicontinuity of the best responses can be replaced with a restriction on the
elimination scheme, viz., that strategies eliminated at every particular step form open sets.
However, we only obtain CIBRP and CSBRP in this case.

Theorem 5.7. Let Γ be a BR-consistent game where each Xi is compact. Let Γ admit a
perfect SBR-scheme λ such that every X

λ(α)
i (i ∈ N, α ∈ Λ) is closed in Xi. Then Γ has

the CSBRP and CIBRP.

Proof. We again consider the functions µi and µ− defined by (5.2) and (5.3). Since every

X
λ(α)
i is closed, both Â and º defined by (5.5) are ω-transitive. Therefore, Lemma 5.2 im-

plies that Â is a simultaneous Cournot ω-potential. Defining M(xN) := Argmini∈N µi(xi)
when µ−(xN) < max Λ and M(xN) := ∅ otherwise, we see that º is a Cournot ω-quasipo-

tential, exactly as in the proof of Theorem 5.3; (4.9) holds because every X
λ(α)
i is closed.

Thus, Γ has the CSBRP and CIBRP.

Corollary. Let Γ be a BR-consistent game where #N = 2 and each Xi is compact. Let Γ
admit a perfect SBR-scheme λ such that every X

λ(α)
i (i ∈ N, α ∈ Λ) is closed in Xi. Then

Γ has the CBRP.

Example 5.8. Let us consider a game Γ where N := {1, 2}, Xi := [−1, 1], and the
preferences are defined by these utility functions: ui(xN) := min{2xi − x−i, x−i − 2xi} if
x−i < 0; ui(xN) := min{2xi − x−i, x−i − 2xi + 2} if x−i ≥ 0 (i ∈ N). Each ui is upper
semicontinuous in xN , but not continuous in x−i. The best response correspondences are
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single-valued, but not upper hemicontinuous: Ri(x−i) = {x−i/2} if x−i < 0; Ri(x−i) =
{(x−i + 1)/2} if x−i ≥ 0. The strategy profile (1, 1) is a unique Nash equilibrium.

Γ is SBRDS, even strictly dominance solvable. Let us define λ : [0, ω + ω] → GΓ by

λ(0) := Γ, X
λ(k)
i := [−1/2k, 1] for each k ∈ N, X

λ(ω)
i := [0, 1], X

λ(ω+k)
i := [1 − 1/2k, 1] for

each k ∈ N, and X
λ(ω+ω)
i := {1}. We have −1/2k+1 ≫i xi in λ(k) whenever −1/2k ≤ xi <

−1/2k+1, and 1 − 1/2k+1 ≫i xi in λ(ω + k) whenever 1 − 1/2k ≤ xi < 1− 1/2k+1. Thus,
λ is a perfect SD-scheme.

By Theorem 5.7, Γ has the CBRP and CSBRP. On the other hand, it does not have the
very weak FBRP or FSBRP: If we start a (simultaneous) Cournot path from, say, (−1,−1),
then it will remain in [−1, 0[×[−1, 0[ after any finite number of steps. The equilibrium (1, 1)
will only be reached at the step ω + ω.

Remark. Similarly to Proposition 3.32, the example can be modified so that the equilib-
rium (1, 1) will only be reached at an arbitrarily chosen step α ∈ Ω.

If a game is strictly dominance solvable, then it is SBRDS, hence Theorem 5.6 or its
corollary apply (provided other assumptions are satisfied). However, λSBRD may eliminate
strategies that are not dominated. Since the elimination of strictly dominated strategies in
an infinite game, in particular, the problem of whether “maximal reduction” is well defined,
has attracted considerable attention, we delve into the matter a bit. Dufwenberg and
Stegeman (2002, Theorem 1(a) ) showed the existence and uniqueness of maximal reduction
(with nonempty strategy sets) if the strategy sets are compact and the payoff functions
continuous. Our Proposition 5.9 shows that (4.2) is sufficient. Actually, Dufwenberg and
Stegeman assumed that strategy sets are topological, rather than metric, spaces; however,
distance functions seem superfluous here as well. On the other hand, we do not assume
that the preferences are described by utility functions.

Given Γ, we define the most radical strict dominance elimination scheme λSD : N→ GΓ

(“maximal reduction”), setting λSD(0) := Γ and then, recursively, X
λSD(k+1)
i := {xi ∈

X
λSD(k)
i | @yi ∈ X

λSD(k)
i [yi ≫ xi]} for each k ∈ N and i ∈ N . In other words, X

λSD(k+1)
i

consists of all xi ∈ X
λSD(k)
i that are not strictly dominated in λSD(k).

Proposition 5.9. Let each preference relation ÂÂi in a BR-consistent game Γ satisfy (4.2);
let each Xi be compact. Then the following statements hold:

λSD can be extended to an SD-scheme N ∪ {ω} → GΓ,

i.e., ∀i ∈ N [X
λSD(ω)
i :=

⋂

k∈N
X

λSD(k)
i 6= ∅]; (5.7a)

there is no strictly dominated strategy in λSD(ω); (5.7b)

for every SD-scheme λ : Λ → GΓ, every α ∈ Λ and i ∈ N,

there holds X
λSD(ω)
i ⊆ X

λ(α)
i ; (5.7c)
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Γ is strictly dominance solvable if and only if

every strategy profile in λSD(ω) is a Nash equilibrium. (5.7d)

Proof. First, let us show that the set of strictly dominated strategies of each player i is
open in Xi. Let yi ≫ xi. For every x−i ∈ X−i, (4.2) implies the existence of δx−i

> 0 such

that yi ÂÂx′−i

i x′i whenever d(x−i, x
′
−i) < δ−i and d(xi, x

′
i) < δ−i. Since X−i is compact, it is

covered by a finite number of open balls of radius δx−i
with the center at x−i; we denote

δ > 0 the minimum of those δx−i
. Now we have yi ≫ xi whenever d(xi, x

′
i) < δ.

(5.7a) is proven in exactly the same way as in Proposition 5.5: If xi ∈ R(x−i), then xi

cannot be strictly dominated; hence BR-consistency implies that X
λSD(1)
i 6= ∅; hence each

X
λSD(k)
i is nonempty and compact; hence X

λSD(ω)
i is nonempty and compact as well.

To prove (5.7b), we suppose the contrary: there are i ∈ N and yi, xi ∈ X
λSD(ω)
i such

that yi ≫ xi (in λSD(ω)). For each k ∈ N, we have yi, xi ∈ X
λSD(k+1)
i , hence there is

xk
−i ∈ X

λSD(k)
−i such that yi ÂÂxk

−i

i xi does not hold. Without restricting generality, xk
−i →

xω
−i ∈ X−i; since each X

λSD(k)
−i is closed in X−i, we have xω

−i ∈ X
λSD(ω)
−i . Therefore, yi ÂÂxω

−i

i xi;

but then yi ÂÂxk
−i

i xi for some k ∈ N by (4.2).

(5.7c) is proven in virtually the same way as (5.6c) in Proposition 5.5. (5.7d) immedi-
ately follows from (5.7c).

5.2 Weak (BR-)dominance

Let us suppose for awhile that all preference relations are orderings (hence each player’s
weak preference relation <i is transitive and total). Besides strict dominance defined at the
beginning of Subsection 5.1, we may consider weak dominance in this case:

yi Ài xi ­ ∀x−i ∈ X−i [yi <i
x−i xi] & ∃x−i ∈ X−i [yi ÂÂx−i

i xi].

A strategy xi ∈ Xi is weakly dominated if there exists yi ∈ Xi such that yi Ài xi. A
WD-scheme is an elimination scheme such that for every deleted strategy xi ∈ X

λ(α)
i \

X
λ(α+1)
i ((α + 1) ∈ Λ), there is yi ∈ X

λ(α+1)
i such that yi Ài xi. A game Γ is weakly

dominance solvable if it admits a perfect WD-scheme.

Weak dominance solvability also has some implications for best response dynamics; not
surprisingly, they are much weaker than in the previous subsection. We again introduce
an even weaker property expressed in terms of the best responses, which is sufficient for
everything. Strictly speaking, preference relations need not be orderings, but we do need
strong BR-consistency.

Given X ′
i ⊆ Xi, we denote R−1

i (X ′
i) := {x−i ∈ X−i | Ri(x−i) ∩ X ′

i 6= ∅}. A subset
X ′

i ⊆ Xi is BR-sufficient (in Γ) if R−1
i (X ′

i) = X−i, i.e., a best response for every x−i ∈ X−i

can be found in X ′
i. A WBR-scheme is an elimination scheme λ such that X

λ(α+1)
i is

BR-sufficient in λ(α) whenever (α + 1) ∈ Λ. We call Γ weakly BR-dominance solvable
(WBRDS ) if it admits a perfect WBR-scheme.
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Lemma 5.10. Given a strongly BR-consistent game Γ and a WBR-scheme λ, there holds
Rλ(k)

i (x−i) = Ri(x−i) ∩X
λ(k)
i 6= ∅ for every i ∈ N , finite ordinal k ∈ Λ, and x−i ∈ X

λ(k)
−i .

Proof. Straightforward induction based on the definition of a WBR-scheme showsRi(x−i)∩
X

λ(k)
i 6= ∅; the equality immediately follows from strong BR-consistency.

Corollary. Let Γ be strongly BR-consistent and WBRDS with a finite set Λ; let x0
N ∈

XmaxΛ
N . Then x0

N is a Nash equilibrium in Γ.

Theorem 5.11. If a game Γ is strongly BR-consistent and WBRDS with a finite set Λ,
then it has the pseudo-FSBRP and pseudo-FBRP.

Proof. Fixing a perfect WBR-scheme with a finite Λ, we consider the functions µi and µ−

defined by (5.2) and (5.3), and again denote m := max Λ = maxxN∈XN
µ−(xN).

Claim 5.11.1. If µ−(xN) < m, then for each i ∈ N there is yi ∈ Ri(x−i) such that
µi(yi) > µ−(xN).

Proof. Given i ∈ N , we have x−i ∈ X
λ(µ−(xN ))
−i . By Lemma 5.10, Ri(x−i)∩X

λ(µ−(xN )+1)
i 6= ∅.

For every yi from the intersection, we have µi(yi) ≥ µ−(xN) + 1.

Claim 5.11.1 immediately implies that the order (5.5b) defined by the function µ− is a
simultaneous pseudo-Cournot potential, hence Γ has the pseudo-FSBRP.

To prove the second statement, we define M(xN) := Argmini∈N µi(xi) for every xN ∈
XN , and

yN Â xN ­
[
µ−(yN) > µ−(xN) or [µ−(xN) = µ−(yN) & M(yN) ⊂ M(xN)]

]
. (5.8)

Let us show that Â is a pseudo-Cournot potential. Assuming that xN is not a Nash
equilibrium, we pick i ∈ M(xN) and, invoking Claim 5.11.1, yi ∈ Ri(x−i) such that µi(yi) >
µ−(xN) = µi(xi). Denoting yN := (yi, x−i), we immediately see that either µ−(yN) >
µ−(xN) [ if M(xN) = {i} ] or µ−(yN) = µ−(xN) and M(yN) ⊂ M(xN); therefore, yN Â
xN .

Theorem 5.12. If a two person game is strongly BR-consistent and WBRDS with a finite
set Λ, then it has the weak FSBRP and weak FBRP.

Proof. Immediately follows from Theorem 5.11 and Proposition 4.8.

Theorem 5.12 is wrong for more than two players.

Example 5.13. Let us consider a three person 2 × 3 × 2 game (where player 1 chooses
rows, player 2 columns, and player 3 matrices):

[
(3, 3, 3) (2, 1, 1) (1, 2, 2)

(3, 3, 3) (1, 2, 2) (2, 1, 1)

] [
(0, 0, 0) (2, 1, 1) (1, 2, 2)

(0, 0, 0) (1, 2, 2) (2, 1, 1)

]
.

47



The game is weakly dominance solvable: the choice of the left matrix weakly dominates
the choice of the right matrix; when the latter is deleted, the left column becomes strictly
dominant. Both strategy profiles in that column are Nash equilibria; however, none of
the underlined strategy profiles could be connected to any equilibrium with an individual
improvement path or with a simultaneous Cournot path. Thus, the game has neither weak
FIP nor weak FSBRP.

Example 5.13 also shows that Theorem 5.3 becomes wrong if Γ is only weakly dominance
solvable. Example 5.14 shows the same for Corollary to Theorem 5.3.

Example 5.14. Let us consider the following bimatrix game:

(0, 1) (1, 0) (0, 1)

(0, 1) (0, 1) (1, 0)

(2, 2) (1, 0) (1, 0)

.

The bottom row and the left column are weakly dominant; the southwestern corner of the
matrix is a unique Nash equilibrium. The underlined subgame is a Cournot cycle (hence a
simultaneous Cournot cycle as well).

Theorems 5.11 and 5.12 become wrong without the finiteness assumption as Example 5.4
shows. Unlike the situation with strong BR-dominance solvability, even the restriction to
preferences defined with continuous utilities is not of much help here.

Example 5.15. Let us consider a game Γ where N := {1, 2}, X1 := X2 := [−3,−1]∪{0}∪
[1, 3], and the preferences are defined by these utility functions:

u1(x1, x2) :=





−1, 1 ≤ x1 ≤ 3 & 0 ≤ x2 ≤ 3;

min{3− x1, (x1 − 1)(x2 + 3)/(1− x2)}, 1 ≤ x1 ≤ 3 & −3 ≤ x2 ≤ −1;

−1, x1 = 0 & x2 6= 0;

0, x1 = 0 & x2 = 0;

min{x1 + 3, (x1 + 1)(x2 − 3)/(x2 + 1)}, −3 ≤ x1 ≤ −1 & 1 ≤ x2 ≤ 3;

−1, −3 ≤ x1 ≤ −1 & −3 ≤ x2 ≤ 0;

u2(x1, x2) :=





min{3− x2, (3− x1)(x2 − 1)/(1 + x1)}, 1 ≤ x1 ≤ 3 & 1 ≤ x2 ≤ 3;

−1, 1 ≤ x1 ≤ 3 & −3 ≤ x2 ≤ 0;

−1, x1 = 0 & x2 6= 0;

0, x1 = 0 & x2 = 0;

−1, −3 ≤ x1 ≤ −1 & 0 ≤ x2 ≤ 3;

min{x2 + 3, (x1 + 3)(x2 + 1)/(x1 − 1)}, −3 ≤ x1 ≤ −1 & −3 ≤ x2 ≤ −1.
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Each utility function ui is continuous in xN . The best responses are:

R1(x2) =





[−3,−1], x2 = 3;

{−(3 + x2)/2}, 1 ≤ x2 < 3;

{0}, x2 = 0;

{(3− x2)/2}, −3 < x2 ≤ −1;

[1, 3], x2 = −3;

R2(x1) =





[1, 3], x1 = 3;

{(x1 + 3)/2}, 1 ≤ x1 < 3;

{0}, x1 = 0;

{(x1 − 3)/2}, −3 < x1 ≤ −1;

[−3,−1], x1 = −3.

A unique Nash equilibrium is (0, 0).

Let us denote X ′
i := Xi\{0} and X ′

N := X ′
1×X ′

2. Whenever xN ∈ X ′
N and yi ∈ Ri(x−i)

for both i ∈ N , we have both yN ∈ X ′
N and (yi, x−i) ∈ X ′

N . Since X ′
N is closed and contains

no Nash equilibrium, no (simultaneous) pseudo-Cournot path originating there will ever
reach an equilibrium, hence the game does not even have weak CBRP or CSBRP, to say
nothing of stronger properties.

On the other hand, Γ is WDS: For each i ∈ N and k ∈ N, we denote yk
i := 3−1/2k ∈ Xi

and zk
i := −3+1/2k ∈ Xi. Then we define an infinite sequence of subgames Γ0, Γ1, . . . of Γ

by Γ0 := Γ and Xk
i :=]−3, zk−1

i ]∪{0}∪ [yk−1
i , 3[ for both i and all k > 0. It is easily checked

that y0
i = 2 À xi in Γ for every xi ∈ [1, 2[ as well as for xi = 3; similarly, z0

i = −2 À xi in Γ
for every xi ∈ {−3}∪]− 2, 1]. Furthermore, yk

i À xi in Γk (k > 0) for every xi ∈ [yk−1
i , yk

i [,
while zk

i À xi in Γk (k > 0) for every xi ∈]zk
i , zk−1

i ]. Therefore, the sequence 〈Γk〉 is a
WD-scheme. Defining Γω by Xω

i := {0}, we obtain a perfect WD-scheme.

Remark. The perfect WD-scheme in Example 5.15 can be called “maximal reduction”:
at each step, all weakly dominated strategies are eliminated. It can also be noted that if
we change each utility function at one point, setting ui(0, 0) := −2, then the game will
have no Nash equilibrium, but remain WDS: the same sequence of subgames will remain a
perfect WD-scheme; however, it will no longer be “maximal reduction”.

Weaker analogs of Theorems 5.11 and 5.12 can be obtained under the same restriction
on the elimination scheme as in Theorem 5.7, viz., when strategies eliminated at every
particular step form open sets. Unlike that theorem, we still need a closedness assumption
here.

Lemma 5.16. Let Γ be a strongly BR-consistent game where every Xi is compact and every
Ri(x−i) is closed in Xi. Let λ be a WBR-scheme such that every X

λ(α)
i (i ∈ N, α ∈ Λ) is

closed in Xi. Then there holds Rλ(α)
i (x−i) = Ri(x−i) ∩X

λ(α)
i 6= ∅ for every i ∈ N , α ∈ Λ,

and x−i ∈ X
λ(α)
−i .
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Proof. We argue similarly to Lemma 5.10. Strong BR-consistency implies that it is enough
to show

Ri(x−i) ∩X
λ(α)
i 6= ∅. (5.9)

And this is done by induction: if (5.9) holds for α, it holds for α + 1 by the definition of a

WBR-scheme; if α is a limit and (5.9) holds for all β < α, then we have Ri(x−i)∩X
λ(α)
i =

Ri(x−i) ∩
⋂

β<α X
λ(β)
i =

⋂
β<α[Ri(x−i) ∩X

λ(β)
i ] 6= ∅ since Ri(x−i) ∩X

λ(β)
i form a chain of

nonempty compact subsets of Xi.

Corollary. Let Γ be a strongly BR-consistent game where every Xi is compact and every
Ri(x−i) is closed in Xi. Let Γ admit a perfect WBR-scheme λ such that every X

λ(α)
i

(i ∈ N, α ∈ Λ) is closed in Xi. Let x0
N ∈ XmaxΛ

N . Then x0
N is a Nash equilibrium in Γ.

Theorem 5.17. Let Γ be a strongly BR-consistent game where every Xi is compact and
every Ri(x−i) is closed in Xi. Let Γ admit a perfect WBR-scheme λ such that every X

λ(α)
i

(i ∈ N, α ∈ Λ) is closed in Xi. Then Γ has the pseudo-CSBRP and pseudo-CBRP. If,
additionally, #N = 2, then Γ has the weak CSBRP and weak CBRP.

Proof. We again consider the functions µi and µ− defined by (5.2) and (5.3), and again
denote M(xN) := Argmini∈N µi(xi) for every xN ∈ XN .

Claim 5.17.1. If µ−(xN) < max Λ, then for each i ∈ N there is yi ∈ Ri(x−i) such that
µi(yi) > µ−(xN).

Proof. We argue exactly as in the proof of Claim 5.11.1, only replacing the reference to
Lemma 5.10 with that to Lemma 5.16.

Both orders defined by (5.5b) and (5.8) are ω-transitive. Therefore, the first is a simul-
taneous pseudo-Cournot ω-potential, while the second is a pseudo-Cournot ω-potential,
exactly as in the proof of Theorem 5.11. Accordingly, Γ has the pseudo-CSBRP and
pseudo-CBRP.

Proving the second statement, we no longer can rely on Proposition 4.8. In order to
present explicit potentials, we introduce a modification of relation (5.8) on XN :

yN Â xN ­
[
µ−(yN) > µ−(xN) or [µ−(xN) = µ−(yN) & M(yN) ⊂ M(xN)] or

∃i ∈ N [yi = xi ∈ Ri(x−i) & M(yN) = M(xN) = {i} & x−i /∈ R−i(xi) 3 y−i]
]
. (5.10)

The relation is obviously irreflexive; the transitivity is obvious as long as the first or second
disjunctive terms in (5.10) are applicable. Let yN Â xN by the third term; then the
appropriate i is unique and xi = yi, hence µ−(xN) = µi(xi) = µ−(yN). Now if zN Â yN ,
then the second disjunctive term in (5.10) cannot be valid because M(yN) = {i} while the
third term cannot be valid because y−i ∈ R−i(yi), hence µ−(zN) > µ−(yN) = µ−(xN),
hence zN Â xN by the first term in (5.10). Similarly, if xN Â zN , then the third term
cannot be valid because x−i /∈ R−i(xi), hence either the first or the second term must be
applicable; therefore, yN Â zN by the same term.
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Since there may be only a finite number of consecutive domination by the second or
third term in (5.10), Â is ω-transitive.

Let xN ∈ XN ; if µ−(xN) = max Λ, then xN is a Nash equilibrium by Corollary to
Lemma 5.16. Assuming µ−(xN) < max Λ, we may apply Claim 5.17.1. For each i ∈ N , we
set yi := xi if xi ∈ Ri(x−i), and pick yi such that µi(yi) > µ−(xN) otherwise. If yN = xN ,
then xN is again a Nash equilibrium. Otherwise, yN BsBR xN . We also set y′N := (yi, x−i)
where i minimizes µi under condition xi /∈ Ri(x−i).

Let us show yN Â xN , hence Â is a weak simultaneous Cournot potential. If there
is i ∈ M(xN) such that yi 6= xi, we have yN Â xN by the first or second term in (5.10).
Otherwise, we must have M(xN) = {i} and yi = xi, hence M(yN) = {i} as well. It is easily
seen now that yN Â xN by the third disjunctive term in (5.10).

To show that Â is a weak Cournot potential, we combine arguments from the preceding
paragraph and from the last paragraph of the proof of Theorem 5.11. If i ∈ M(xN), then
y′N Â xN by the first or second term in (5.10). Otherwise, M(xN) = {−i}, hence y′N Â xN

by the third disjunctive term in (5.10).

Remark. The problem in Example 5.15 is just that the strategy sets eliminated at the
first step are not open, hence Theorem 5.17 does not apply.

Example 5.18 (Example 4.17, continued). Let us consider the same game Γ as in
Example 4.17. Just recall that N = {1, 2}, X1 = X2 = [−1, 1], and the preferences are
defined by continuous utility functions, which are piece-meal monotone in own choice. The
game has the approximate FBRP as well as the CSBRP, but not the very weak FSBRP.

Let us define λ : (N∪{ω}) → GΓ by X
λ(k)
i := [−1,−1+1/2k]∪ [1−1/2k, 1] for all k ∈ N,

and X
λ(ω)
i := {−1, 1}. It is easy to check that λ is an SD-scheme, although not perfect

because (1,−1) ÂÂ1 (−1,−1) and (1,−1) ÂÂ2 (1, 1). However, defining X
λ(ω+1)
1 := {1} and

X
λ(ω+1)
2 := {−1}, we obtain a perfect WD-scheme.

Thus, the assumptions of Theorem 5.17, even when supplemented with continuous
preferences and weak dominance solvability (“almost” strict dominance solvability!), do
not imply the very weak FSBRP. The very weak FBRP in Example 4.17 is not quite
“accidental,” cf. Theorem 4.15, but it cannot be derived from a general theorem at the
moment: Theorem 4.15 assumes CBRP, while Theorem 5.17 only gives weak CBRP.

Example 5.19. Let N := {1, 2}, X1 := X2 := [0, 1], and the preferences be defined by
these utility functions: u1(xN) := 1 if 2x1 = x2; u1(xN) := 0 otherwise; u2(xN) := 1 if[
x2 6= 0 & [x1 = 0 or x1 = 2x2]

]
; u2(xN) := 0 otherwise. Clearly, R1(x2) = {x2/2} for

all x2 whereas R2(0) =]0, 1] and R2(x1) = {x1/2} for x1 > 0. Defining Xk
i := [0, 1/2k]

(i ∈ N, k ∈ N) and Xω
i := {0}, we obtain a perfect WD-scheme: y1

i := 1/2 weakly
dominates every xi ∈]y1

i , 1] in Γ; similarly, for each k ∈ N, yk+1
i := 1/2k+1 weakly dominates

every xi ∈]yk+1
i , yk

i ] in Γk. Therefore, Γ is WDS. On the other hand, it possesses no Nash
equilibrium, hence cannot have any stronger property. All assumptions of Theorem 5.17
are satisfied, except R2(0) is not closed in X2.
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6 Strategic complementarity

Assuming a (partial) order on each Xi, we say that a preference relation ÂÂi has the single
crossing property if these conditions hold:

∀xi, yi ∈ Xi ∀x−i, y−i ∈ X−i

[
[yi ÂÂx−i

i xi & yi > xi & y−i > x−i] ⇒ yi ÂÂy−i

i xi

]
; (6.1a)

∀xi, yi ∈ Xi ∀x−i, y−i ∈ X−i

[
[yi ÂÂx−i

i xi & xi > yi & x−i > y−i] ⇒ yi ÂÂy−i

i xi

]
. (6.1b)

This definition is equivalent to Milgrom and Shannon’s (1994) if every ÂÂi is an ordering
represented by a numeric function.

Theorem 6.1. Let Γ be a two player BR-consistent game; let each Xi be a chain; let one
of them contain its maximum and minimum. Let each preference relation ÂÂi satisfy (6.1)
and every ÂÂx−i

i be strictly acyclic. Then Γ has the FBRP.

Proof. Without restricting generality, we may assume N = {1, 2} and max X1 and min X1

exist. Suppose to the contrary that 〈xk
N〉k∈N is an infinite Cournot path. Since we could

start the path anyplace, we may assume

x2k
1 /∈ R1(x

2k
2 ) 3 x2k+1

1 = x2k+2
1 ; R2(x

2k
1 ) 3 x2k

2 = x2k+1
2 /∈ R2(x

2k+1
1 ).

Again without restricting generality, we may assume x1
1 > x0

1. Now if we assume x2
2 < x0

2,

then the relation x2
2 ÂÂx1

1
2 x0

2 and condition (6.1b) would imply x2
2 ÂÂx0

1
2 x0

2, contradicting our
assumption x0

2 ∈ R2(x
0
1). A straightforward inductive argument shows that x2k+2

2 > x2k+1
2

and x2k+1
1 > x2k

1 for all k ∈ N. Now the relation x2k+2
2 ÂÂx2k+1

1
2 x2k

2 and condition (6.1a)
imply x2k+2

2 ÂÂmax X1
2 x2k

2 , hence 〈x2k
2 〉k∈N is an infinite tâtonnement path of ÂÂmax X1

2 , which
fact contradicts the latter’s strict acyclicity.

Remark. A bit more detailed analysis shows that it is enough to assume in Theorem 6.1
that one Xi contains min Xi and one Xi contains max Xi. If, say, max Xi does not exist
for both i, there may be no Nash equilibrium (Kukushkin, 2010, Example 4.1). The
theorem becomes wrong if n > 2 (Kukushkin et al., 2005, Example 4) or Xi are not
chains (Kukushkin et al., 2005, Example 2), even if the preferences are defined with utility
functions and all Xi are finite.

Theorem 6.2. Let each Xi in a game Γ be a chain containing its maximum and minimum.
Let each preference relation ÂÂi satisfy (6.1) and every ÂÂx−i

i be strictly acyclic and transitive.
Then Γ has the weak FBRP.

Proof. We define

X↑ := {xN ∈ XN | ∀i ∈ N ∀yN ∈ XN [yN BBR
i xN ⇒ yi > xi]}. (6.2)

Claim 6.2.1. If xN ∈ X↑ and yN BBR xN , then yN ∈ X↑ too.
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Proof. Let yN BBR
i xN ; then yi > xi since xN ∈ X↑. Suppose, to the contrary, that there

are zN ∈ XN and j ∈ N such that zN BBR
j yN and yj > zj. Since yi ∈ Ri(y−i), we

have j 6= i, hence z−j = y−j > x−j, hence zj ÂÂx−j

j xj by (6.1b), hence xj /∈ Rj(x−j).
Now we have zj /∈ Rj(x−j) because we would have (zj, x−j) BBR

j xN and zj < xj[= yj]
otherwise, contradicting xN ∈ X↑. Since Γ is BR-consistent, there is z′N ∈ XN such that
z′N BBR

j (zj, x−j). Since ÂÂj is transitive, we have z′N BBR
j xN as well. Therefore, z′j > xj

because xN ∈ X↑, hence (z′j, y−j) BBR
j zN by (6.1a), hence zj /∈ Rj(y−j), contradicting our

assumption zN BBR
j yN .

If x0
N ∈ X↑, but is not an equilibrium, we pick an arbitrary x1

N ∈ XN such that
x1

N BBR x0
N ; then x1

N ∈ X↑ by Claim 6.2.1. Iterating this rule, we obtain a Cournot
path 〈xk

N〉k such that xk
N ∈ X↑ whenever xk

N is defined. Besides, xk+1
i > xk

i whenever

xk+1
N BBR

i xk
N ; by (6.1a), we have xk+1

i ÂÂmax X−i

i xk
i for all such k. If the path is infinite,

then we will have an infinite number of improvements for, at least, one i (actually, two),
contradicting the assumed strict acyclicity. Therefore, it must stop at some stage, and that
is only possible at an equilibrium.

If x0
N /∈ X↑, we pick i ∈ N and x1

N ∈ XN such that x1
N BBR

i x0
N and x1

i < x0
i ; if x1

N /∈ X↑,
we behave similarly. Iterating this rule as long as xk

N /∈ X↑, we obtain a Cournot path
〈xk

N〉k such that xk+1
i < xk

i whenever xk+1
N BBR

i xk
N . The path cannot be infinite for the

same (or rather dual) reason as in the previous paragraph. Once xk
N ∈ X↑, we already

know that an infinite Cournot path is impossible.

Remark. Theorem 6.2 remains valid if we allow one of Xi’s not to contain min Xi and
one of them not to contain max Xi. It remains unclear whether the transitivity assumption
could be weakened.

Theorem 6.3. Let Γ be a two player strategic game. Let each Xi be a compact metric
space and a complete chain such that the order is continuous. Let each preference relation
ÂÂi satisfy (6.1) and every relation ÂÂx−i

i be irreflexive and ω-transitive. Then Γ has the
CBRP.

Proof. First of all, Γ is BR-consistent by Corollary to Theorem 3.12. We invoke X↑ defined
by (6.2). Since the proof of Claim 6.2.1 does not use the strict acyclicity assumption, it
remains valid here.

Claim 6.3.1. Let xk
N ∈ X↑ and xk+1

N ≥ xk
N for all k ∈ N. Let xi = supk∈N xk

i and xi ÂÂx−i

i xk
i

for both i ∈ N and each k ∈ N. Then xN ∈ X↑ as well.

Proof. Supposing, to the contrary, the possibility of yN BBR
i xN and yi < xi, we pick

k ∈ N such that yi < xk
i . We have yi ÂÂx−i

i xi ÂÂx−i

i xk
i , hence yi ÂÂxk

−i

i xk
i by (6.1b).

By BR-consistency, there is zi ∈ Ri(x
k
−i) such that either zi = yi or zi ÂÂxk

−i

i yi; by the

transitivity of ÂÂxk
−i

i , we have zi ÂÂxk
−i

i xk
i in either case. Since xk

N ∈ X↑ and (zi, x
k
−i) BBR

i xk
N ,

we have zi > xk
i [> yi]. Now (6.1a) applies, producing zi ÂÂx−i

i yi, which is incompatible
with yi ∈ Ri(x−i).
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Defining

X↓ := {xN ∈ XN | ∀i ∈ N ∀yN ∈ XN [yN BBR
i xN ⇒ yi < xi]}, (6.3)

we easily see that “dual” versions of Claims 6.2.1 and 6.3.1 are valid too.

Claim 6.3.2. Let π be a Cournot path. If π(2) is defined, then π(2) ∈ X↑ ∪X↓.

Proof. Let π(2) BBR
i π(1); then πi(0) = πi(1), hence πi(2) 6= πi(0). Let us show that

π(2) ∈ X↑ if πi(2) > πi(0). Indeed, if xN BBR π(2), then xN BBR
−i π(2). An assumption

that x−i < π−i(2) [= π−i(1)] would imply x−i ÂÂπi(0)
−i π−i(1) by (6.1b), which is incompatible

with π−i(1) ∈ R−i(πi(0)).

Dually, if πi(2) < πi(0), then π(2) ∈ X↓.

Let π be a Cournot path such that π(2) is defined. Straightforward induction based
on Claims 6.2.1 and 6.3.1 or their “dual” versions shows that either π(α) ∈ X↑ for all
α ∈ Dom π, α ≥ 1, or π(α) ∈ X↓ for all α ∈ Dom π, α ≥ 1. In either case, an assumption
that Dom π = Ω contradicts Proposition 3.11 applied to ÂÂmax Xi

−i in the first case or to

ÂÂmin Xi
−i in the second.

The continuity assumption in Theorem 6.3 cannot be replaced with quasicontinuity.

Example 6.4 (Kukushkin, 2000, Example 5.2). Let N := {1, 2}, Xi := [0, 1] × [0, 1]
with the lexicographic order (first component, x1

i , matters first), and the preferences be
defined by these utility functions: ui(xN) := − |ϕi(xi)− ψ−i(x−i)|, where

ϕ1(x1) :=





x2
1 + 1, x1

1 = 1;

x1
1, x1

1 < 1, x2
1 = 1;

−1, otherwise;

ϕ2(x2) :=





2x1
2 + 1, 0 < x1

2 ≤ 1/2, x2
2 = 0;

2x2
2 − 1, x1

2 = 0, x2
2 ≥ 1/2;

−1, otherwise;

ψ1(x1) :=

{
x2

1 + 1, x1
1 = 1;

x1
1, x1

1 < 1;
ψ2(x2) :=

{
x1

2 + 1, x1
2 > 0;

x2
2, x1

2 = 0.

Conditions (6.1) are checked easily; the best responses are single-valued and increasing.
There is a unique Nash equilibrium: ((1, 0), (0, 1)); there is even the weak CBRP. However,
the relation BBR is not Ω-acyclic. Let us consider the following mapping [0, ω + ω] → XN :
π(0) := ((1, 0), (0, 0)); π(2k + 1) := ((1 − 1/2k, 1), (0, 1 − 1/2k)); π(2k + 2) := ((1 −
1/2k, 1), (0, 1 − 1/2k+1)); π(ω) := ((1, 1), (0, 1)); π(ω + 2k + 1) := ((1, 1/2k), (1/2k+1, 0));
π(ω + 2k + 2) := ((1, 1/2k+1), (1/2k+1, 0)); π(ω + ω) := ((1, 0), (0, 0)). It is easy to check
that π(2k + 1) BBR

1 π(2k), π(2k + 2) BBR
2 π(2k + 1), π(ω + 2k + 1) BBR

2 π(ω + 2k), and
π(ω + 2k + 2) BBR

1 π(ω + 2k + 1) for all k ∈ N. Moreover, π(k) → π(ω) and π(ω + k) →
π(ω + ω) = π(0). Therefore, π is a Cournot cycle.
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Conjecture 6.5. Let Γ be a two player strategic game. Let each Xi be a compact metric
space and a complete chain such that the order is quasicontinuous. Let each preference
relation ÂÂi satisfy (6.1) and every relation ÂÂx−i

i be irreflexive and ω-transitive. Then Γ
has the CσBRP for both permutations σ.

Theorem 6.6. Let each Xi in a strategic game Γ be a compact metric space and a complete
chain such that the order is continuous. Let each preference relation ÂÂi satisfy (6.1) and
every relation ÂÂx−i

i be irreflexive and ω-transitive. Then Γ has the weak CBRP.

The proof is essentially a combination of those of Theorems 6.2 and 6.3.

Turning to games with “multi-dimensional” strategy sets, we have to assume that the
preference relations are essentially orderings; we also need a rather weak version of Milgrom
and Shannon’s (1994) quasisupermodularity property. Given i ∈ N and x−i ∈ X−i, we
consider this condition:

∀xi, yi ∈ Xi

[
xi ÂÂx−i

i yi ∧ xi ⇒ [(yi ∨ xi ÂÂx−i

i xi) or (yi ∨ xi ÂÂx−i

i yi)]
]
. (6.4)

Theorem 6.7. Let each Xi in a strategic game Γ be a compact metric space and a complete
lattice such that the order is continuous. Let each preference relation ÂÂi satisfy (6.1a). Let
every ÂÂx−i

i be an upper semicontinuous ordering satisfying (6.4). Then Γ has the weak
CIP.

Proof. We define

X↑ := {xN ∈ XN | ∃yN ∈ XN [yN > xN & yN BInd xN ]}; X↓ := XN \X↑;

yN Â xN ­
[
[yN ∈ X↓ & xN ∈ X↑] or [xN , yN ∈ X↑ & yN > xN ] or

[xN , yN ∈ X↓ & yN < xN ]
]
. (6.5)

Clearly, Â is irreflexive and transitive; let us show that it is a weak ω-potential of BInd.

Claim 6.7.1. If xN ∈ XN is not a Nash equilibrium, then there exists yN ∈ XN such that
yN BInd xN and yN Â xN ; in other words, (2.13) holds.

Proof. If xN ∈ X↑, then we pick yN ∈ XN such that yN BInd xN and yN > xN . If yN ∈ X↓,
then yN Â xN by the first disjunctive term in (6.5). If yN ∈ X↑, then yN Â xN by the
second disjunctive term in (6.5).

Let xN ∈ X↓. We pick i ∈ N and yN ∈ XN such that yN BInd
i xN . Denoting Yi :=

{zi ∈ Xi | zi ≤ xi}, we pick zi ∈ M(Yi,ÂÂx−i

i ) [ 6= ∅ because Yi is compact and ÂÂx−i

i upper
semicontinuous]. Since xN ∈ X↓, yi > xi is impossible. If yi < xi, then zi <i

x−i yi, hence
zi ÂÂx−i

i xi and zi < xi. If yi and xi are incomparable in the order, then yi ∨ xi > xi

and yi ∧ xi < xi. An assumption that xi <i
x−i yi ∧ xi would imply yi ÂÂx−i

i yi ∧ xi,
hence yi ∨ xi ÂÂx−i

i xi by (6.4), contradicting our assumption that xN ∈ X↓. Therefore,
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yi ∧ xi ÂÂx−i

i xi, hence zi ÂÂx−i

i xi and zi < xi again. Denoting zN := (zi, x−i), we see that
zN BInd xN and zN < xN . To show that zN Â xN , we only have to show that zN ∈ X↓.

Suppose the contrary: there are j ∈ N and y′j > zj such that

y′j ÂÂz−j

j zj. (6.6)

Let us consider two alternatives.

If j = i (hence z−j = x−i), y′i > xi would contradict xN ∈ X↓ while y′i < xi would
contradict the choice of zi; therefore, we have to assume that y′i and xi are incomparable,
hence y′i ∨ xi > xi. The choice of zi implies zi <i

x−i y′i ∧ xi, hence, by (6.6), y′i ÂÂx−i

i y′i ∧ xi,
hence, by (6.4), y′i ∨ xi ÂÂx−i

i xi, contradicting the assumption xN ∈ X↓.
Thus, we are led to j 6= i, hence y′j > zj = xj and z−j < x−j. Now (6.6) and (6.1a)

imply y′j ÂÂx−j

j xj, again contradicting the assumption xN ∈ X↓.

Claim 6.7.2. Â is ω-transitive.

Proof. Let xk
N → xω

N and xk+1
N Â xk

N for all k ∈ N. We have to show that xω
N Â x0

N . The
only point worth discussing is that the assumptions that xk

N ∈ X↓ and xk+1
N < xk

N for all k
imply xω

N ∈ X↓. Suppose the contrary: there exist i ∈ N and yi ∈ Xi such that yi > xω
i

(hence yi > xk
i for all k large enough) and yi ÂÂxω

−i

i xω
i . Since ÂÂxω

−i

i is upper semicontinuous,
we have

yi ÂÂxω
−i

i xk
i (6.7)

for all k large enough. Obviously, xω
−i ≤ xk

−i for any k; therefore, (6.7) and (6.1a) imply

yi ÂÂxk
−i

i xk
i , contradicting the assumption xk

N ∈ X↓.

In the light of Claims 6.7.1 and 6.7.2, a reference to Proposition 3.22 finishes the proof.

Remark. Theorem 6.7 extends Theorem 1 of Kukushkin et al. (2005) to infinite games,
simultaneously weakening its assumptions. The dual argument proves an analog of Theo-
rem 6.7 where (6.1a) is replaced with (6.1b), while (6.4) with

∀xi, yi ∈ Xi

[
xi ÂÂx−i

i yi ∨ xi ⇒ [(yi ∧ xi ÂÂx−i

i xi) or (yi ∧ xi ÂÂx−i

i yi)]
]
. (6.8)

Corollary. If, under the assumptions of Theorem 6.7, each preference relation ÂÂi satisfies
(4.2), then Γ has the very weak FIP.

Proof. Immediately follows from Theorem 6.7 and Corollary to Proposition 4.2.
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CIBRP, 33, 35, 44
CIP, 27, 29, 31

weak, 27, 29, 55
coalition improvement relation

strict, 6, 28
weak, 6

concatenation, 14, 15, 36
Cournot path, 31

inclusive, 33–36
Cournot quasipotential, 34

approximate, 35
ω-, 35

CSBRP, 27, 37, 38, 44
pseudo-, 32, 50
weak, 27, 48, 50

CσBRP, 36, 38
CTP, 15, 17, 19

weak, 15, 18, 20

elimination scheme, 39
perfect, 39
SBR-scheme, 40
SD-scheme, 39
WBR-scheme, 46
WD-scheme, 46

ε-dominance, 6, 7
extension, 4, 11, 17, 19

FBRP, 27, 32, 34, 41, 52
approximate, 27, 32, 37, 38, 44

weak, 27, 37
pseudo-, 32, 47
weak, 27, 33, 47, 52

very, 27, 37
FCP, 27

approximate, 27
weak, 27, 30

weak, 27
very, 27, 30

FC+P, 27
FIBRP, 32–34, 41

approximate, 33, 35, 43
FIP, 27

approximate, 27
weak, 27, 30

weak, 27
very, 27, 29, 30, 56

FSBRP, 27, 41
approximate, 27, 32, 43

weak, 27
pseudo-, 32, 33, 47
weak, 27, 33, 47

very, 27, 37, 38
FσBRP, 36, 38

weak, 36
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very, 38
FTP, 8, 11, 22

approximate, 11, 12, 15, 22, 26
weak, 11–13, 15, 16, 25, 26

weak, 8–11
very, 11, 16, 18, 22, 25, 26, 30

individual improvement relation, 6, 28

lattice, 55, 56
linear order, 5

maximizer, 4, 6, 20

Nash equilibrium, 6, 27, 30
NM property, 8, 10, 17, 20

ordering, 4, 19, 55
ordinal (number)

limit, 5
successor, 5
transfinite, 5

Pareto dominance, 6, 18
poset, 5

well ordered, 5, 10
potential

approximate, 11
Cournot

ω-, 32
strict, 31
weak, 31
weak ω-, 32

generalized ordinal, 27
numeric

strict, 9
weak, 10

ω-, 19
weak, 19, 20, 55

order
strict, 9, 31
weak, 10, 31

pseudo-Cournot, 32, 47
ω-, 32, 50

simultaneous Cournot
ω-, 32
strict, 31
weak, 31
weak ω-, 32

simultaneous pseudo-Cournot, 32, 47
ω-, 32, 50

preference relation, 5, 29
quasi-continuous, 29
quasicontinuous, 36
weak, 5, 46

preorder, 4, 17, 34, 35
total, 4, 18

pseudo-Cournot path, 32, 37

quasisupermodularity, 55, 56

simultaneous best response relation, 7
simultaneous Cournot path, 31
simultaneous pseudo-Cournot path, 32
single crossing, 52–56
strategic game, 5, 6, 26–30, 39–41, 53–55

BR-consistent, 7, 10, 17, 27, 31, 40,
41, 43, 45, 53

strongly, 7, 10, 17, 33, 44, 47, 50
BR-dominance solvable

strongly, 40, 41, 43
weakly, 46, 47, 50

dominance solvable
strictly, 40, 42, 44, 45
weakly, 46–48, 51

strong equilibrium, 6, 27
subgame, 6, 27, 28, 34, 39
Szpilrajn’s Theorem, 9, 19

tâtonnement path
simple, 7
transfinite, 14–16

transitive closure, 8, 12
ω-, 17

undominated subset, 8, 11

Zermelo Theorem, 5, 19
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