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Abstract

Strategic games are considered where the players derive their utilities from par-
ticipation in certain “processes.” Two subclasses consisting exclusively of potential
games are singled out. In the first, players choose where to participate, but there is
a unique way of participation, the same for all players. In the second, the partici-
pation structure is fixed, but each player may have an arbitrary set of strategies. In
both cases, the players sum up the intermediate utilities; thus the first class essen-
tially coincides with that of congestion games. The necessity of additivity in each
case is proven.
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1 Introduction

Congestion games were introduced by Rosenthal (1973) as a class of strategic games

where Nash equilibria exist without a tint of convexity. Later they played a central role

in Monderer and Shapley’s (1996) theory of potential games. Theorems 3.1 and 3.2 from

that paper showed that a finite game admits an exact (i.e., cardinal) potential if and

only if it can be represented as a congestion game (the sufficiency part was implicit in

Rosenthal’s reasoning). A simpler and more intuitive proof was given in Voorneveld et

al. (1999, Theorem 3.3).

This paper strives to deepen the understanding of the “internal mechanism” of con-

gestion games and to provide a stereoscopic view on their role in the theory of potential

games.

First, a tentative concept of a generalized congestion game is introduced, where the

sum of intermediate utilities is replaced with a list of arbitrary (continuous and strictly

increasing) aggregation functions, one for each player and each number of arguments. It

turns out that the existence of a Nash equilibrium regardless of other characteristics of the

game is ensured if and only if every aggregation function is additive up to monotonic trans-

formations satisfying certain restrictions (Theorem 1 below). The sufficiency part is an

extension of Rosenthal’s result; necessity is closely related to the famous Debreu–Gorman

Theorem on additive representation of separable orderings (Debreu, 1960; Gorman, 1968).

The presence of a cardinal potential under every circumstances requires more restrictions

on the transformations (Theorem 2).

Second, a class of games with structured utilities, in a sense, “dual” to congestion

games, is introduced. Here the players do not choose which facilities to use, but rather

how to use facilities from a list fixed for each player. As in the case of congestion games,

each facility generates an intermediate utility, which enters into the “ultimate” utility of

each participant; as in the case of congestion games, additivity up to monotonic trans-

formations is the only way (assuming continuity and strict monotonicity) to ensure the

existence of a Nash equilibrium regardless of other characteristics of the game (The-

orem 3). If a cardinal potential is desirable, the class of permissible transformations

shrinks considerably (Theorem 4).

It turns out that games with structured utilities and additive aggregation of inter-

mediate utilities are even better suited for the role of archetypal potential games than

congestion games: A strategic game admits a cardinal potential if and only if it can be

represented in the form (Theorem 5 below).

It is instructive to look on games from both classes as local public good (bad) models.

Congestion games can be used to analyze phenomena like people “voting with their feet” in

the style of Tiebout; however, the assumption that all players affect all public goods in the
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same way, inherent in Rosenthal’s model, is rather restrictive. In a game with structured

utilities, relocation is not considered at all, but the author of a model is absolutely free

in the specification of how the players affect each locality. To achieve the existence of a

potential, additivity of aggregation must be imposed in either case. From an economic

viewpoint, it is not at all clear why exactly these two extreme cases should produce nice

games; nonetheless, no comparable result has been obtained outside them.

The term “structured utilities” was borrowed from Kukushkin et al. (1985), where the

aggregation of intermediate utilities was done with the minimum function, as in Germeier

and Vatel’ (1974). Additive aggregation in this context first appeared in Kukushkin

(1994); the main theorem of that paper resembles our Theorem 3, but they are logically

independent. Actually, two games from the class were present in Monderer and Shapley

(1996): Cournot oligopoly with identical linear costs (cf. Kukushkin, 1994, Section 3) and

the Stag Hunt game of Rousseau.

A broader view on “games with common intermediate objectives,” a common general-

ization of both types of models considered in this paper, is presented in Kukushkin (2004).

Theorems 5 and 7 from that paper are generalized by Theorems 1 and 3, respectively,

below; Proposition 6.2 is virtually equivalent to our Theorem 5.

The next section reproduces the basic notions about potential games. Section 3 in-

troduces the concept of a generalized congestion game and contains Theorems 1 and 2,

which establish the crucial importance of additive aggregation; more complicated proofs

are deferred to the Appendix. In Section 4, it is demonstrated that congestion games

usually underlie the existence of Nash equilibrium in coalition formation games with ad-

ditively separable utilities; the fact seems to be underestimated in the literature. Section 5

introduces the concept of a game with structured utilities and contains Theorems 3 and 4,

which establish the crucial importance of additive aggregation (more complicated neces-

sity proofs are again deferred to the Appendix), as well as Theorem 5 showing the special

role of the class in the theory of potential games.

2 Basic notions

A strategic game Γ is defined by a finite set of players N (we denote n = #N), and

strategy sets Xi and utility functions ui on X =
∏

i∈N Xi for each i ∈ N . We introduce

the (individual) improvement relation on X (y, x ∈ X, i ∈ N):

y Bi x ⇐⇒ [y−i = x−i & ui(y) > ui(x)];

y B x ⇐⇒ ∃i ∈ N [y Bi x].

A maximizer for B, i.e., a strategy profile x ∈ X such that y B x does not hold for any

y ∈ X, is a Nash equilibrium.
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An (individual) improvement path is a finite or infinite sequence {xk}k=0,1,... such that

xk+1 B xk whenever k ≥ 0 and xk+1 is defined. A game has the finite improvement

property (FIP) if there exists no infinite improvement path. The property implies that

every improvement path, if continued whenever possible, reaches a Nash equilibrium in a

finite number of steps. For a finite game, it is equivalent to the absence of improvement

cycles. For an infinite game, the property is rather exotic: it implies, e.g., that the set of

utility levels available to a player when the choices of all partners are fixed cannot contain

a non-degenerate interval.

A function P : X → R is an exact potential of the game if ui(y)−ui(x) = P (y)−P (x)

whenever i ∈ N , y, x ∈ X, and y−i = x−i; equivalently, P is an exact potential if

ui(x) = P (x) + Qi(x−i) for every i ∈ N and x ∈ X (pick x0 ∈ X and define Qi(x−i) =

ui(x
0
i , x−i) − P (x0

i , x−i) ). A function P : X → R is an ordinal potential of the game

if sign(ui(y) − ui(x)) = sign(P (y) − P (x)) whenever i ∈ N , y, x ∈ X, and y−i = x−i.

A function P : X → R is a generalized ordinal potential of the game if P (y) > P (x)

whenever y, x ∈ X and y B x. Clearly, an exact potential is an ordinal potential, and an

ordinal potential is a generalized ordinal potential.

For a finite game, the existence of a generalized ordinal potential is equivalent to the

FIP (Monderer and Shapley 1996, Lemma 2.5). If the strategy sets are compact, the

presence of a continuous generalized ordinal potential ensures the existence of a Nash

equilibrium; moreover, all improvement dynamics, in a sense, lead towards the set of

Nash equilibria although one cannot, generally, be sure of reaching a Nash equilibrium

either in a finite number of steps or even as a limit point. Continuity is by no means

necessary for the conclusion, but we do not need more complicated conditions here.

3 Generalized congestion games

A generalized congestion game is defined by a finite set of players N , a set A of processes

(Rosenthal called them “factors”; Monderer and Shapley, “facilities”), an intermediate

utility function ϕα : N → R for each α ∈ A, a finite set of strategies Xi for each i ∈ N ,

where each strategy xi ∈ Xi is a finite cortege xi = 〈α1, . . . , α#xi
〉 (#xi > 0) of members

of A without repetitions, and aggregation function V xi
i : R#xi → R for each i ∈ N and

xi ∈ Xi, which must be monotonic in its arguments. The utility functions are defined

in this way. Given a strategy profile x ∈ X =
∏

i∈N Xi and α ∈ A, we define N(α, x)

as the set of i ∈ N for which α enters into xi (at any position), i.e., the set of players

participating in α at x. Now the utility of player i at x is

ui(x) = V xi
i

(〈ϕα(#N(α, x))〉α∈xi

)
. (1)

Remark. In principle, ϕα need not be defined on the whole N, nor V xi
i on the whole
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R#xi , but we ignore such subtleties.

If each V xi
i is just the sum of all its arguments, we obtain congestion games as a

special case of this scheme. Since the order of arguments does not matter in this case,

the corteges can be replaced with subsets.

Remark. The finiteness of each Xi is essential. One might think that an infinite A makes

no sense since all the strategies of all players together can only contain a finite number of

processes, but it is technically more convenient. For instance, in the sufficiency proof for

Theorem 2 below, we even consider congestion games with infinite sets of facilities.

The concept of a universal aggregation rule will be used; it is perceived as an infinite

sequence of functions U (m) : Rm → R, m = 1, 2, . . . , each of which is assumed continuous

and strictly increasing in the sense of

[∀s[v′s ≥ vs] & ∃s[v′s > vs]
] ⇒ U (m)(v′) > U (m)(v). (2)

We say that a player i ∈ N in a generalized congestion game uses a universal ag-

gregation rule Ui if, for each xi ∈ Xi, V xi
i coincides with U

(#xi)
i ; then (1) transforms

into

ui(x) = U
(#xi)
i

(〈ϕα(#N(α, x))〉α∈xi

)

for every x ∈ X.

Theorem 1. Let N be a finite set with #N ≥ 2; let 〈Ui〉i∈N be a list of universal ag-

gregation rules such that every function U
(m)
i is continuous and strictly increasing in the

sense of (2). Then the following conditions are equivalent.

1.1. Every generalized congestion game where N is the set of players and each player i

uses the aggregation rule Ui has the FIP.

1.2. Every generalized congestion game where N is the set of players, each player i uses

the aggregation rule Ui, two players have two strategies each and all other strategy sets

are singletons possesses a Nash equilibrium.

1.3. All functions U
(m)
i satisfy the following requirements:

1. there is a continuous and strictly increasing mapping ν : R → R and a continuous

and strictly increasing mapping λm
i : m · ν(R) → R for every i ∈ N and m ≥ 1 such

that

U
(m)
i (v1, . . . , vm) = λm

i

( m∑
s=1

ν(vs)
)

(3)

for all v1, . . . , vm ∈ R;
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2. for every i ∈ N and m,m′ ≥ 1, there is a constant ūmm′
i ∈ R ∪ {−∞, +∞} such

that

sign
(
λm′

i (u′)− λm
i (u)

)
= sign(u′ − u− ūmm′

i ) (4)

for all u′ ∈ m′ · ν(R) and u ∈ m · ν(R).

The implication [1.1] ⇒ [1.2] is trivial. The proofs of [1.3] ⇒ [1.1] and [1.2] ⇒ [1.3]

are deferred to the Appendix (Sections A and B, respectively).

Remark. The proof of [1.2] ⇒ [1.3] remains valid, virtually without any modification, if

each U
(m)
i is assumed defined on Rm, where R is an open interval (bounded or not) in R;

e.g., R = R++. This is also true for the necessity parts of Theorems 2, 3, and 4. If R

is not connected (e.g., if only integer-valued ϕα are considered), the proofs collapse; it is

not yet known whether the theorems themselves remain valid in this case.

The monotonic transformations can change the meaning of the additive representation

(3). For instance, if ν(R) ⊆ R++, then [1.3] holds for U
(m)
i (v1, . . . , vm) =

∏m
s=1 ν(vs). On

the other hand, taking the average, U
(m)
i (v1, . . . , vm) = 1

m

∑m
s=1 ν(vs), satisfies (3), but

not (4).

Theorem 2. Let N be a finite set with #N ≥ 2; let 〈Ui〉i∈N be a list of universal ag-

gregation rules such that every function U
(m)
i is continuous and strictly increasing in the

sense of (2). Then every generalized congestion game where N is the set of players and

each player i uses the aggregation rule Ui admits an exact potential if and only if there

is a continuous and strictly increasing mapping µ : R → R and a constant Cm
i ∈ R for

every i ∈ N and m ≥ 1 such that

U
(m)
i (v1, . . . , vm) =

m∑
s=1

µ(vs) + Cm
i (5)

for all v1, . . . , vm ∈ R, i ∈ N and m ≥ 1.

The necessity proof is deferred to the Appendix (Section C).

Sufficiency proof. Having a generalized congestion game Γ where N is the set of players

and each player i uses an aggregation rule Ui satisfying (5), we consider a congestion

game Γ∗ with the same set of players N , the set of facilities M = A ∪ (N × N), strategy

sets Σi = {xi ∪ {(i, #xi)}}xi∈Xi
, and cost functions cα(h) = µ(ϕα(h)) for α ∈ A and

c(i,m)(h) = Cm
i . For natural bijections gi : Xi → Σi, i ∈ N , we obviously have

u∗i (g(x)) =
∑
α∈xi

µ(ϕα(#N(α, x))) + Cm
i = ui(x)

for every i ∈ N and x ∈ X, i.e., Γ and Γ∗ are isomorphic. Since Γ∗ is an exact potential

game, so is Γ.
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4 Coalition formation

Rosenthal (1973) is often cited in the literature on coalition formation games, but the

technical power of his approach is usually underestimated. Actually, one should look for

congestion games whenever the existence of a Nash equilibrium in the context is derived

from additive separability in utility functions.

For instance, the group formation games considered by Hollard (2000) are congestion

games. Each player there chooses an “action” ai ∈ A and the utility is

ui(a1, . . . , an) = vi(ai) + Iai
(n(ai)) +

∑

z∈A\{ai}
Ez(n(z)), (6)

where n(a) is the number of players having chosen a at the given strategy profile, and

vi(·), Ia(·), and Ea(·) are given functions. Let us define the set of facilities as the union of

A×N and two copies of A: M = (A×N) ∪ {aInt}a∈A ∪ {aExt}a∈A with c(a,i)(k) = vi(a),

caInt(k) = Ia(k), and caExt(k) = Ea(n−k); the revised strategy sets will be Σi =
{{(a, i)}∪

{aInt} ∪ {bExt}b∈A\{a}
}

a∈A
. Obviously, we have (6) for the utilities in the congestion

game; in other words, Theorem 1 of Hollard (2000) is a special case of Rosenthal’s (1973)

theorem, so there was no need to prove it again.

Similarly, the additive utilities in Section 5 of Konishi et al. (1997b) are a particular

case of (6), so a reference to Rosenthal (1973) would have been also sufficient to prove

their implication Lemma 4.2 ⇒ Proposition 4.1 (Lemma 4.2 itself belongs to a quite

different set of ideas).

Bogomolnaia and Jackson (2002) considered “hedonic” coalition formation games and

showed, among other things, the existence of a Nash stable coalition partition if the

utilities are additively separable and symmetric. Strictly speaking, their basic model was

not a strategic game, and a Nash stable partition was not explicitly defined as a Nash

equilibrium. Nonetheless, their Proposition 2 can be derived from Rosenthal’s theorem.

A hedonic game with additively separable and symmetric utilities is defined by the

set of players N and n · (n− 1)/2 numbers vij (i, j ∈ N , i 6= j, vij = vji); whenever N is

partitioned into disjoint coalitions Sk, each player i receives the utility equal to the sum

of vij over all other members of the same element of the partition. A partition is Nash

stable if no player can increase his utility by switching to another element of the partition

or by forming a new, singleton, coalition.

To formalize the model as a congestion game, we introduce a set A of “rallying points”;

the only condition on A is #A ≥ n. Then we denote N∗ = {I ⊆ N | #I = 2} and

N∗
i = {I ∈ N∗| i ∈ I} for i ∈ N . Now we define a congestion game Γ∗ by M = A×N∗,

Σi = {{a} ×N∗
i }a∈A, and c(a,{i,j})(k) = 0 if k = 1 and c(a,{i,j})(k) = vij if k = 2.

For every i ∈ N , we have a natural mapping gi : Σi → A, which is surjective. Every

strategy profile s in Γ∗ defines a partition of N into Sa = {i ∈ N | gi(si) = a} (perhaps
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empty Sa should be deleted). It is easily checked that each player’s utility in Γ∗ is again

the sum of vij over all other players who have chosen the same a. Strictly speaking,

we do not obtain an isomorphism between the original hedonic game and Γ∗ because

every partition is generated by several different strategy profiles in the congestion game,

but this does not matter. The sum of vij, the maximization of which was suggested by

Bogomolnaia and Jackson, coincides with Rosenthal’s potential.

Admittedly, a reference to congestion games would hardly lead to a shorter proof

in the last case, unlike the first two. Still, it is essential for deeper understanding of

interrelationships between various models.

When the stability to coalition deviations is under investigation, Rosenthal (1973) is

of no help. There are some positive results of the kind for congestion games (Holzman and

Law-Yone, 1997) or their modifications (Milchtaich, 1996; Konishi et al., 1997a), to say

nothing of a broader coalition formation context. However, there seems to be no single

driving force behind the results.

5 Games with structured utilities

A game with structured utilities Γ may have an arbitrary finite set of players N and

arbitrary sets of strategies whereas the utility functions satisfy certain structural require-

ments. There is a set A of processes and a finite cortege Υi = 〈α1, . . . αmi
〉 (αs ∈ A,

no repetition) of processes where each player i ∈ N participates (given exogenously).

With every α ∈ A, an intermediate utility function is associated, ϕα : XN(α) → R, where

N(α) = {i ∈ N | α ∈ Υi}. The “ultimate” utility functions of the players are built of the

intermediate utilities:

ui(x) = Vi

(〈ϕα(xN(α))〉α∈Υi

)
, (7)

where i ∈ N , x ∈ X, and Vi is a monotonic function defined on the appropriate subset

of Rmi . We call Γ a continuous game with structured utilities if each Xi is a topological

space, while all functions ϕα and Vi are continuous (in the appropriate product topologies);

then each utility function ui is continuous too.

Let us consider a couple of illustrations. The version of Stag Hunt game of Rousseau

considered in Monderer and Shapley (1996, Section 5) is characterized by strategy sets

Xi = {1, 2, . . . , 7} and utilities of the form ui(x) = a·minj∈N xj−b·xi+c. Introducing n+1

processes, αN and αi, i ∈ N , assuming Υi = 〈αN , αi〉, and defining ϕαN
(x) = a ·mini∈N xi

and ϕαi
(xi) = −b·xi+c, we see that our game belongs to the class with Vi(υN , υi) = υN+υi.

A Cournot oligopoly is characterized by Xi ⊆ R and utility functions ui(x) = xi ·
P (

∑
j∈N xj)−Ci(xi). To include the model into the class, we need 2n+1 processes, αN and

αi, βi for i ∈ N , Υi = 〈αN , αi, βi〉, ϕαN
(x) = P (

∑
j∈N xj), ϕαi

(xi) = xi, ϕβi
(xi) = −Ci(xi),
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and Vi(υN , υα
i , υβ

i ) = υN ·υα
i +υβ

i . The aggregation function is not symmetric, so the order

of the processes in Υi matters.

The same concept of a universal aggregation rule will be used. We say that a player i ∈
N in a game Γ uses a universal aggregation rule Ui if the appropriate U

(m)
i is substituted

into (7):

ui(x) = U
(#Υi)
i

(〈ϕα(xN(α))〉α∈Υi

)

for every x ∈ X.

Theorem 3. Let N be a finite set with #N ≥ 2; let 〈Ui〉i∈N be a list of universal ag-

gregation rules such that every function U
(m)
i is continuous and strictly increasing in the

sense of (2). Then the following conditions are equivalent.

3.1. Every continuous game with structured utilities where N is the set of players and

each player i uses the aggregation rule Ui admits a continuous ordinal potential.

3.2. Every game with structured utilities where N is the set of players, each player i uses

the aggregation rule Ui, two players have two strategies each and all other strategy sets

are singletons possesses a Nash equilibrium.

3.3. There is a continuous and strictly increasing mapping ν : R → R and a continuous

and strictly increasing mapping λm
i : m · ν(R) → R for every i ∈ N and m ≥ 1 such that

(3) holds for all v1, . . . , vm ∈ R.

The implication [3.1] ⇒ [3.2] is trivial. The necessity proof, [3.2] ⇒ [3.3], is deferred

to the Appendix (Section D).

Sufficiency proof. ([3.3] ⇒ [3.1]) If [3.3] holds, then ui(x) = λ#Υi

i

(∑
α∈Υi ν(ϕα(xN(α)))

)

for every i ∈ N and x ∈ X. Let us define P : X → R by P (x) =
∑

α∈A ν(ϕα(xN(α))) =∑
α∈Υi ν(ϕα(xN(α))) +

∑
α∈A\Υi ν(ϕα(xN(α))); clearly, P is continuous. For every i ∈ N

and x ∈ X, we have P (x) = (λ#Υi

i )−1
(
ui(x)

)
+Qi(x−i); therefore, P is an ordinal potential

indeed.

As in the case of Theorem 1, the aggregation rule U
(m)
i (v1, . . . , vm) =

∏m
s=1 ν(vs)

is allowed, provided ν(R) ⊆ R++; Kukushkin (1997) used this representation for the

voluntary provision of a public good with Cobb–Douglas utilities. This time, taking the

average is an acceptable aggregation rule because every strategy of a given player in a

given game involves the same processes, so the sum and the average define the same

ordering.

Theorem 4. Let N be a finite set with #N ≥ 2; let 〈Ui〉i∈N be a list of universal ag-

gregation rules such that every function U
(m)
i is continuous and strictly increasing in the

sense of (2). Then every game with structured utilities where N is the set of players and
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each player i uses the aggregation rule Ui admits an exact potential if and only if there

is a continuous and strictly increasing mapping µ : R → R and a constant Cm
i ∈ R for

every i ∈ N and m ≥ 1 such that (5) holds for all v1, . . . , vm ∈ R, i ∈ N and m ≥ 1.

The necessity proof is deferred to the Appendix (Section E).

Sufficiency proof. If (5) holds, then an obvious modification of the proof of [3.3] ⇒ [3.1]

above shows that the same function P becomes an exact potential in this case.

Now it is easy to see that each player in the Stag Hunt game can be assumed using a

universal aggregation rule (8); the presence of an exact potential in such a game accords

with Theorem 4. As to the Cournot oligopoly, the above aggregation function Vi cannot be

represented even in the form (3); the fact that a Cournot model need not generally have an

equilibrium is well known. On the other hand, if we assume that the costs are identical and

linear, Ci(xi) = c·xi, we can, somewhat stretching our basic concepts, represent the model

as one with an aggregation function satisfying (3): A = {αN} ∪ {αi}i∈N ; Υi = 〈αN , αi〉;
ϕαN

(x) = P (
∑

j∈N xj)−c; ϕαi
(xi) = xi; Vi(υN , υi) = υi ·υN ; ν(υ) = log(υ); λ(u) = exp(u).

The representation does not work where ϕαN
(x) ≤ 0, but such strategy profiles do not

pose any problem.

Remark. McManus (1964) proved that identical convex costs are sufficient to ensure the

existence of Cournot equilibrium; this fact appears to have nothing to do with Theorem 3.

Actually, it only holds for decreasing price functions, while identical linear costs ensure

the existence without that assumption.

Theorem 5. A strategic game Γ admits an exact potential if and only if it can be rep-

resented as a game with structured utilities where each player uses the (“exact”) additive

aggregation rule

U (m)(v1, . . . , vm) =
m∑

s=1

vs. (8)

Proof. If (8) holds, the sufficiency part of Theorem 4 applies.

Let P : X → R be an exact potential of Γ. By Theorem 2.1 of Voorneveld et al.

(1999), there are functions Q−i : X−i → R (i ∈ N) such that ui(x) = P (x) + Q−i(x−i)

for all i ∈ N and x ∈ X. We define A = N ∪ {N}, Υi = A \ {i} (i.e., there are n + 1

processes; each player participates in n of them; one process is shared by all players; each

of the other processes is shared by n − 1 players), ϕN(x) = P (x) +
∑

j∈N Q−j(x−j), and

ϕi(x−i) = −Q−i(x−i). Denoting u∗i (x) the structured utilities, we have

u∗i (x) =
∑

α∈Υi

ϕα(xN(α)) = ϕN(x) +
∑

j 6=i

ϕj(x−j) =

P (x) +
∑
j∈N

Q−j(x−j)−
∑

j 6=i

Q−j(x−j) = P (x) + Q−i(x−i) = ui(x)
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for all i ∈ N and x ∈ X.

If Γ is continuous, then, as was noted in Monderer and Shapley (1996), its exact

potential must be continuous too, hence so are all Q−i, hence all ϕα. In other words,

a continuous game admits an exact potential if and only if it can be represented as a

continuous game with structured utilities where each player uses the aggregation rule (8).
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Appendix

First of all, let us note that we refer to the sufficiency proof for Theorem 2 (Section 3) in

the sufficiency proof for Theorem 1 (Section A), whereas the necessity proof for the former

theorem (Section C) is built on the necessity statement of the latter theorem (Section B).

Clearly, there is no circular reasoning here.

A Proof of sufficiency in Theorem 1

Let us prove the implication [1.3] ⇒ [1.1].

Suppose to the contrary that a generalized congestion game Γ admits an improvement

cycle x0, . . . , xm̄ = x0, while the set of players in Γ is N and each player i uses the

aggregation rule Ui. We define N∗ = {i ∈ N | ∃k ∈ {0, . . . , m̄ − 1}[xk+1 Bi xk]} and

Mi = {#xk
i }k∈{0,...,m̄} for each i ∈ N∗. When dealing with the supposed cycle, there is no

need to consider i /∈ N∗ or m /∈ Mi.

Let us fix an i ∈ N∗. We say that m and m′ overlap if λm
i (m·ν(R))∩λm′

i (m′ ·ν(R)) 6= ∅.
In this case ūmm′

i ∈ R satisfying (4) is unique; in particular, ūmm
i = 0. An overlap path

is a sequence m0,m1, . . . , mk such that mh ∈ Mi and mh and mh+1 overlap for each

h ∈ {0, . . . , k − 1}. We call m and m′ contiguous if there is an overlap path m =

m0,m1, . . . , mk = m′. Clearly, Mi is partitioned into equivalence classes. The union of

λm
i (m · ν(R)) for all m from a class is an open interval; such intervals defined by distinct

classes cannot intersect. Therefore, all m ∈ Mi form one equivalence class, i.e., are

contiguous.
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Lemma A.1. Let m0,m1, . . . , mk be an overlap path. Then (4) holds for m = m0,

m′ = mk, and ūmm′
i =

∑k−1
h=0 ū

mhmh+1

i , where each ū
mhmh+1

i is uniquely defined by (4) with

m = mh and m′ = mh+1.

Proof. We argue by induction. For k = 1, the statement is tautological. Let it hold for

overlap paths of the “length” k ≥ 1 or less; we have to prove it for any path of the length

k + 1. For each s = 0, 1, . . . , k + 1, we denote W s = λms
i (ms · ν(R)) ⊆ R.

Supposing first that W k+1 ∩W 0 = ∅, we may assume that w′′ > w for all w′′ ∈ W k+1

and w ∈ W 0 (the case of opposite inequalities is treated dually). Since
⋃k

s=1 W s is an

open interval which intersects with both W k+1 and W 0, there are s and w′ ∈ W s such

that 1 ≤ s ≤ k and w′′ > w′ > w for all w′′ ∈ W k+1 and w ∈ W 0. Let w′ = λms
i (u′).

By the induction hypothesis, we have u′ > u +
∑s−1

h=0 ūmhmh+1 for all u ∈ m0 · ν(R), and

u′′ > u′ +
∑k

h=s ūmhmh+1 for all u′′ ∈ mk+1 · ν(R); therefore, u′′ > u +
∑k

h=0 ūmhmh+1 , i.e.,

(4) holds.

Now let W = W k+1 ∩W 0 6= ∅; then ūm0mk+1 satisfying (4) is unique. Since
⋃k

s=1 W s

is an open interval which intersects with both W k+1 and W 0, there is s (1 ≤ s ≤ k) such

that W s ∩W 6= ∅; therefore, there are u ∈ m0 · ν(R), u′ ∈ ms · ν(R), and u′′ ∈ mk+1 · ν(R)

such that λm0
i (u) = λms

i (u′) = λ
mk+1

i (u′′). By the induction hypothesis, we have u′ =

u +
∑s−1

h=0 ūmhmh+1 and u′′ = u′ +
∑k

h=s ūmhmh+1 , hence u′′ = u +
∑k

h=0 ūmhmh+1 , hence

ūm0mk+1 =
∑k

h=0 ūmhmh+1 .

Thus, the induction step is completed, hence the lemma is proven.

Lemma A.1 immediately implies that, whenever m0, m1, . . . ,mk = m0 is an overlap

cycle, we have
∑k−1

h=0 ū
mhmh+1

i = 0. Now, for each i ∈ N∗ and each m,m′ ∈ Mi, we define

ūmm′
i =

∑k−1
h=0 ū

mhmh+1

i for an overlap path m = m0,m1, . . . ,mk = m′; the value does

not depend on the choice of a particular path. Moreover, ūmm′′
i = ūmm′

i + ūm′m′′
i for all

m,m′,m′′ ∈ Mi.

For each i ∈ N∗, we pick m̄i ∈ Mi, and define Cm
i = ūmm̄i

i whenever i ∈ N∗

and m ∈ Mi, while Cm
i = 0 otherwise. Denoting Γ∗ the game with the same play-

ers, processes, intermediate utilities, and strategies, but with the aggregation functions

U
(m)
i (v1, . . . , vm) =

∑m
s=1 ν(vs) + Cm

i , we see that x0, . . . , xm̄ = x0 is an improvement

cycle in Γ∗ as well: ui(x
k+1) > ui(x

k) implies λ
#xk+1

i
i

(∑
α∈xk+1

i
ν
(
ϕα(#N(α, xk+1))

))
>

λ
#xk

i
i

(∑
α∈xk

i
ν
(
ϕα(#N(α, xk))

))
, hence, by condition (4),

∑
α∈xk+1

i
ν
(
ϕα(#N(α, xk+1))

)
>

∑
α∈xk

i
ν
(
ϕα(#N(α, xk))

)
+ ū

#xk
i #xk+1

i
i =

∑
α∈xk

i
ν
(
ϕα(#N(α, xk))

)
+ ū

#xk
i m̄i

i − ū
#xk+1

i m̄i

i ,

hence u∗i (x
k+1) > u∗i (x

k). Now we have a contradiction with the sufficiency part of Theo-

rem 2 (Section 3).

Remark. Replacing our hypothetical improvement cycle with a “weak improvement cy-

cle” of Voorneveld and Norde (1996) and referring to the main theorem of that paper,
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we would prove the existence of an ordinal potential. However, the FIP appears a much

more important property.

B Proof of necessity in Theorem 1

Let us prove the implication [1.2] ⇒ [1.3].

B.1 Basic lemmas

Lemma B.1. Let i, j ∈ N , m ≥ 2, υ1, υ
′
1, υ2, υ

′
2 ∈ R, 1 ≤ s1, s2 ≤ m, s1 6= s2, w, w′ ∈ Rm,

ws1 = υ1, ws2 = υ2, w′
s1

= υ′1, w′
s2

= υ′2, ws = w′
s for all s 6= s1, s2, and

U
(m)
i (w) ≤ U

(m)
i (w′); (9a)

let m′ ≥ 2, 1 ≤ s′1, s
′
2 ≤ m′, s′1 6= s′2, w′′, w′′′ ∈ Rm′

, w′′
s′1

= υ1, w′′
s′2

= υ2, w′′′
s′1

= υ′1,

w′′′
s′2

= υ′2, and w′′
s = w′′′

s for all s 6= s′1, s
′
2. Then

U
(m′)
j (w′′) ≤ U

(m′)
j (w′′′). (9b)

The interpretation of the statement should be clear: if a simultaneous replacement of

υ1 with υ′1, and of υ2 with υ′2 did not produce an increase of the utility U
(m)
i , then the

same replacement must not increase any utility U
(m′)
j under any circumstances.

Proof. Assuming first that i 6= j, we suppose to the contrary that U
(m′)
j (w′′) > U

(m′)
j (w′′′).

Defining w′′′(δ) ∈ Rm′
by w′′′(δ)s′1 = υ′1 + δ and w′′′(δ)s = w′′′

s for all s 6= s′1, and

w′(δ) ∈ Rm by w′(δ)s1 = υ′1 + δ and w′(δ)s = w′
s for all s 6= s1, we can pick δ > 0 such

that u2
j = U

(m′)
j (w′′) > U

(m′)
j (w′′′(δ)) = u1

j ; by monotonicity from (9a), u1
i = U

(m)
i (w) <

U
(m)
i (w′(δ)) = u2

i .

Let us consider a generalized congestion game with m + m′ + 1 processes where each

player k ∈ N uses the aggregation rule Uk: A = {a, b, c, d, g} ∪ {es}s=1,...,m, s1 6=s6=s2 ∪
{fs}s=1,...,m′, s′1 6=s6=s′2 ; Xi = {α1, α2}, where #α1 = #α2 = m, α1

s1
= a, α1

s2
= b, α2

s1
= c,

α2
s2

= d, and αk
s = es for k = 1, 2 and s 6= s1, s2; Xj = {β1, β2}, where #β1 = #β2 = m′,

β1
s′1

= a, β1
s′2

= b, β2
s′1

= c, β2
s′2

= d, and βk
s = fs for k = 1, 2 and s 6= s′1, s

′
2; Xk =

{〈g〉}

for k ∈ N \ {i, j}; ϕa(1) = ϕc(1) = υ′1 + δ, ϕa(2) = ϕc(2) = υ1; ϕb(1) = ϕd(1) = υ′2,

ϕb(2) = ϕd(2) = υ2; ϕes(1) = ws (s = 1, . . . , m, s1 6= s 6= s2), ϕfs(1) = w′′
s (s =

1, . . . , m′, s′1 6= s 6= s′2). The 2 × 2 matrix of the essential part of the game looks as

follows:
β1 β2

α1 (u1
i , u

2
j) (u2

i , u
1
j)

α2 (u2
i , u

1
j) (u1

i , u
2
j).
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Since u2
k > u1

k (k = i, j), the game possesses no Nash equilibrium.

If i = j, we pick k 6= i (we have assumed n ≥ 2 !) and obtain

U
(m)
k (w) ≤ U

(m)
k (w′)

first, and then (9b).

The exact analogues of Lemma B.1 with equalities in (9) as well as strict inequalities

of the same sign easily follow.

Lemma B.2. Let i ∈ N , m ≥ 2, υ1, υ2 ∈ R, 1 ≤ s1, s2 ≤ m, s1 6= s2, w, w′ ∈ Rm,

ws1 = υ1 = w′
s2

, ws2 = υ2 = w′
s1

, and ws = w′
s for all s 6= s1, s2; then

U
(m)
i (w) = U

(m)
i (w′). (10)

Proof. Applying Lemma B.1 with i = j, m′ = m, υ′2 = υ1, υ′1 = υ2, s′1 = s2, and s′2 = s1,

we obtain U
(m)
i (w) ≤ U

(m)
i (w′) ⇒ U

(m)
i (w′) ≤ U

(m)
i (w), hence (10).

Lemma B.3. Let i ∈ N and v′s, v
′′
s , v

′′′
s ∈ R for s = 1, 2; let

U
(2)
i (v′1, v

′′
2) = U

(2)
i (v′′1 , v

′
2) (11a)

and

U
(2)
i (v′1, v

′′′
2 ) = U

(2)
i (v′′1 , v

′′
2) = U

(2)
i (v′′′1 , v′2). (11b)

Then

U
(2)
i (v′′1 , v

′′′
2 ) = U

(2)
i (v′′′1 , v′′2). (12)

Proof. Supposing the contrary, we may, without restricting generality, assume Ui(v
′′′
1 , v′′2) >

Ui(v
′′
1 , v

′′′
2 ). By continuity, there exists δ1 > 0 such that

Ui(v
′′′
1 − δ1, v

′′
2) > Ui(v

′′
1 , v

′′′
2 ). (13a)

Pick j 6= i; by Lemma B.1, the equalities (11) are valid for U
(2)
j as well. By monotonic-

ity from (11b) for j, Uj(v
′′
1 , v

′′
2) > Uj(v

′′′
1 − δ1, v

′
2); therefore, there is δ2 > 0 such that

Uj(v
′′
1 , v

′′
2) > Uj(v

′′′
1 − δ1, v

′
2 + δ2); by continuity, there is δ′1 > 0 such that

Uj(v
′′
1 − δ′1, v

′′
2) > Uj(v

′′′
1 − δ1, v

′
2 + δ2). (13b)

By monotonicity from (13a), Ui(v
′′′
1 − δ1, v

′′
2) > Ui(v

′′
1 − δ′1, v

′′′
2 ), hence, by continuity, there

is δ′2 > 0 such that

Ui(v
′′′
1 − δ1, v

′′
2 − δ′2) > Ui(v

′′
1 − δ′1, v

′′′
2 ). (13c)

By monotonicity from (11a),

Ui(v
′′
1 , v

′
2 + δ2) > Ui(v

′
1, v

′′
2); (13d)
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by monotonicity from (11b) for j,

Uj(v
′
1, v

′′′
2 ) > Uj(v

′′
1 , v

′′
2 − δ′2). (13e)

Now we denote u1
i = Ui(v

′
1, v

′′
2), u2

i = Ui(v
′′
1 , v

′
2 + δ2), u1

j = Uj(v
′′′
1 − δ1, v

′
2 + δ2),

u2
j = Uj(v

′′
1 − δ′1, v

′′
2), u3

j = Uj(v
′′
1 , v

′′
2 − δ′2), u4

j = Uj(v
′
1, v

′′′
2 ), u3

i = Ui(v
′′
1 − δ′1, v

′′′
2 ), and

u4
i = Ui(v

′′′
1 − δ1, v

′′
2 − δ′2). We have u2

i > u1
i by (13d), u2

j > u1
j by (13b), u4

i > u3
i by (13c),

and u4
j > u3

j by (13e).

Let us consider a generalized congestion game with the set of players N where each

player k uses the aggregation rule Uk: A = {a, b, c, d, e}; Xi =
{〈a, c〉, 〈b, d〉}; Xj ={〈b, c〉, 〈a, d〉}; Xk =

{〈e〉} for k ∈ N \{i, j}; ϕa(2) = v′1, ϕa(1) = v′′′1 −δ1; ϕb(2) = v′′1−δ′1,

ϕb(1) = v′′1 ; ϕc(2) = v′′2 − δ′2, ϕc(1) = v′′2 ; ϕd(2) = v′2 + δ2, ϕd(1) = v′′′2 . The 2 × 2 matrix

of the essential part of the game looks as follows:

bc ad

ac (u4
i , u

3
j) (u1

i , u
4
j)

bd (u3
i , u

2
j) (u2

i , u
1
j).

There is no Nash equilibrium in the game.

Those lemmas are sufficient for additive representation (3).

Lemma B.1 and its analogues imply that all two-dimensional sections of all func-

tions U
(m)
i (i ∈ N , m = 2, . . . ) define the same ordering on R2, which is symmetric by

Lemma B.2. In other words, the ordering defined by each function U
(m)
i (i ∈ N , m > 2)

on Rm admits a separable projection to every two-dimensional subspace; by the main

result of Gorman (1968), it admits an additive representation. For m = 2, Lemma B.3

implies that the condition depicted in Figure 1(a) of Debreu (1960) holds; therefore, by

the Blaschke–Thomsen results cited by Debreu, we have the additive representation for

m = 2 as well. Unfortunately, those references give us no way to show that the same

function ν can be used for all i ∈ N , all m ≥ 1, and all coordinates.

Fishburn (1970; Chapter 5) provides almost complete proofs for a version of the

Debreu–Gorman Theorem and a version of the Blaschke–Thomsen result. It is easily

seen from the proofs that, under symmetry, the same function ν can be used everywhere.

Unfortunately, in both cases the assumptions are stronger than what is obtained from the

lemmas of Section B.1.

In order not to leave our main results without secure foundation, the next subsection

contains a complete derivation of (3) from the lemmas. The scheme is essentially the

same as in Kukushkin (1994), but symmetry simplifies everything considerably. By the

way, the necessity of additivity in the latter paper, unlike the current situation, could not

be derived from the Debreu–Gorman Theorem.

A straightforward corollary to Lemma B.3 is useful in the following.
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Lemma B.4. Let i ∈ N and v′s, v
′′
s , v

′′′
s ∈ R for s = 1, 2; let

U
(2)
i (v′1, v

′′
2) = U

(2)
i (v′′1 , v

′
2), (14a)

U
(2)
i (v′′1 , v

′′
2) = U

(2)
i (v′′′1 , v′2), (14b)

and

U
(2)
i (v′′1 , v

′′′
2 ) = U

(2)
i (v′′′1 , v′′2). (14c)

Then

U
(2)
i (v′1, v

′′′
2 ) = U

(2)
i (v′′1 , v

′′
2). (15)

Proof. Without restricting generality, we may assume that v′s < v′′s < v′′′s for both s.

If the left hand side in (15) is greater than the right hand side, then there is v∗2 ∈]v′′2 , v
′′′
2 [

such that U
(2)
i (v′1, v

∗
2) = U

(2)
i (v′′1 , v

′′
2). Now we apply Lemma B.3, replacing v′′′2 with v∗2,

and obtain U
(2)
i (v′′1 , v

∗
2) = U

(2)
i (v′′′1 , v′′2)[= U

(2)
i (v′′1 , v

′′′
2 )]. Since v∗2 < v′′′2 , this contradicts

strict monotonicity (2).

Similarly, if the left hand side in (15) is less than the right hand side, then there

is v∗1 ∈]v′1, v
′′
1 [ such that U

(2)
i (v∗1, v

′′′
2 ) = U

(2)
i (v′′1 , v

′′
2). Now we apply Lemma B.3 to

〈v′′′1 , v′′1 , v
∗
1〉 and 〈v′′′2 , v′′2 , v

′
2〉 (i.e., reversing the order of vs and replacing v′1 with v∗1), ob-

taining U
(2)
i (v∗1, v

′′
2) = U

(2)
i (v′′1 , v

′
2)[= U

(2)
i (v′1, v

′′
2)]. Since v′1 < v∗1, this contradicts strict

monotonicity again.

B.2 Additive representation

First of all, we fix a player; without restricting generality, 1 ∈ N . An integer net is

a strictly increasing mapping ψ : H → R, where H is the set of integers h satisfying

h− < h < h+ (h− ∈ {−∞, . . . ,−2,−1}, h+ ∈ {2, 3, . . . , +∞} ), such that:

ψ(0) = 0; (16a)

U
(2)
1

(
ψ(h + 1), ψ(k)

)
= U

(2)
1

(
ψ(h), ψ(k + 1)

)
(16b)

for all h− < h, k < h+ − 1; if h+ < +∞, then

U
(2)
1

(
ψ(h+ − 1), ψ(1)

)
> U

(2)
1 (v, 0) (16c)

for all v ∈ R; if h− > −∞, then

U
(2)
1

(
v, ψ(1)

)
> U

(2)
1

(
ψ(h− + 1), 0

)
(16d)

for all v ∈ R.
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Lemma B.5. Let ψ be an integer net. Then whenever j ∈ N , m̄ ≥ 2, and h′k, hk ∈ H

for all k = 1, . . . , m̄, we have

U
(m̄)
j

(〈ψ(h′k)〉k
) ≥ U

(m̄)
j

(〈ψ(hk)〉k
) ⇐⇒

m̄∑

k=1

h′k ≥
m̄∑

k=1

hk. (17)

Proof. First, we show that an equality in the right hand side of (17) implies an equality

in the left hand side. Taking into account the symmetry of U
(m̄)
j , it is obviously sufficient

to show

U
(m̄)
j

(
ψ(h1 + 1), ψ(h2), ψ(h3), . . . , ψ(hm̄)

)
=

U
(m̄)
j

(
ψ(h1), ψ(h2 + 1), ψ(h3), . . . , ψ(hm̄)

)
(18)

whenever h− < hk, h1 + 1, h2 + 1 < h+ (k = 1, . . . , m̄). By (16b), we have U
(2)
1

(
ψ(h1 +

1), ψ(h2)
)

= U
(2)
1

(
ψ(h1), ψ(h2 + 1)

)
. Now we can apply the analogue of Lemma B.1 with

equalities in (9), setting i = 1, m = 2, w =
(
ψ(h1 + 1), ψ(h2)

)
, w′ =

(
ψ(h1), ψ(h2 +

1)
)
, m′ = m̄, w′′ =

(
ψ(h1 + 1), ψ(h2), ψ(h3), . . . , ψ(hm̄)

)
, and w′′′ =

(
ψ(h1), ψ(h2 +

1), ψ(h3), . . . , ψ(hm̄)
)
. Then (9b) with an equality becomes just (18).

If there is a strong inequality in the right hand side of (17), we can find 〈h′′k〉k=1,...,m̄

such that
∑m̄

k=1 h′′k =
∑m̄

k=1 hk while 〈h′k〉k=1,...,m̄ Pareto dominates 〈h′′k〉k=1,...,m̄. Now

U
(m̄)
j

(〈ψ(h′k)〉k
)

> U
(m̄)
j

(〈ψ(h′′k)〉k
)

= U
(m̄)
j

(〈ψ(hk)〉k
)

by the strict monotonicity of U
(m̄)
j

and the findings of the previous paragraph. Finally, an (in)equality in the left hand side

of (17) implies the same (in)equality in the right hand side because
∑m̄

k=1 h′k and
∑m̄

k=1 hk

are always comparable.

Lemma B.6. There exists an integer net.

Proof. First, we define ψ(0) = 0 and pick ψ(1) > 0 arbitrarily. Then we define ψ(h + 1)

for integer h ≥ 1 inductively, by the equalities

U
(2)
1

(
0, ψ(h + 1)

)
= U

(2)
1

(
ψ(1), ψ(h)

)
. (19a)

There are two alternatives: either no solution ψ(h + 1) to (19a) can be found at a stage

h ≥ 1, in which case we stop the process and define h+ = h + 1; or ψ(h) will be defined

for all h ≥ 0, in which case we set h+ = +∞.

For h ≤ 0, ψ(h− 1) is also defined inductively, by the equalities

U
(2)
1

(
ψ(1), ψ(h− 1)

)
= U

(2)
1

(
0, ψ(h)

)
. (19b)

Note that (19a) and (19b) only differ in their viewpoint. Again, if no solution ψ(h− 1) to

(19b) can be found at a stage h ≤ 0, we stop the process and define h− = h− 1; if ψ(h)

is defined for all h ≤ 0, we set h− = −∞.
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Turning to the definition (16), we notice that the condition (16a) is satisfied automat-

ically. Let us check (16b); note that we already have it for all k if h = 0 (and for all h if

k = 0). We organize two inductive processes in h, upwards and downwards; inside each

step of each process, we organize two inductive processes in k. Each step consists in an

application of Lemma B.3 or Lemma B.4 with i = 1.

On a “double upward” step (h, k > 0), we assume v′1 = ψ(h − 1), v′′1 = ψ(h), v′′′1 =

ψ(h + 1), v′2 = ψ(k − 1), v′′2 = ψ(k), and v′′′2 = ψ(k + 1). Now we have (11a) and “a half”

of (11b) from the induction hypothesis of the h-process, and the “second half” of (11b)

from the induction hypothesis of the k-process. The statement of Lemma B.3, (12), gives

us (16b).

Similarly, on a “double downward” step (h, k < 0), we assume v′1 = ψ(h + 2), v′′1 =

ψ(h + 1), v′′′1 = ψ(h), v′2 = ψ(k + 2), v′′2 = ψ(k + 1), and v′′′2 = ψ(k). Again, we have (11a)

and “a half” of (11b) from the induction hypothesis of the h-process, and the “other half”

of (11b) from the induction hypothesis of the k-process. The statement of Lemma B.3

gives us (16b).

Because of the symmetry of U
(2)
1 , we may only consider one “upward-downward”

step; let h < 0 and k > 0. From the induction hypothesis of the k-process, we have

U
(2)
1

(
ψ(h), ψ(k)

)
= U

(2)
1

(
ψ(h + 1), ψ(k − 1)

)
; from the induction hypothesis of the h-

process, U
(2)
1

(
ψ(h + 1), ψ(k)

)
= U

(2)
1

(
ψ(h + 2), ψ(k − 1)

)
and U

(2)
1

(
ψ(h + 1), ψ(k + 1)

)
=

U
(2)
1

(
ψ(h + 2), ψ(k)

)
. Assuming v′1 = ψ(h), v′′1 = ψ(h + 1), v′′′1 = ψ(h + 2), v′2 = ψ(k − 1),

v′′2 = ψ(k), and v′′′2 = ψ(k + 1), we apply Lemma B.4. The statement of the lemma, (15),

gives us (16b).

Finally, let us turn to (16c) and (16d). If h+ < +∞, but (16c) does not hold, i.e.,

there is v ∈ R such that U
(2)
1 (0, v) ≥ U

(2)
1 (ψ(1), ψ(h+ − 1)), then a solution to (19a) with

h = h+ − 1 exists, so our inductive process could not have stopped here. Quite similarly,

the “downward” process (19b) can only stop at a finite h if (16d) is satisfied.

Let ψ and ψ̄ be two integer nets; we call ψ̄ a doubling of ψ if, whenever 2h ∈ H̄, we

have h ∈ H and ψ(h) = ψ̄(2h). Clearly, h̄± = ±∞ only if h± = ±∞. A binary net is an

infinite sequence of integer nets ψ0, ψ1, . . . such that each ψd+1 is a doubling of ψd.

Lemma B.7. There exists a binary net.

Proof. It is obviously sufficient to prove that every integer net admits a doubling. From

U
(2)
1 (ψ(1), ψ(1)) > U

(2)
1 (ψ(1), 0) > U

(2)
1 (0, 0) and continuity, we immediately derive the

existence of t∗ ∈]0, ψ(1)[ such that U
(2)
1 (t∗, t∗) = U

(2)
1 (ψ(1), 0). We define ψ̄(1) = t∗ and

ψ̄(2h) = ψ(h) for every h ∈ H. The definition of ψ̄(h) for odd h depends on the sign.

For h ≥ 1, we try to define ψ̄(2h + 1) by the equality

U
(2)
1

(
ψ̄(2h + 1), 0

)
= U

(2)
1

(
ψ̄(2h), ψ̄(1)

)
; (20a)
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if (h + 1) ∈ H, then we have U
(2)
1 (ψ(h + 1), 0) = U

(2)
1 (ψ(h), ψ(1)) > U

(2)
1 (ψ̄(2h), ψ̄(1)) >

U
(2)
1 (ψ̄(2h), 0) = U

(2)
1 (ψ(h), 0), hence there is a unique solution to (20a), which satisfies

ψ(h) < ψ̄(2h + 1) < ψ(h + 1). In particular, if h+ = +∞, then ψ̄(h) is defined for all

h ≥ 0, i.e., h̄+ = +∞ as well. If h+ < +∞, then (20a) for h = h+ − 1 may, or may not,

admit a solution; in the first case, we set h̄+ = 2h+; in the second, h̄+ = 2h+ − 1.

For h ≤ 0, we try to define ψ̄(2h− 1) by the equality

U
(2)
1

(
ψ̄(2h− 1), ψ(1)

)
= U

(2)
1

(
ψ̄(2h), ψ̄(1)

)
; (20b)

if (h − 1) ∈ H, then we have U
(2)
1 (ψ(h), ψ(1)) > U

(2)
1 (ψ̄(2h), ψ̄(1)) > U

(2)
1 (ψ̄(2h), 0) =

U
(2)
1 (ψ(h− 1), ψ(1)), hence there is a unique solution to (20b), which satisfies ψ(h− 1) <

ψ̄(2h − 1) < ψ(h). In particular, if h− = −∞, then ψ̄(h) is defined for all h ≤ 0, i.e.,

h̄− = −∞ as well. If h− > −∞, then (20b) for h = h− + 1 may, or may not, admit a

solution; in the first case, we set h̄− = 2h−; in the second, h̄− = 2h− + 1.

Let us check (16b). By the definition of ψ̄(1), we have U
(2)
1 (ψ̄(1), ψ̄(1)) = U

(2)
1 (ψ(1), 0) =

U
(2)
1 (ψ̄(2), 0). By symmetry, we have U

(2)
1 (ψ̄(1), ψ̄(2)) = U

(2)
1 (ψ̄(2), ψ̄(1)), while the

right hand side, by the definition of ψ̄(3), equals U
(2)
1 (ψ̄(3), 0). Applying Lemma B.3

with v′1 = ψ̄(1), v′′1 = ψ̄(2), v′′′1 = ψ̄(3), v′2 = 0, v′′2 = ψ̄(1), and v′′′2 = ψ̄(2), we

obtain U
(2)
1 (ψ̄(3), ψ̄(1)) = U

(2)
1 (ψ̄(2), ψ̄(2)). Then we notice that U

(2)
1 (ψ̄(2), ψ̄(2)) =

U
(2)
1 (ψ(1), ψ(1)) = U

(2)
1 (ψ(2), 0) = U

(2)
1 (ψ̄(4), 0); therefore, we can apply Lemma B.3

with v′1 = ψ̄(2), v′′1 = ψ̄(3), v′′′1 = ψ̄(4), v′2 = 0, v′′2 = ψ̄(1), and v′′′2 = ψ̄(2), obtaining

U
(2)
1 (ψ̄(3), ψ̄(2)) = U

(2)
1 (ψ̄(4), ψ̄(1)). By the definition of ψ̄(5), the right hand side equals

U
(2)
1 (ψ̄(5), 0), so we can again apply Lemma B.3 and so on.

The downward movement is executed in a similar way. By the definition of ψ̄(−1),

we have U
(2)
1 (ψ̄(−1), ψ̄(2)) = U

(2)
1 (0, ψ̄(1)). Applying Lemma B.3 with v′1 = ψ̄(1), v′′1 = 0,

v′′′1 = ψ̄(−1), v′2 = ψ̄(2), v′′2 = ψ̄(1), and v′′′2 = 0, we obtain U
(2)
1 (ψ̄(−1), ψ̄(1)) = U

(2)
1 (0, 0).

Now (16b) for ψ implies U
(2)
1 (0, 0) = U

(2)
1 (ψ(−1), ψ(1)) = U

(2)
1 (ψ̄(−2), ψ̄(2)); therefore, we

can apply Lemma B.3 with v′1 = 0, v′′1 = ψ̄(−1), v′′′1 = ψ̄(−2), v′2 = ψ̄(2), v′′2 = ψ̄(1), and

v′′′2 = 0, obtaining U
(2)
1 (ψ̄(−1), 0) = U

(2)
1 (ψ̄(−2), ψ̄(1)). The definition of ψ̄(−3) implies

that the right hand side equals U
(2)
1 (ψ̄(−3), ψ̄(2)), so Lemma B.3 can be applied again

and so on.

Thus, (16b) for ψ̄ holds whenever k = 0 or k = 1 (hence when h = 0 or h = 1 as

well); the derivation of (16b) for all k and h is done by the same double induction as in

the proof of Lemma B.6.

Checking (16c) for ψ̄ is straightforward: If (20a) admits no solution for h = h+ − 1,

then (16c) must hold for h̄+ = 2h+− 1. If a solution ψ̄(2h+− 1) exists, then U
(2)
1 (ψ(h+−

1), ψ(1)) = U
(2)
1 (ψ̄(2h+ − 2), ψ̄(2)) = U

(2)
1 (ψ̄(2h+ − 1), ψ̄(1)) by (16b) for ψ̄, so (16c) for

ψ implies (16c) for ψ̄.

Finally, let us suppose that (16d) for ψ̄ is violated; then U
(2)
1

(
v′1, ψ̄(1)

)
= U

(2)
1

(
ψ̄(h̄−+
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1), 0
)

for a v′1 < ψ̄(h̄−+1). If (20b) admits no solution for h = h−+1, then h̄−+1 = 2h−+2.

Denoting v′′1 = ψ̄(2h− + 2) = ψ(h− + 1), v′′′1 = ψ̄(2h− + 3), v′2 = 0, v′′2 = ψ̄(1), and

v′′′2 = ψ̄(2) = ψ(1), we have (14a) from the definition of v′1, and (14b) and (14c) from

(16b) for ψ̄. Now Lemma B.4 renders U
(2)
1 (v′1, ψ(1)) = U

(2)
1 (ψ̄(2h− + 2), ψ̄(1)), i.e., v′1 is a

solution of (20b) with h = h− + 1.

Similarly, if (20b) with h = h−+1 was satisfied by ψ̄(2h−+1), then h̄−+1 = 2h−+1.

We denote v′′1 = ψ̄(2h− + 1), v′′′1 = ψ̄(2h− + 2) = ψ(h− + 1), v′2 = 0, v′′2 = ψ̄(1), and

v′′′2 = ψ̄(2) = ψ(1); again, all equalities (14) follow from the definition of v′1 and (16b)

for ψ̄. Lemma B.4 renders U
(2)
1 (v′1, ψ(1)) = U

(2)
1 (ψ̄(2h− + 1), ψ̄(1))[= U

(2)
1 (ψ(h− + 1), 0)].

Now we see that (16d) is violated for ψ itself.

Let us fix a binary net ψ0, ψ1, . . . and denote Ψ = {ψd(h)}d∈N, h∈Hd .

Lemma B.8. The set Ψ is dense in R.

Proof. Suppose the contrary: there are u− < u+ such that Ψ ∩ [u−, u+] = ∅. We denote

Ψ− = {t ∈ Ψ| t ≤ u−} and Ψ+ = {t ∈ Ψ| t ≥ u+}. There are three alternatives:

1. Ψ− 6= ∅ 6= Ψ+;

2. Ψ+ = ∅;

3. Ψ− = ∅.

Step B.8.1. The first alternative cannot hold.

Proof. Denoting τ− = sup Ψ− and τ+ = inf Ψ+, we have τ− ≤ u− < u+ ≤ τ+ and

Ψ∩]τ−, τ+[= ∅. By monotonicity,

U
(2)
1 (τ+, τ+) > U

(2)
1 (τ−, τ+) > U

(2)
1 (τ−, τ−);

by continuity, there are open intervals V+ and V− containing τ+ and τ−, respectively, and

such that the strict inequalities are retained on V+ × V+, V− × V+, and V− × V− (hence

V− ∩ V+ = ∅).
Clearly, there are d−, d+ ∈ N, h− ∈ Hd− and h+ ∈ Hd+ such that ψd−(h−) ∈ V−

and ψd+(h+) ∈ V+. Defining d = max{d−, d+}, we see that {ψd(h)}h∈Hd intersects both

V− and V+; therefore, ψd(h) ∈ V− and ψd(h + 1) ∈ V+ for some h ∈ Hd 3 (h + 1).

Let us note that ψd(h) = ψd+1(2h) < ψd+1(2h + 1) < ψd+1(2h + 2) = ψd(h + 1) and

ψd+1(2h + 1) /∈]τ−, τ+[.

Let ψd+1(2h + 1) ≤ τ−; then ψd+1(2h + 1) ∈ V−. Therefore, U
(2)
1

(
ψd+1(2h), ψd+1(2h +

2)
)

> U
(2)
1

(
ψd+1(2h + 1), ψd+1(2h + 1)

)
, but this contradicts (16b).

The assumption ψd+1(2h + 1) ≥ τ+ is refuted dually.
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Step B.8.2. The second alternative cannot hold.

Proof. We denote τ+ = sup Ψ < +∞; by the continuity and strict monotonicity of U
(2)
1 ,

there are ∆, ∆′ > 0 such that

U
(2)
1 (τ+ + ∆, 0) > U

(2)
1 (τ+, ∆′).

By Step B.8.1, there is d ∈ N such that ψd(1) < ∆′. We consider two alternatives.

If h+d
< +∞, then U

(2)
1 (τ+ + ∆, 0) > U

(2)
1 (τ+, ψd(1)) ≥ U

(2)
1 (ψd(h+d − 1), ψd(1)),

contradicting (16c).

Let h+d
= +∞; then τ+ = sup{ψd(h)}h∈N. By continuity from U

(2)
1 (τ+, ψd(1)) >

U
(2)
1 (τ+, 0), there is τ∗ < τ+ such that U

(2)
1 (t, ψd(1)) > U

(2)
1 (t′, 0) whenever t > τ∗ and

t′ < τ+. On the other hand, if ψd(h) > τ∗, then ψd(h + 1) < τ+, but U
(2)
1 (ψd(h), ψd(1)) =

U
(2)
1 (ψd(h + 1), 0).

Step B.8.3. The third alternative cannot hold.

The proof is dual to that of Step B.8.2. The lemma is proved.

Lemma B.9. For all d, d′ ∈ N, h ∈ Hd, and h′ ∈ Hd′, there holds ψd′(h′) ≥ ψd(h) ⇐⇒
h′/2d′ ≥ h/2d.

Proof. When d = d′, this is just the monotonicity of ψd. Then a straightforward inductive

process in max{d′, d} −min{d′, d} based on the definition of a doubling works.

For every d ∈ N, we denote q+
d = (h+d − 1)/2d and q−d = (h−d

+ 1)/2d; then we define

Q =
⋃

d∈N[q
−
d , q+

d ] \ {+∞,−∞}. Clearly, Q is a non-degenerate interval (actually, open).

For every v ∈ R, we define ν(v) = sup{h/2d| d ∈ N & h ∈ Hd & ψd(h) ≤ v}. By

Lemmas B.8 and B.9, ν is strictly increasing and ν(v) ∈ Q for every v ∈ R. Conversely,

if w ∈ Q, we define v = sup{ψd(h)| d ∈ N & h ∈ Hd & h/2d ≤ w} and easily derive

from Lemma B.8 that w = ν(v). Thus, we have a strictly increasing mapping onto a

non-degenerate interval; therefore, both ν and its inverse are continuous.

Now let us turn to (3). It is sufficient to prove

U
(m)
i (v′1, . . . , v

′
m) ≥ U

(m)
i (v1, . . . , vm) ⇐⇒

m∑
s=1

ν(v′s) ≥
m∑

s=1

ν(vs) (21)

for all i ∈ N , m ∈ N, and v′1, v1, . . . , v
′
m, vm ∈ R.

Suppose ∆ =
∑m

s=1 ν(v′s) −
∑m

s=1 ν(vs) > 0. By Lemma B.8, for every s = 1, . . . , m,

there is d′s ∈ N such that ψd′s(h) ≤ v′s for some h ∈ Hd′s and ds ∈ N such that ψds(h) > vs

for some h ∈ Hds . Let us pick d ∈ N such that d ≥ maxs max{d′s, ds} and 2d−1 ≥
m/∆. For every s = 1, . . . , m, we denote h′s = max{h ∈ Hd| ψd(h) ≤ v′s} and hs =

min{h ∈ Hd| ψd(h) > vs}. Clearly, we have h′s/2
d ≤ ν(v′s) < (h′s + 1)/2d and (hs −

22



1)/2d ≤ ν(vs) < hs/2
d for all s. Therefore,

∑m
s=1(h

′
s/2

d) >
∑m

s=1 ν(v′s) − m/2d and∑m
s=1(hs/2

d) ≤ ∑m
s=1 ν(vs)+m/2d, hence

∑m
s=1(h

′
s/2

d)−∑m
s=1(hs/2

d) > ∆− 2m/2d ≥ 0,

hence
∑m

s=1 h′s >
∑m

s=1 hs. Now Lemma B.5 (for ψd) and strict monotonicity of U
(m)
i

imply a strict inequality in the left hand side of (21).

An equality in the right hand side of (21) means that we have both strict inequalities

in any open neighborhood, hence the same inequalities in the left hand side of (21), hence

an equality.

The opposite implication is proven exactly as in Lemma B.5. Now (21) is proven,

hence so is (3).

B.3 Consistency

Now let us turn to the second statement in [1.3]. If m′ = m, then ūmm = 0 obviously

satisfies (4). If λm
i (m · ν(R)) ∩ λm′

i (m′ · ν(R)) = ∅, then either λm′
i (u′) > λm

i (u) for all

u′ ∈ m′ · ν(R) and u ∈ m · ν(R), or vice versa. In the first case, we define ūmm′
= −∞; in

the second, ūmm′
= +∞. The condition (4) obviously holds.

Let us fix i ∈ N and m′ > m ≥ 1 such that V = λm
i (m · ν(R)) ∩ λm′

i (m′ · ν(R)) 6=
∅. Obviously, V is an open interval (bounded or not), hence W ′ = (λm′

i )−1(V ) and

W = (λm
i )−1(V ) are open intervals too. We denote ν(+∞) (respectively, ν(−∞) ) the

supremum (infimum) of ν(R). If ν(R) = R, much of the following becomes superfluous,

but there is no ground for such a simplifying assumption. In any case, ν(R) =]ν(−∞),

ν(+∞)[.

Let u1 > u2 and ut ∈ V for t = 1, 2, i.e.,

ut = λm
i (σt) = λm′

i (σ′t) & σt ∈ m · ν(R) & σ′t ∈ m′ · ν(R) for t = 1, 2. (22a)

There exist vt ∈ R such that σt = m · ν(vt) (t = 1, 2). If u1 and u2 are close enough to

each other, then

σ′1 − σ′2 < (m′ −m) · [ν(+∞)− ν(−∞)] (22b)

(if ν(R) = R, the inequality holds for all u1, u2). It can be rewritten as σ′2 − (m′ −m) ·
ν(−∞) > σ′1 − (m′ − m) · ν(+∞). Since the left-hand side is greater than m · ν(−∞)

whereas the right-hand side is less than m · ν(+∞), there is σ0 ∈ m · ν(R) such that

σ′t ∈ σ0 + (m′ − m) · ν(R) for both t. Therefore, there are v0, v̄1, v̄2 ∈ R such that

σ′t = m · ν(v0) + (m′ −m) · ν(v̄t) for both t.

Lemma B.10. If both conditions (22) hold, then σ1 − σ2 = σ′1 − σ′2.

Proof. Let us suppose first that σ1 − σ2 > σ′1 − σ′2. We pick δ > 0 such that

σ′1 − σ′2 < (m′ −m) · [ν(v̄1 + δ)− ν(v̄2 − δ)] < σ1 − σ2
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(the first inequality holds automatically). Denoting σ2
j = σ2 + (m′ −m) · ν(v̄1 + δ) and

σ1
j = σ1 + (m′ −m) · ν(v̄2 − δ), we see that σ1

j > σ2
j ; since both belong to m′ · ν(R), there

is σ0
j ∈ m′ · ν(R) such that

σ1
j > σ0

j > σ2
j ; (23a)

clearly, σ0
j = m′ · ν(v̂) for v̂ ∈ R. We denote u′′ = λm′

i (m · ν(v0) + (m′ −m) · ν(v̄2 − δ))

and u′ = λm′
i (m · ν(v0) + (m′ −m) · ν(v̄1 + δ)); clearly,

u′′ < u2 < u1 < u′. (23b)

Let us pick j ∈ N , j 6= i, and consider a generalized congestion game where N is

the set of players and each player k uses the aggregation rule Uk: A = {a1, . . . , am,

bm+1, . . . , bm′ , c1, . . . , cm, d1, . . . , dm′ , e}; Xi =
{〈a1, . . . , am〉, 〈c1, . . . , cm, bm+1, . . . , bm′〉};

Xj =
{〈a1, . . . , am, bm+1, . . . , bm′〉, 〈d1, . . . , dm′〉}; Xk =

{〈e〉} for k ∈ N \ {i, j};
ϕas(t) = vt (t = 1, 2; s = 1, . . . , m); ϕbs(2) = v̄2 − δ, ϕbs(1) = v̄1 + δ (s = m + 1, . . . , m′);

ϕcs(1) = v0 (s = 1, . . . , m); ϕds(1) = v̂ (s = 1, . . . , m′). The 2× 2 matrix of the essential

part of the game looks as follows:

ab d

a
(
u2, λm′

j (σ2
j )

) (
u1, λm′

j (σ0
j )

)

bc
(
u′′, λm′

j (σ1
j )

) (
u′, λm′

j (σ0
j )

)
.

The inequalities (23) imply that there is no Nash equilibrium in the game.

Now let σ1 − σ2 < σ′1 − σ′2. We argue similarly to the previous case, but with some

modifications. Pick δ > 0 such that

σ1 − σ2 < (m′ −m) · [ν(v̄1 − δ)− ν(v̄2 + δ)] < σ′1 − σ′2

(the second inequality holds automatically). Denoting σ1
j = σ2 + (m′−m) · ν(v̄1− δ) and

σ2
j = σ1 + (m′ −m) · ν(v̄2 + δ), we see that σ1

j > σ2
j ; since both belong to m′ · ν(R), there

is σ0
j ∈ m′ · ν(R) such that

σ1
j > σ0

j > σ2
j ; (24a)

clearly, σ0
j = m′ · ν(v̂) for v̂ ∈ R. We denote u′′ = λm′

i (m · ν(v0) + (m′ −m) · ν(v̄2 + δ))

and u′ = λm′
i (m · ν(v0) + (m′ −m) · ν(v̄1 − δ)); clearly,

u2 < u′′ < u′ < u1. (24b)

Now we pick j ∈ N , j 6= i, and consider a generalized congestion game where N is

the set of players and each player k uses the aggregation rule Uk: A = {a1, . . . , am,

bm+1, . . . , bm′ , c1, . . . , cm, d1, . . . , dm′ , e}; Xi =
{〈a1, . . . , am〉, 〈c1, . . . , cm, bm+1, . . . , bm′〉};

Xj =
{〈a1, . . . , am, bm+1, . . . , bm′〉, 〈d1, . . . , dm′〉}; Xk =

{〈e〉} for k ∈ N \ {i, j}; ϕas(t) =

vt (t = 1, 2; s = 1, . . . ,m); ϕbs(2) = v̄2+δ, ϕbs(1) = v̄1−δ (s = m+1, . . . , m′); ϕcs(1) = v0
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(s = 1, . . . ,m); ϕds(1) = v̂ (s = 1, . . . , m′). The 2 × 2 matrix of the essential part of the

game looks as follows:

ab d

a
(
u2, λm′

j (σ1
j )

) (
u1, λm′

j (σ0
j )

)

bc
(
u′′, λm′

j (σ2
j )

) (
u′, λm′

j (σ0
j )

)
.

The inequalities (24) imply that there is no Nash equilibrium in the game.

Lemma B.10 implies that the function Λ(v) = (λm′
i )−1(v) − (λm

i )−1(v) is locally con-

stant on V ; therefore, it is a constant on V . Let us denote it ūmm′
and show that (4)

holds for all u′ ∈ m′ · ν(R) and u ∈ m · ν(R). Note that W ′ = W + ūmm′
by the same

Lemma B.10.

Let u ∈ W , i.e., λm
i (u) = λm′

i (u + ūmm′
); then, for every u′ ∈ m′ · ν(R), we have

sign
(
λm′

i (u′)− λm
i (u)

)
= sign

(
λm′

i (u′)− λm′
i (u + ūmm′

)
)

= sign(u′− u− ūmm′
) since λm′

i is

strictly increasing.

Let u /∈ W , say, u ≥ sup W , hence λm
i (u) > λm′

i (u′) for all u′ ∈ m′ · ν(R), hence the

left hand side of (4) equals −1. Suppose there is u′ ∈ m′ · ν(R) such that u′ ≥ u + ūmm′
,

hence u′ ≥ sup W ′. We see that (sup W ) ∈ m · ν(R) and (sup W ′) ∈ m′ · ν(R); therefore,

λm
i (sup W ) = λm′

i (sup W ′) by continuity, hence (sup W ) ∈ W , which is impossible for an

open interval.

The case of u ≤ inf W is treated dually.

C Proof of necessity in Theorem 2

If a finite game admits an exact potential, then it possesses a Nash equilibrium, so the

implication [1.2] ⇒ [1.3] from Theorem 1 applies. Therefore, there exist continuous and

strictly increasing functions ν : R→ R and λm
i : m · ν(R) → R (i ∈ N , m ∈ N) for which

(3) holds. In particular, the order of the processes does not matter, so we may assume

that strategies are just finite subsets of A.

As in Section B.3, the matters would be simplified if ν(R) = R.

Lemma C.1. Let i, j ∈ N , m,m′ ∈ N, σ ∈ (m − 1) · ν(R), σ′ ∈ (m′ − 1) · ν(R), and

υ′, υ′′ ∈ ν(R). Then

λm
i (υ′′ + σ)− λm

i (υ′ + σ) = λm′
j (υ′′ + σ′)− λm′

j (υ′ + σ′). (25)

Proof. Let w2, . . . , wm ∈ R be such that σ =
∑m

s=2 ν(ws), w′
2, . . . , w

′
m′ ∈ R such that

σ′ =
∑m′

s=2 ν(w′
s), and w1, w

′
1 ∈ R be arbitrary; we denote υ1 = ν(w1) and υ′1 = ν(w′

1).

Assuming first that i 6= j, we consider a generalized congestion game Γ with

m + m′ + 2 processes where each player k ∈ N uses the aggregation rule Uk:

A = {a, b1, . . . , bm, c1, . . . , cm′ , d}; Xi =
{〈a, b2, . . . , bm〉, 〈b1, b2, . . . , bm〉

}
; Xj =
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{〈a, c2, . . . , cm′〉, 〈c1, c2, . . . , cm′〉}; Xk =
{〈d〉} for k ∈ N \ {i, j}; ϕa(1) = ν−1(υ′),

ϕa(2) = ν−1(υ′′); ϕbs(1) = ws (s = 1, . . . , m); ϕcs(1) = w′
s (s = 1, . . . , m′). The 2 × 2

matrix of the essential part of the game looks as follows:

ac c

ab
(
λm

i (υ′′ + σ), λm′
j (υ′′ + σ′)

) (
λm

i (υ′ + σ), λm′
j (υ′1 + σ′)

)

b
(
λm

i (υ1 + σ), λm′
j (υ′ + σ′)

) (
λm

i (υ1 + σ), λm′
j (υ′1 + σ′)

)
.

By our assumption, Γ admits an exact potential. By Theorem 2.8 of Monderer and

Shapley (1996), we obtain

λm
i (υ′′ + σ)− λm

i (υ1 + σ) + λm′
j (υ′ + σ′)− λm′

j (υ′1 + σ′) =

λm′
j (υ′′ + σ′)− λm′

j (υ′1 + σ′) + λm
i (υ′ + σ)− λm

i (υ1 + σ),

hence (25).

If i = j, we pick k 6= i and obtain (25) with k as j, m′ = m, and σ′ = σ first, and

then (25) as it is.

The lemma immediately implies the existence of a function χ : ν(R)2 → R such that

λm
i (υ′′ + σ)− λm

i (υ′ + σ) = χ(υ′′, υ′)

for all i ∈ N , m ∈ N, σ ∈ (m−1)·ν(R), and υ′, υ′′ ∈ ν(R). Let υ′′ > υ′. If δ > 0 is such that

υ′′+ δ ∈ ν(R), then υ′+ δ ∈ ν(R) too. Pick σ ∈ ν(R) such that σ < υ′′; then σ + δ ∈ ν(R)

and χ(υ′′, υ′) = λ2
i (υ

′′ + (σ + δ))−λ2
i (υ

′ + (σ + δ)) = λ2
i ((υ

′′ + δ) + σ)−λ2
i ((υ

′ + δ) + σ) =

χ(υ′′ + δ, υ′ + δ). Quite similarly, χ(υ′′, υ′) = χ(υ′′ − δ, υ′ − δ) whenever υ′ − δ ∈ ν(R).

Therefore, there is a function ψ : ]ν(−∞)− ν(+∞), ν(+∞)− ν(−∞)[→ R such that

χ(υ′′, υ′) = ψ(υ′′ − υ′). Clearly, ψ(−∆) = −ψ(∆); in particular, ψ(0) = 0. Since λm
i is

continuous and strictly increasing, so is ψ.

For each ∆ ∈]ν(−∞)−ν(+∞), ν(+∞)−ν(−∞)[, we have ψ(∆) = λ1
i (υ+∆)−λ1

i (υ) =

λ1
i (υ + ∆)− λ1

i (υ + ∆/2) + λ1
i (υ + ∆/2)− λ1

i (υ) = 2ψ(∆/2). Similarly, ψ(r∆) = rψ(∆)

for every rational r ∈ [0, 1]. Since ψ is continuous, there is B > 0 such that ψ(∆) = B∆.

Finally, we define µ(w) = Bν(w) and Cm
i = λm

i (m · ν(0)) −m · µ(0). For m = 1, we

have U
(1)
i (w) = λ1

i (ν(w)) = B · (ν(w)− ν(0)) + λ1
i (ν(0)) = µ(w) + C1

i . A straightforward

inductive argument shows that (5) holds for all m ∈ N.

D Proof of necessity in Theorem 3

Let us prove the implication [3.2] ⇒ [3.3]. The general scheme of the proof is the same as

in Section B (and even simpler because we do not have to prove the second statement).
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Lemma D.1. Let i, j ∈ N , m ≥ 2, υ1, υ
′
1, υ2, υ

′
2 ∈ R, 1 ≤ s1, s2 ≤ m, s1 6= s2, w, w′ ∈ Rm,

ws1 = υ1, ws2 = υ2, w′
s1

= υ′1, w′
s2

= υ′2, ws = w′
s for all s 6= s1, s2, and

U
(m)
i (w) ≤ U

(m)
i (w′); (26a)

let m′ ≥ 2, 1 ≤ s′1, s
′
2 ≤ m′, s′1 6= s′2, w′′, w′′′ ∈ Rm′

, w′′
s′1

= υ1, w′′
s′2

= υ2, w′′′
s′1

= υ′1,

w′′′
s′2

= υ′2, and w′′
s = w′′′

s for all s 6= s′1, s
′
2. Then

U
(m′)
j (w′′) ≤ U

(m′)
j (w′′′). (26b)

The interpretation is the same as in Lemma B.1.

Proof. Assuming first that i 6= j, we suppose to the contrary that U
(m′)
j (w′′) > U

(m′)
j (w′′′).

Defining w′′′(δ) ∈ Rm′
by w′′′(δ)s′1 = υ′1 + δ and w′′′(δ)s = w′′′

s for all s 6= s′1, and

w′(δ) ∈ Rm by w′(δ)s1 = υ′1 + δ and w′(δ)s = w′
s for all s 6= s1, we can pick δ > 0 such

that u2
j = U

(m′)
j (w′′) > U

(m′)
j (w′′′(δ)) = u1

j ; by monotonicity from (26a), u1
i = U

(m)
i (w) <

U
(m)
i (w′(δ)) = u2

i .

Let us consider a game with structured utilities with m + m′ − 1 processes where

each player k ∈ N uses the aggregation rule Uk: A = {a, b, e} ∪ {cs}s=1,...,m, s1 6=s 6=s2 ∪
{ds}s=1,...,m′, s′1 6=s6=s′2 ; #Υi = m; #Υj = m′; Υi

s1
= a = Υj

s′1
; Υi

s2
= b = Υj

s′2
; Υi

s = cs for

all s = 1, . . . , m, s1 6= s 6= s2; Υj
s = ds for all s = 1, . . . , m′, s′1 6= s 6= s′2; Υk = 〈e〉

for k ∈ N \ {i, j}; Xi = Xj = {1, 2}, Xk = {1} for k 6= i, j; ϕa(xi, xj) = υ′1 + δ if

xi = xj, ϕa(xi, xj) = υ1 if xi 6= xj; ϕb(xi, xj) = υ′2 if xi = xj, ϕb(xi, xj) = υ2 if xi 6= xj;

ϕcs(xi) = ws (s = 1, . . . , m, s1 6= s 6= s2); ϕds(xj) = w′′
s (s = 1, . . . , m′, s′1 6= s 6= s′2). The

2× 2 matrix of the essential part of the game looks as follows:

(u2
i , u

1
j) (u1

i , u
2
j)

(u1
i , u

2
j) (u2

i , u
1
j).

Since u2
k > u1

k (k = i, j), the game possesses no Nash equilibrium.

If i = j, we pick k 6= i and obtain

U
(m)
k (w) ≤ U

(m)
k (w′)

first, and then (26b).

The exact analogues of Lemma D.1 with equalities in (26) as well as strict inequalities

of the same sign easily follow. Lemma B.2 in the current situation also follows from

Lemma D.1.

Lemma D.2. Let i ∈ N and v′s, v
′′
s , v

′′′
s ∈ R for s = 1, 2; let

U
(2)
i (v′1, v

′′
2) = U

(2)
i (v′′1 , v

′
2)
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and

U
(2)
i (v′1, v

′′′
2 ) = U

(2)
i (v′′1 , v

′′
2) = U

(2)
i (v′′′1 , v′2).

Then

U
(2)
i (v′′1 , v

′′′
2 ) = U

(2)
i (v′′′1 , v′′2).

The statement immediately follows from Lemma 2 of Kukushkin (1994).

Additive representation (3) now follows from Lemmas D.1 and D.2 exactly as in Sec-

tion B.2.

E Proof of necessity in Theorem 4

As in Section C, we apply the implication [3.2] ⇒ [3.3] from Theorem 3, obtaining the

existence of continuous and strictly increasing functions ν : R→ R and λm
i : m ·ν(R) → R

(i ∈ N , m ∈ N) for which (3) holds.

Lemma E.1. Let i, j ∈ N , m, m′ ∈ N, σ ∈ (m − 1) · ν(R), σ′ ∈ (m′ − 1) · ν(R), and

υ′, υ′′ ∈ ν(R). Then

λm
i (υ′′ + σ)− λm

i (υ′ + σ) = λm′
j (υ′′ + σ′)− λm′

j (υ′ + σ′). (27)

Proof. Let w2, . . . , wm ∈ R be such that σ =
∑m

s=2 ν(ws), w′
2, . . . , w

′
m′ ∈ R such that

σ′ =
∑m′

s=2 ν(w′
s), and w1, w

′
1 ∈ R be arbitrary; we denote υ1 = ν(w1) and υ′1 = ν(w′

1).

Assuming first that i 6= j, we consider a game with structured utilities Γ with m + m′

processes where each player k ∈ N uses the aggregation rule Uk: A = {a, b2, . . . , bm,

c2, . . . , cm′ , d}; Υi = {a, b2, . . . , bm}, Υj = {a, c2, . . . , cm′}, Υk = {d} for k 6= i, j; Xi =

Xj = {1, 2}, Xk = {1} for k 6= i, j; ϕa(xi, xj) = ν−1(υ′′) if xi = xj = 2 and ϕa(xi, xj) =

ν−1(υ′) otherwise; ϕbs(xi) = ws (s = 2, . . . ,m, xi ∈ Xi); ϕcs(xj) = w′
s (s = 2, . . . ,m′, xj ∈

Xj).

By our assumption, Γ admits an exact potential. By Theorem 2.8 of Monderer and

Shapley (1996), we obtain

ui(2, 2)− ui(1i, 2j) + uj(1i, 2j)− uj(1, 1) = uj(2, 2)− uj(2i, 1j) + ui(2i, 1j)− ui(1, 1).

Taking into account that ui(2, 2) = λm
i (υ′′ + σ), uj(2, 2) = λm′

j (υ′′ + σ′), ui(xi, xj) =

λm
i (υ′ + σ) for all other (xi, xj), and uj(xi, xj) = λm′

j (υ′ + σ′) for all other (xi, xj), we

obtain (27).

If i = j, we pick k 6= i and obtain (27) with k as j, m′ = m, and σ′ = σ first, and

then (27) as it is.

The rest of the proof is the same as in Section C.
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