
Acyclicity of improvements
in finite game forms

Nikolai S. Kukushkin∗

February 24, 2010

Abstract

Game forms are studied where the acyclicity, in a stronger or weaker sense, of
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1 Introduction

A.-A. Cournot considered best response dynamics long before the expression “game theory”
came into use. Such processes were studied in various contexts since then (Topkis, 1979;
Moulin, 1984; Vives, 1990; Milgrom and Roberts, 1991; Kandori and Rob, 1995). Monderer
and Shapley (1996) started a similar approach to better reply dynamics.

This paper continues the search for natural classes of strategic games where the acyclic-
ity, in a stronger or weaker sense, of (coalition or individual) improvements is ensured
(Rosenthal, 1973; Germeier and Vatel’, 1974; Sela, 1992; Monderer and Shapley, 1996;
Milchtaich, 1996; Holzman and Law-yone, 1997; Konishi et al., 1997; Kukushkin, 1999,
2002ab, 2004, 2007bc; Friedman and Mezzetti, 2001). Unlike most of the previous liter-
ature, we only consider game forms, i.e., we put no restrictions on the preferences of the
players, only on strategic interactions.

The topic is somewhat related to the study of consistent, or solvable, game forms (Gur-
vich, 1975, 1988; Moulin, 1976; Peleg, 1978; Abdou 1995, 1998; Abdou and Keiding, 2003;
Boros et al., 2007); however, the acyclicity of improvements is a much stronger (and rarer)
property than just the existence of an equilibrium.

In the case of two players, a kind of complete description of game forms where all indi-
vidual improvement paths in all derivative games lead to Nash equilibria was obtained by
Boros et al. (2010); for more than two players, there is no clear prospect for that. Weaker
notions of acyclicity of individual improvements result in wider classes of game forms, also
without clear prospects for a characterization. The most interesting and important class
of game forms with acyclic individual improvements is that of games with perfect informa-
tion (Kukushkin, 2002a); the results of that paper are somewhat extended here. Similar
properties of “ordered voting game forms” (Proposition 3.5 and Theorem 3.7) are also es-
tablished; such game forms have been considered before (e.g., Moulin, 1980, Kukushkin,
1995, or Mariotti, 2000), but improvement dynamics in them seem to have never been
studied.

Concerning coalition improvements, a complete description of game forms where all
such improvement paths in all derivative games lead to strong equilibria is obtained; not
surprisingly, there are not so many of them (Theorem 4.2). A slight weakening of the
requirement widens the class significantly. It is shown that “voting by veto” procedures
(Mueller, 1978; Peleg, 1978) generate game forms where the convergence of coalition im-
provements to strong equilibria is ensured if the players restrict themselves to “minimal”
strategy changes (Theorem 4.13).

In Section 2 the basic definitions concerning improvement dynamics in finite strategic
games are given; the notion of a game form is introduced and examples of game forms en-
suring the acyclicity of improvements are provided. Section 3 contains some general results
about game forms with acyclic individual improvements; the class of “ordered voting game
forms” is defined. Subsection 3.2 is about games with perfect information; Subsection 3.3,
about exact potential, a cardinal analog of acyclicity. Section 4 contains the characteriza-
tion of game forms with acyclic coalition improvements; in Subsection 4.2, voting by veto
procedures are defined and their interesting properties proven.
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2 Basic Notions

2.1 Improvement paths in strategic games

Our basic model is a finite strategic game with ordinal preferences. It is defined by a finite set
of players N (we denote n = #N), and finite strategy sets Xi and ordinal utility functions
ui : XN → R, where XN =

∏
i∈N Xi, for all i ∈ N . We denote N = 2N \ {∅} (the set of

potential coalitions) and XI =
∏

i∈I Xi for each I ∈ N ; instead of XN\{i} and XN\I , we
write X−i and X−I , respectively. If n = 2, then −i refers to the partner/rival of player i.

Remark. Whenever vi : R → R is strictly increasing, the functions ui and vi ◦ ui repre-
sent the same ordering. Therefore, any meaningful definition, condition, statement, etc.,
involving ordinal utility functions must be invariant to strictly increasing transformations.
Auxiliary constructions, however, may well use numeric values.

With every strategic game, a number of improvement relations on XN are associated
(i ∈ N , I ∈ N , yN , xN ∈ XN):

yN BInd
i xN ­ [y−i = x−i & ui(yN) > ui(xN)]; (2.1a)

yN BInd xN ­ ∃i ∈ N [yN BInd
i xN ] (2.1b)

(individual improvement relation);

yN BsCo
I xN ­

[
y−I = x−I & ∀i ∈ I [ui(yN) > ui(xN)]

]
; (2.2a)

yN BsCo xN ­ ∃I ∈ N [yN BsCo
I xN ] (2.2b)

(strong coalition improvement relation);

yN BwCo
I xN ­

[
y−I = x−I & ∀i ∈ I [ui(yN) ≥ ui(xN)] &

∃i ∈ I [ui(yN) > ui(xN)]
]
; (2.3a)

yN BwCo xN ­ ∃I ∈ N [yN BwCo
I xN ] (2.3b)

(weak coalition improvement relation).

Defining the best response correspondence Ri : X−i → 2Xi for each i ∈ N in the usual
way,

Ri(x−i) = Argmax
xi∈Xi

ui(xi, x−i)

for every x−i ∈ X−i, we may introduce one more relation:

yN BBR
i xN ­ [y−i = x−i & xi /∈ Ri(x−i) 3 yi]; (2.4a)

yN BBR xN ­ ∃i ∈ N [yN BBR
i xN ] (2.4b)

(best response improvement relation).
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It is often convenient to speak of just “an improvement relation” B without specifying
which of the above-defined relations is meant. A maximizer of an improvement relation B,
i.e., a strategy profile xN ∈ XN such that yN B xN holds for no yN ∈ XN , is an equilibrium:
a Nash equilibrium if B is BInd; a (“very”) strong equilibrium if B is BsCo (BwCo). Every
Nash equilibrium is a maximizer of BBR. If Ri(x−i) 6= ∅ for all i ∈ N and x−i ∈ X−i, then
the converse statement is also true; in a finite game, the condition holds automatically.

Following Kukushkin (2004), we consider an arbitrary binary relation B on a finite
set X. An improvement path (for B) is a (finite or infinite) sequence {xk}k=0,1,... such
that xk+1 B xk whenever k ≥ 0 and xk+1 is defined. A finite improvement cycle is an
improvement path x0

N , x1
N , . . . , xm

N = x0
N (m > 0); a relation is acyclic if it admits no finite

improvement cycle. On a finite set, that property is equivalent to the impossibility of
an infinite improvement path; therefore, every improvement path, if continued whenever
possible, reaches a maximizer (equilibrium) in a finite number of steps.

It is easy to see that a binary relation B on a finite set X is acyclic if and only if it
admits a numeric potential, i.e., a function P : X → R such that

∀y, x ∈ X [y B x ⇒ P (y) > P (x)]; (2.5a)

the property is also equivalent to the existence of an order potential, i.e., an irreflexive and
transitive binary relation Â on X such that

∀y, x ∈ X [y B x ⇒ y Â x]. (2.5b)

The relation B is weakly acyclic if every x ∈ X is connected to a maximizer of B with an
improvement path, i.e., there is a finite improvement path {x0, . . . , xm} (m ≥ 0) such that
x0 = x and xm is a maximizer. The weak acyclicity does not exclude the possibility that an
improvement process may continue indefinitely without reaching an equilibrium; however,
this is improbable under reasonable assumptions (Kalai and Schmeidler, 1977; Milchtaich,
1996; Friedman and Mezzetti, 2001).

Clearly, acyclicity implies weak acyclicity, which, in turn, implies the existence of a
maximizer of B. Neither statement can be reversed.

An essential feature of the improvement relations in a strategic game defined by (2.1)–
(2.4) is their disjunctive structure, reflected in (2.1b), etc. It allows us to introduce an
intermediate class of properties. We consider an abstract relation B with a disjunctive
structure, i.e., assume that there are a finite set M (in strategic games, M = N for indi-
vidual improvements and M = N for coalition improvements) and binary relations Bi on
X for each i ∈ M such that y B x ⇐⇒ ∃i ∈ M [y Bi x] for all y, x ∈ X. We say that B
is acyclic under restrictions if there are binary relations B> and B>i on X such that, for all
i ∈ M and y, x ∈ X, there holds

y B>i x ⇒ y Bi x; (2.6a)

∃y ∈ X [y Bi x] ⇒ ∃z ∈ X [z B>i x]; (2.6b)

y B> x ⇐⇒ ∃i ∈ M [y B>i x]; (2.6c)
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B> is acyclic. (2.6d)

If B is acyclic, then all conditions (2.6) are satisfied by B itself as B>, i.e., B is acyclic under
restrictions. In any case, the conditions (2.6a) and (2.6b) imply that every improvement
path of B> is an improvement path of B and both relations have the same maximizers. It
follows immediately that a relation acyclic under restrictions is weakly acyclic.

Restricted acyclicity means that it is possible to impose restrictions on each player’s (or
coalition’s) strategy changes so that whenever an improvement is possible, an admissible
improvement is possible as well, and the convergence to an equilibrium is ensured. When
an improvement relation is only weakly acyclic, an agreement between the players as to who
is allowed to improve at each stage may be needed. (Explicit cooperation can be replaced
with a stochastic choice of the player or coalition to move at each step.) The example in
Section 7.7 of Kukushkin (2004) clarifies the difference between the weak acyclicity and
acyclicity under restrictions.

The (weak or restricted) acyclicity of the individual improvement relation BInd (2.1) in
a finite strategic game Γ is called the (weak or restricted) finite individual improvement
property ((weak or restricted) FIP) of Γ. Similarly, the (weak or restricted) finite coalition
improvement property ((weak or restricted) FCP) refers to the strong coalition improve-
ment relation BsCo defined by (2.2); the (weak or restricted) FCP+, to the weak coalition
improvement relation BwCo defined by (2.3); the (weak or restricted) FBRP, to the best
response improvement relation BBR defined by (2.4). Actually, the FBRP is a restricted
FIP. It is easy to see that the following implications hold:

FCP+ ⇒ FCP ⇒ FIP ⇒ FBRP
⇓ ⇓ ⇓ ⇓

restricted FCP+ restricted FCP ⇒ restricted FIP ⇐ restricted FBRP
⇓ ⇓ ⇓ ⇓

weak FCP+ weak FCP weak FIP ⇐ weak FBRP

(plus the implication [restricted FCP+ ⇒ restricted FIP]).

These properties admit the same dynamic interpretation as the (weak or restricted)
acyclicity of an abstract binary relation. The FCP(+), FIP, or FBRP ensure that all ap-
propriate adaptive dynamics converge to an equilibrium in a finite number of steps. The
weak FCP(+), weak FIP, or weak FBRP ensure the convergence to an appropriate equilib-
rium in a finite number of steps with probability one under reasonable assumptions. The
properties are also conducive to the convergence of more sophisticated scenarios (Young,
1993; Kandori and Rob, 1995; Friedman and Mezzetti, 2001).

Remark. According to Proposition 6.4 of Kukushkin (2004), weak and restricted FBRP
are equivalent for two person games; unfortunately, neither property seems natural for game
forms, which are the subject of this paper. The equivalence does not hold w.r.t. the FIP
or FCP(+).
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2.2 Game forms

A game form G is defined by a finite set of players N , a finite strategy set Xi for each
i ∈ N , a finite set of outcomes A and a mapping g : XN → A, where XN =

∏
i∈N Xi is the

set of strategy profiles. For notational simplicity, we assume Xi ∩Xj = ∅ whenever i 6= j;
the assumption is obviously innocuous. We denote X =

⋃
i∈N Xi.

Once preferences of the players over the outcomes are specified (and we assume this to
be done with ordinal utilities υi : A → R), a derivative game G(υN) (where υN denotes a
list 〈υi〉i∈N ) emerges, in which the set of players is N , the strategy sets are Xi’s and utilities
are ui(xN) = υi(g(xN)).

If every derivative game G(υN) possesses a Nash (strong) equilibrium, G is called Nash
(strong) consistent. We say that G has the FIP, FCP or FCP(+) if so does every derivative
game G(υN). We also use the expression G is an FIP, or FCP(+) game form. If G has the
FIP (FCP), then G is Nash (strongly) consistent; the converse statements are wrong.

Remark. FBRP game forms could be defined quite similarly; however, there is no example
of an FBRP game form without the FIP. Moreover, Corollary 2 from Kukushkin (2007a)
shows that the FIP and FBRP are equivalent as properties of two person game forms.

Example 2.1. Let us consider four game forms with two players:

a.




a a a
b b b
c c c


 b.




a a a
b c c
b d e


 c.




a a a
a b b
a b c


 d.




a a c
a b b
c b c


.

It is easily seen that each of them has the FIP, but only the first has FCP (and FCP+ at
that).

Example 2.2. Let us consider two game forms with two players:

a.




a a a
a b c
a d e


 b.




a a a
a b a
a a b


.

It is easily checked that both game forms are Nash consistent; actually, the northwestern
corner is a Nash equilibrium for all utilities. Meanwhile, the underlined strategy profiles
form an improvement cycle for appropriate utilities in either game form, hence neither has
the FIP. However, there is an important difference between them.

Let us consider the first game form with these utility functions: υ1(a) = υ2(a) = 0;
υ1(c) = υ1(d) = υ2(b) = υ2(e) = 1; υ1(b) = υ1(e) = υ2(c) = υ2(d) = 2. The northwestern
corner is a unique Nash equilibrium; an agreement to choose it is self-policing in the usual
sense. On the other hand, an agreement not to choose equilibrium strategies is self-policing
as well: if I believe that my partner honors the agreement, I have no incentive to cheat
(actually, there is no incentive to choose the equilibrium strategy in any case). Moreover,
each player would prefer the second agreement, which ensures the choice of one of the
underlined outcomes, to the first, notwithstanding the fact that the resulting outcome
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remains unpredictable. The “irrelevance of equilibria” of this kind was discussed by Kreps
(1990, pp. 416-417). Example 1.3 in Kukushkin (2002b) demonstrates a similar problem
concerning strong equilibria.

One could argue that the second agreement is just to choose a mixed equilibrium;
note, however, that our players have ordinal preferences, hence they need not be able
to compare probability distributions on the set of outcomes. More technically speaking, a
mixed equilibrium whose support consists of the underlined strategy profiles exists for every
pair of utility functions representing the same preferences, but its probability distribution
is not invariant under monotonic transformations.

No such ugly thing may happen when a game has the weak FIP or weak FCP(+)
(Theorems 3.1–3.3 of Kukushkin, 2002b). The second game form has the weak FIP, hence
is immune to this pathology at least.

Remark. No game form is known such that every derivative game has the weak FIP or
weak FCP(+), but not necessarily a restricted FIP or FCP(+).

A fragment G′ of G is a game form with the same set of players N , nonempty subsets
∅ 6= X ′

i ⊆ Xi for all i ∈ N , and the restriction of g to X ′
N as g′. If G has the FIP (FCP), then

so does every fragment of G; (strong) Nash consistency, or even a restricted FIP (FCP),
need not be “inherited” in this sense.

The notion of restricted acyclicity admits a strengthening when applied to game forms.
An admissible change (by coalition I ∈ N ) relation is a binary relation `I on XN such that
x−I = y−I whenever xN `I yN . When I = {i}, we use the notation `i. Such a relation is
liberal if

∀xN , yN

[
[y−I = x−I & g(yN) 6= g(xN)] ⇒ ∃zN [xN `I zN & g(zN) = g(yN)]

]
, (2.7)

i.e., if every change of outcome available to a coalition (or a player) can be done in an
admissible way.

A game form G has an almost unrestricted FIP if there is a list of admissible change
relations 〈`i〉i∈N such that every `i is liberal and, in every derivative game G(υN), the
admissible improvement relation B> defined by (2.6c) with M = N and

yN B>i xN ­ [xN `i yN & yN BInd
i xN ] (2.8)

is acyclic. A game form G has an almost unrestricted FCP if there is a list of admissible
change relations 〈`I〉I∈N such that every `I is liberal and, in every derivative game G(υN),
the admissible improvement relation B> defined by (2.6c) with M = N and

yN B>I xN ­ [xN `I yN & yN BsCo
I xN ] (2.9)

is acyclic. Naturally, an almost unrestricted FIP (FCP) of a game form ensures the existence
of a (strong) Nash equilibrium in every derivative game, but it is much more than that.

Remark. The game form in Example 2.2b has an almost unrestricted FCP although it
seems not to be covered by Theorems 3.7 or 3.14 or 4.13 below.
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In the following theorems, we follow a standardized procedure for the description of
admissible changes. We assume that there are costs associated with every change of strategy,
i.e., a mapping δx−I

: XI × XI → N ∪ {+∞} for every I ∈ N and x−I ∈ X−I . (When an
almost unrestricted FIP is concerned, only singleton I are needed, naturally.) Then a
change is admissible if its cost is minimal among all changes leading to the same outcome:

xN `I yN ­[
y−I = x−I & @zI ∈ XI [g(zI , x−I) = g(yN) & δx−I

(xI , zI) < δx−I
(xI , yI)]

]
. (2.10)

Since XI is finite, (2.7) holds, i.e., the relation is liberal, for any family of costs δx−I
.

In every derivative game G(υN), an admissible improvement relation B> is now uniquely
defined, based on (2.10), (2.9) or (2.8), and (2.6c) with M = N or M = N .

Clearly, any admissible change relation can be described by (2.10) with appropriate
costs: δx−I

(xI , yI) = 0 whenever (xI , x−I) `I (yI , x−I); δx−I
(xI , yI) = +∞ otherwise. The

point is that the costs here look reasonable from the viewpoint of intended interpretations.
Besides, they can be called “quasidistances” in the sense that they satisfy these require-
ments: δx−I

(xI , yI) = 0 ⇐⇒ xI = yI and δx−I
(xI , yI) ≤ δx−I

(xI , zI) + δx−I
(zI , yI) for all

xI , yI , zI ∈ XI and x−I ∈ X−I (symmetry holds in some cases, but not always).

3 FIP Game Forms

3.1 Simple and ordered voting game forms

We start with the definition of a property common for all known FIP game forms. A game
form G is separable if it is possible to define a mapping p : X → A such that

g(xN) ∈ {p(xi)}i∈N (3.1)

for every xN ∈ XN . In principle, the same g may satisfy (3.1) with different mappings
p; moreover, some p(xi) may be arbitrary. An interpretation should be clear: choosing a
strategy xi, player i as if expresses a wish to see p(xi) chosen; the mapping g determines
whose desire will be fulfilled at each strategy profile.

Remark. The present term is due to Vladimir Gurvich (a seminar presentation, 2009).
Boros et al. (2010) suggest “assignable game forms”; however, the inevitable association
with the “assignment problem” appears undesirable.

Conjecture 3.1. Every FIP game form is separable.

For n = 2, the statement is proven in Boros et al. (2010, Proposition 9). The converse
implication is obviously wrong. Every game form in Examples 2.1 and 2.2 is separable.

The simplest separable game forms are dictatorial ones, where there is a player i ∈ N
such that g(xN) = p(xi) for all xN ∈ XN ; see Example 2.1a. Unless g(XN) is a singleton,
there cannot be more than one dictator; p(xj) for j 6= i may be arbitrary.
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A game form is simple if it is separable and there is a linear order on X such that

g(xN) = p(min
i∈N

xi) (3.2)

for every xN ∈ XN . (Again, the same g may be described by (3.2) with different orders on
X .) Besides a desirable outcome, every strategy specifies a priority of the desire; then the
choice with the highest priority is implemented. If G is dictatorial, we may define xi < xj

for every strategy of the dictator i and all j 6= i. Every fragment of a simple game form is
simple as well.

Remark. Boros et al. (2010) call such game forms “totally reducible”; however, a lone
adjective seems preferable.

Given a game form, we call xi ∈ Xi simple if #g(xi, X−i) = 1.

Proposition 3.2. A game form G is simple if and only if there is a simple strategy in
every fragment of G.

Proof. If G is simple and G′ is a fragment of G, we pick the minimal strategy in
⋃

i∈N X ′
i;

(3.2) immediately implies that it is simple in G′. Conversely, we pick a simple strategy
in X and declare it the least in X ; then we forget it and define a linear order on X by
induction.

Theorem 3.3. Every simple game form has the FIP.

Proof. Suppose to the contrary that x0
N , x1

N , . . . , xm
N = x0

N (m > 0) is an individual improve-
ment cycle in a derivative game G(υN). Without restricting generality, we may assume that
there is no shorter improvement cycle. For each i ∈ N , we define X ′

i = {x0
i , x

1
i , . . . , x

m−1
i }.

By Proposition 3.2, the fragment contains a simple strategy; let it be xk
i . Without restrict-

ing generality, we may assume that xk
N BInd

i xk−1
N , hence xk+1

N BInd
j xk

N with j 6= i. Since
xk

i = xk+1
i and xk

i is simple, we have g(xk
N) = g(xk+1

N ), which contradicts the supposed
inequality uj(x

k+1
N ) > uj(x

k
N).

All game forms in Example 2.1 except the last one are simple. Theorem 6 of Boros et al.
(2010) implies that every two person game form which has the FIP but is not simple must
contain that matrix. When n > 2, even that much cannot be asserted, see Example 4.11
below.

Proposition 3.4. Every 2 × 2 fragment of a FIP game form contains a simple strategy,
i.e., is simple itself.

Proof. Every fragment of a FIP game form has the FIP, hence is Nash consistent. Now the
necessary condition from Gurvich (1975) and Moulin (1976) applies.

Remark. The converse implication holds only for n = 2 (Kukushkin, 2007a).
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“Dually” to dictatorial game forms, priorities of the strategies may be determined by
the outcomes pointed to. Let A be linearly ordered and

g(xN) = min
i∈N

p(xi) (3.3)

for each xN ∈ XN ; Example 2.1c presents such a game form. A possible interpretation: each
player chooses a maximal “level of cooperation” she is ready to accept; then the highest
level acceptable to everybody becomes the norm. The term unanimity game forms may be
appropriate.

Proposition 3.5. Every unanimity game form has the FIP.

Proof. The game form is simple: yi > xj whenever p(yi) > p(xj); the strategies with the
same p(xi) are ordered arbitrarily. Now Theorem 3.3 applies.

Generalizing the notion, we may assume that an outcome is socially acceptable if a
certain fraction of players finds it so; the median is most usual in political sciences. Moulin
(1980) considered such game forms, with the addition of “fixed votes” to the players’ choices,
and established some nice properties of them when the preferences are single-peaked. Here
we abandon the anonymity requirement and allow arbitrary preferences. Thus, the order
on the set of outcomes becomes an element of the decision making procedure, unrelated to
the players’ preferences.

An ordered voting game form is defined by the following construction. A is linearly
ordered and Xi = A for each i ∈ N . Strictly speaking, our assumption Xi ∩Xj = ∅ is thus
violated, but it does not matter here. For each i ∈ N , a “weight” µi ≥ 0 is given; for each
a ∈ A, a number λa > 0. We assume that λa decreases in a. Given xN ∈ XN and a ∈ A,
we denote N−(a, xN) = {i ∈ N | xi < a}, κ−(a, xN) =

∑
i∈N−(a,xN ) µi, and define

g(xN) = max{a ∈ A | κ−(a, xN) < λa}. (3.4)

The interpretation is that each player chooses a “personal cap” xi supported by her weight
µi; λa is the minimal total weight that makes a ineligible when put against it.

Remark. Since N and A are finite, it seems plausible that integer µ’s and λ’s are sufficient
to generate all ordered voting game forms; however, I have not studied the question carefully.

If all µi = 1 and λa = 1, we have a unanimity game form, the FIP of which was
established by Proposition 3.5; if all µi = 1 and λa = n, we have g(xN) = maxi∈N xi, i.e.,
Proposition 3.5 is still applicable after the order on A is reversed. Generally, there is no
FIP.

Example 3.6. Let us consider an ordered voting game form G with N = {1, 2}, A =
{a, b, c} (a > b > c), both µi = 1, λc = λb = 2, and λa = 1 (median voting scheme with a
fixed vote at b). The game form is described by the following matrix:

a b b
b b b
b b c
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The underlined outcomes form an improvement cycle in G(υN) with appropriate utilities;
therefore, G does not have the FIP (although it is Nash consistent). Somewhat unnatural
behavior may be observed in the cycle: in the “clockwise” movement, player 2 switches
from a to b by choosing c, and from c to b by choosing a.

Given a, b ∈ A, we define the order distance between them as

d(a, b) = #{x ∈ A | min{a, b} ≤ x < max{a, b}}; (3.5)

then we define an admissible change relation by (2.10) with d as δx−i
for every i ∈ N and

x−i ∈ X−i. In other words, a change of strategy is admissible if the same change of outcome
could not be produced by a shorter movement of xi.

Theorem 3.7. Every ordered voting game form has an almost unrestricted FIP with the
“costs” on each Xi defined by (3.5) [independently of x−i].

Proof. We denote M = {µi}i∈N ⊂ R and N(m) = {i ∈ N | µi ≥ m} for each m ∈ M .
Given xN ∈ XN and m ∈ M , we define γ−m(xN) = max{a ∈ A | κ−(a, xN) + m < λa} and
γ+

m(xN) = max{a ∈ A | κ−(a, xN)−m < λa}; clearly, γ−m(xN) ≤ g(xN) ≤ γ+
m(xN). Then we

define Cm(xN) = {a ∈ A | γ−m(xN) ≤ a ≤ γ+
m(xN)}, Bm(xN) = {i ∈ N(m) | xi ∈ Cm(xN)},

Pm(xN) =
∑

i∈Bm(xN ) υi(xi), and a family of lexicographic binary relations on XN :

yN ºm xN ­
[
Cm(yN) ⊂ Cm(xN) or

[
Cm(yN) = Cm(xN) &

(
Bm(yN) ⊃ Bm(xN) or [Bm(yN) = Bm(xN) & Pm(yN) ≥ Pm(xN)]

)] ]
;

yN Âm xN ­
[
Cm(yN) ⊂ Cm(xN) or

[
Cm(yN) = Cm(xN) &

(
Bm(yN) ⊃ Bm(xN) or [Bm(yN) = Bm(xN) & Pm(yN) > Pm(xN)]

)] ]
.

Clearly,
yN Âm xN ⇐⇒ [

yN ºm xN & xN 6ºm yN

]
.

Finally, a lexicographic aggregate is formed of ºm (m ∈ M):

yN Â xN ­ ∃m ∈ M
[
yN Âm xN & ∀m′ > m [yN ºm′ xN ]

]
.

Obviously, Â is a strict order; we’ll show that it is a potential, in the sense of (2.5b), for
admissible improvements. Let i ∈ N and xN , yN ∈ XN be such that y−i = x−i; we denote
a = g(xN) and b = g(yN), and assume b 6= a. For every c ∈ A (except c = max A), we
denote c + 1 the next point in A, uniquely defined by c + 1 > c and d(c, c + 1) = 1.

Step 3.7.1. b ∈ Cµi
(xN).

Proof. Since κ−(b, yN) < λb while κ−(b, yN) ≥ κ−(b, xN)−µi, we have κ−(b, xN) < λb +µi,
hence b ≥ γ−µi

(xN). For each c > γ+
µi

(xN), we have κ−(c, yN) ≥ κ−(c, xN)− µi ≥ λc, hence
c 6= b; therefore, b ≤ γ+

µi
(xN).
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Step 3.7.2. xN `i yN ⇐⇒ yi = b.

Proof. If xi < a, then κ−(a, yN) ≤ κ−(a, xN) < λa, hence b > a. If xi > a, then κ−(a +
1, yN) ≥ κ−(a + 1, xN) ≥ λa+1, hence b < a.

Let b > a; then xi ≤ a. If yi < b, then κ−(b, yN) = κ−(b, xN) ≥ λb: a contradiction.
Obviously minyi≥b d(xi, yi) is attained when yi = b.

Let b < a; then xi ≥ a. If yi > b, then κ−(b + 1, yN) = κ−(b + 1, xN) < λb+1: a
contradiction. Obviously minyi≤b d(xi, yi) is attained when yi = b.

In the following, we assume yi = b.

Step 3.7.3. Cm(yN) ⊆ Cm(xN) for each m ≥ µi.

Proof. Let b > a; then κ−(c, yN) ≤ κ−(c, xN) for each c ≤ b, while κ−(c, yN) = κ−(c, xN)
for each c > b. Since γ−m(xN) ≤ a < b ≤ γ+

m(xN), we have γ−m(yN) ≥ γ−m(xN) and γ+
m(yN) =

γ+
m(xN).

The case of b < a is treated dually.

Step 3.7.4. yN ºm xN for each m > µi.

Proof. Indeed, Cm(yN) ⊆ Cm(xN) by Step 3.7.3. If the inclusion is strict, we even have
yN Âm xN . Otherwise, Bm(yN) = Bm(xN) and Pm(yN) = Pm(xN) since yN(m) = xN(m).

Step 3.7.5. If υi(b) > υi(a), then yN Âµi
xN .

Proof. Again, Cµi
(yN) ⊆ Cµi

(xN) by Step 3.7.3. Since i ∈ Bµi
(yN), we only have to consider

the case of Cµi
(yN) = Cµi

(xN) and Bµi
(yN) = Bµi

(xN), i.e., i ∈ Bµi
(xN). If xi = a, we

have Pµi
(yN) − Pµi

(xN) = υi(b) − υi(a) > 0. Suppose xi < a; then γ−µi
(xN) ≤ xi < a and

b = yi > a. On the other hand, κ−(a, yN) = κ−(a, xN) − µi, hence κ−(a, yN) + µi < λa,
hence γ−µi

(yN) ≥ a > γ−µi
(xN), hence Cµi

(yN) ⊂ Cµi
(xN), contradicting our assumption.

The case of xi > a is treated dually.

In the light of Steps 3.7.4 and 3.7.5, the proof of the theorem is accomplished.

Theorem 3.7 becomes wrong if strategy sets Xi ⊂ A are allowed: the assumption X2 =
{a, c} in Example 3.6 would make the changes made by player 2 along the cycle unique.

Remark. In the absence of fixed votes, i.e., when λa is the same for all a ∈ A, an ordered
voting game form is obviously separable: p(xi) = xi. The statement seems to be wrong
generally although I have not studied the question carefully.
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3.2 Games with perfect information

The most important examples of game forms with FIP or almost unrestricted FIP are
provided by the normal form of games with perfect information. Following Kukushkin
(2002a), we reproduce the familiar concepts in a fashion most convenient for our purposes.

A perfect information game form (PIGF ) is a game form with arbitrary (finite) sets N
and A, and strategies and the mapping g generated by a construction as follows. A game
tree K is a finite partially ordered set satisfying these two conditions. (a) For every α ∈ K,
the set {β ∈ K | β ≤ α} is a chain. (b) There exists the minimum α0 of K (the origin),
α0 ≤ α for every α ∈ K. The existence of the meet (greatest common lower bound) α ∧ β
for every α, β ∈ K easily follows. We call β ∈ K an immediate successor of α ∈ K if α < β
while α < β′ < β is impossible; the set of all immediate successors of α ∈ K is denoted Xα.
Imagining an arc from every α ∈ K to every β ∈ Xα turns K into a tree in a geometrical
sense.

The set of maximizers of the order on K is denoted T (terminal nodes); the set K \T , D
(decision nodes). There is an ownership mapping ν : D → N ; player i moves at nodes from
Di = ν−1(i). We denote Xi =

∏
α∈Di

Xα for i ∈ N and XN =
∏

i∈N Xi. We identify XN

with
∏

α∈D Xα. For every xN ∈ XN and α ∈ D, we denote π(α, xN) ⊆ K the intersection
of all subsets K ′ of K satisfying these two conditions: α ∈ K ′ and [β ∈ K ′ ⇒ xβ ∈ K ′];
note that π(α, xN) is a chain: a play of the game starting at α. The unique element of
T ∩ π(α, xN) is denoted τ(α, xN): the result of playing xN starting at α.

Finally, there is a mapping γ : T → A and g(xN) = γ(τ(α0, xN)). If γ is a bijection, G
is called free; in this case, we may just assume A = T (as was done in Kukushkin, 2002a).
For each α ∈ D, we denote F (α) = γ({β ∈ T | β > α}), the set of outcomes feasible if the
play passes through α.

To avoid pathologies, we always assume that #Xα > 1 and #F (α) > 1 for every α ∈ D
(i.e., there is no “meaningless” decision node), while Xα ∩Di = ∅ for all i ∈ N and α ∈ Di

(i.e., no player can make two consecutive choices). The restrictions are innocuous and allow
more compact formulations of Theorem 3.9, Conjecture 3.11, and Proposition 3.20 below.

Proposition 3.8. A game form is simple if and only if it can be represented as a perfect
information game form where D is a chain in the tree order, i.e., there exists a play of the
game containing all decision nodes (one of the above restrictions may have to be violated,
namely, #F (α) = 1 for some α ∈ D is possible).

Proof. Straightforward.

Theorem 3.9 (Theorem 1 of Kukushkin, 2002a). If G is a free perfect information
game form, then G has the FIP if and only if each Di is a chain in the tree order, i.e., for
each player there exists a play of the game containing all his decision nodes.

The sufficiency part, naturally, holds for every PIGF, which cannot be said about the
necessity.
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Example 3.10. Let us consider a three-person perfect information game form with five
decision nodes, six terminal nodes, and five outcomes. We assume D1 = {α0, α2, α3},
D2 = {β2}, D3 = {β3} and A = {a, b, c, d, e}; γ is described by putting outcomes at
terminal nodes.

a
1←−−− α2

2←−−− β2
1←−−− α0

1−−−→ β3
3−−−→ α3

1−−−→ e

1

y 2

y
y3

y1

b c c d

The FIP is not difficult to check.

In an attempt to extend Theorem 3.9 to the general case, we introduce the following
requirements. First, the decision nodes of each player form a subsemilattice of the game
tree, i.e., if a player moves at two incomparable nodes, he must move at their meet too:

α, α′ ∈ Di ⇒ α ∧ α′ ∈ Di. (3.6a)

The second condition needs some auxiliary notations. For i ∈ N and α, β ∈ Di, we denote:

F ∗(α, β) = γ({t ∈ T | α < t ∧ β < β & t ∧ β /∈ Di});

F ∗∗(α, β) =

{
F ∗(α, β), if #F (β) > 2;

F ∗(α, β) \ F (β), if #F (β) = 2.

Now the condition is

∀i ∈ N ∀α ∈ Di ∀β′, β′′ ∈ Di \ {α} ∀c′, c′′ ∈ A

[β′ ∧ β′′ = α & c′ ∈ F ∗∗(α, β′) & c′′ ∈ F ∗∗(α, β′′) ⇒ c′ = c′′]. (3.6b)

If Di is a chain, then (3.6a) holds trivially while (3.6b) holds by default. Generally, condi-
tions (3.6) mean that whenever a player makes the play to turn towards one of her decision
nodes rather than towards another, and then another player intervenes denying the first
player any further participation in the play, the outcome is “almost” predetermined.

Conjecture 3.11. A perfect information game form has the FIP if and only if it satisfies
assumptions (3.6).

Actually, assumptions (3.6) are equivalent to the impossibility of improvement cycles as
in Examples 3 and 4 of Kukushkin (2002a), so their necessity is straightforward.

Proposition 3.12. Every perfect information game form satisfying assumptions (3.6) is
separable.

Proof. Given i ∈ N and xi ∈ Xi, we define α(xi) as the greatest in the tree order (i.e.,
the furthest from the origin) decision node of player i that can be reached when player i
chooses xi. It is well defined because of (3.6a). Now if xi prescribes to player i to choose a
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terminal node t at α(xi), i.e., if xα(xi) = t ∈ T , we define p(xi) = γ(t); otherwise, p(xi) ∈ A
is arbitrary.

Checking (3.1) is easy. Let τ(α0, xN) = t, hence g(xN) = γ(t). We denote i the player
who made the last move in the play ending at t, and β the decision node where that last
move was made. Obviously, β = α(xi) and γ(t) = p(xi).

By Proposition 3.8, every two-person perfect information game form satisfying assump-
tions (3.6) is simple. The converse to Proposition 3.12 is wrong: the proof only needs (3.6a).
On the other hand, Proposition 3.12 becomes wrong if assumptions (3.6) are dropped alto-
gether.

Example 3.13. Let us consider a free two-person perfect information game form with three
decision nodes; we assume D1 = {α0} and D2 = {β′, β′′}.

a
2←−−− β′ 1←−−− α0

1−−−→ β′′ 2−−−→ d

2

y
y2

b c

If it were a separable game form, we could, without restricting generality, assume p(β′) = a
and p(β′′) = d. Now if p(b, c) 6= b, then (3.1) is violated for xN = 〈β′, (b, c)〉; if p(b, c) 6= c,
then (3.1) is violated for xN = 〈β′′, (b, c)〉.

Given a perfect information game form, we define the distance between two strategies
of the same player i ∈ N as

d(xi, yi) = #{α ∈ Di | yα 6= xα}. (3.7)

Then we define admissible change relations by (2.10) with the “costs” δx−i
(xi, yi) = d(xi, yi)

for every i ∈ N and x−i ∈ X−i. In other words, a change of strategy is admissible if the
number of nodes involved is minimal.

Remark. If a strategy change is admissible in the sense of (3.7), then every node where a
change has happened must be on the new play of the game. The converse is true for free
PIGFs, but not generally. Actually, Theorem 3.14 remains valid if we define admissibility
as the absence of changes at irrelevant nodes; even the same proof will do. However, it
seems impossible to describe such admissibility with naturally looking “costs.”

Theorem 3.14 (Theorem 3 of Kukushkin, 2002a). Every perfect information game
form has an almost unrestricted FIP with admissible change relations defined by the “costs”
(3.7).

Remark. A modification of the proof from Kukushkin (2002a) allows us to derive a corol-
lary (Proposition 3.19 in the next subsection), which may be of some interest.
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Proof. Let xN ∈ XN and t ∈ T ; we say that t is blocked by player i at xN if there exist α ∈ Di

and β ∈ Xα such that t ∈ π(β, xN) \ π(α, xN) (it follows immediately that τ(β, xN) = t
and xα 6= β). Let t 6= τ(α0, xN); then the set {α < t | t /∈ π(α, xN)} is a nonempty
chain, so we may pick its maximum α and denote i = ν(α). Obviously, t is blocked by i
at xN and t cannot be blocked at xN by any other player. We thus obtain a partitioning
of T \ {τ(α0, xN)} into subsets Bi(xN) of terminal nodes blocked by each particular player
i ∈ N at xN .

It is important to note that #Bi(xN) does not depend on xN ; actually, #Bi(xN) =
[
∑

α∈Di
#Xα] − #Di because choosing any alternative from Xα for α ∈ Di, player i does

not choose each of #Xα − 1 others thereby blocking the same number of terminal nodes
(exactly which terminal nodes are blocked depends on the choices at successive nodes).

Defining P (xN) = −∑
i∈N

∑
t∈Bi(xN ) υi◦γ(t), let us show that P is a numeric potential,

in the sense of (2.5a), of B>. Assuming yN B>i xN , we have to prove that P (yN) > P (xN).

We denote t = τ(α0, xN) and t′ = τ(α0, yN); then υi ◦ γ(t′) > υi ◦ γ(t) and t ∧ t′ ∈ Di.
Let us show first Bj(xN) ⊆ Bj(yN) for each j 6= i. Assuming t′′ ∈ Bj(xN), we, by the
definition of blocking, have α ∈ Dj and β ∈ Xα such that t′′ ∈ π(β, xN) \ π(α, xN).
Since j 6= i, yα = xα, hence t′′ /∈ π(α, yN) and t′′ 6= t′; moreover, t′′ ∧ t′ ≤ α. Now
t′′ 6= τ(β, yN) could only be possible if there were β′ ∈ π(β, xN) such that yβ′ 6= xβ′ ,
hence β′ ∈ Di; but then the replacement of xβ′ with yβ′ would be a superfluous change
incompatible with the minimization of “costs” (3.7). More formally, considering zi which
coincides with xi at β′ and with yi at all other nodes from Di, we immediately see that
g(zi, x−i) = g(yi, x−i) = g(yN) while δx−i

(xi, zi) < δx−i
(xi, yi). Therefore, τ(β, yN) = t′′,

hence t′′ ∈ Bj(yN).

Now Bj(xN) ⊆ Bj(yN) implies Bj(xN) = Bj(yN) for all j 6= i. It follows immediately
that Bi(yN) = (Bi(xN) \ {t′}) ∪ {t}, hence

P (yN)− P (xN) = υi ◦ γ(t′)− υi ◦ γ(t) = ui(yN)− ui(xN). (3.8)

Thus, we have P (yN) > P (xN).

An extension of the notion of a PIGF is met in the literature quite often, see, e.g.,
Boros and Gurvich (2003) and references therein. Suppose there is a directed graph, its
nonterminal nodes are partitioned among the players, and one of them is fixed as the origin.
Each player is free to choose an arc leading from each of her decision nodes (“stationary
strategies”); once all strategies are chosen, a play of the game is uniquely defined: after a
finite number of steps, either a terminal node is reached, or a cycle starts repeating itself
ad infinitum. Treating cycles as additional outcomes, we obtain a game form.

If the players were allowed to condition their choices on history, we would return to a
game on a (finite or infinite) tree. The stationarity requirement is effectively equivalent to
imperfect information: when making a decision at a node, the player does not know how
the play has come there. It is well known that a game with imperfect information, even
on a finite tree, need not possess a Nash equilibrium (unless mixed strategies are invoked).
In this class of games, however, the lack of information only concerns the past, which does
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not affect future possibilities. Therefore, it seems natural to expect no big difference with
the standard perfect information model.

Indeed, if the graph is acyclic, i.e., the underlying tree is finite, an equilibrium can be
obtained by the standard backward recursion. If cycles are possible, the underlying tree
becomes infinite, and there is nowhere to derive an equilibrium from. An intermediate
case emerges when the graph contains cycles, but every cycle is worse for each player than
any terminal node (Boros and Gurvich, 2003); then no infinite play can result from any
improvement.

Here we briefly consider the possibility to extend Theorem 3.14 to such a game on an
acyclic graph. The result, Theorem 3.15 below, is distinctly weaker; to be more precise,
a restricted FIP is established, but an almost unrestricted FIP is not (so far). Andersson
et al. (2008) very recently studied the acyclicity of improvements in such game forms on
graphs with or without cycles; their Theorem 2 is very close to our Theorem 3.15. However,
there is a clear difference in the general approach: every notion here is applicable to any
game form, while their types of improvement cycles only make sense within that class of
games.

The definition of a perfect information game form on an acyclic graph is most conve-
niently given in the same style as in the beginning of this subsection. Instead of a game
tree, we consider a finite partially ordered set K satisfying condition (b) from the defini-
tion of a PIGF: the existence of the origin α0. The partition of K into decision nodes D
and terminal nodes T is the same; the ownership mapping ν : D → N is the same; the
definitions of immediate successors Xα of α ∈ K, as well as strategies Xi =

∏
α∈Di

Xα and
strategy profiles XN =

∏
i∈N Xi =

∏
α∈D Xα are the same. Since condition (a) from the

definition of a PIGF is dropped, we may always assume that γ is a bijection, i.e., T = A.
A play of the game starting at α, π(α, xN) ⊆ K, is defined in the same way, and still is a
chain; the result of playing xN starting at α, τ(α, xN), is still uniquely defined. Finally, the
assumption Xα ∩ Di = ∅ for all i ∈ N and α ∈ Di no longer looks innocuous and is not
made.

We start with the definition of a strengthened version of restricted FIP. Given a family
of “costs” δx−i

on each Xi×Xi, we define the cost-efficient individual improvement relation
on XN by

yN B>i xN ­
[
yN BInd

i xN &

@zi ∈ Xi [δx−i
(xi, zi) < δx−i

(xi, yi) & ui(zi, x−i) ≥ ui(yN)]
]

(3.9a)

and
yN B> xN ­ ∃i ∈ N [yN B>i xN ]. (3.9b)

A game form has an FCEIP if there are “costs” δx−i
on each Xi ×Xi such that the cost-

efficient individual improvement relation (3.9) is acyclic in every derivative game.

Theorem 3.15. Every perfect information game form on an acyclic graph has an FCEIP
with the “costs” (3.7).
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Proof. Given xN ∈ XN and α ∈ D, we define vα(xN) = υν(α)(τ(α, xN)): what the player
who moves at α would get if the play passes through the node. Then we define a lexico-
graphic order on XN :

yN Â xN ­
[∃α ∈ K [vα(yN) > vα(xN)] &

∀α ∈ K
(
vα(yN) < vα(xN) ⇒ ∃β ∈ K [β > α & vβ(yN) > vβ(xN)]

)]
. (3.10)

Clearly, Â is a strict order.

Supposing that xN , yN ∈ XN and yN B>i xN , we show that yN Â xN . We denote
B = {β ∈ K | yβ 6= xβ} 6= ∅. Exactly as in the proof of Theorem 3.14, we have B ⊆
Di ∩ π(α0, yN), hence there exists β∗ = max B.

Let us show that vβ∗(yN) > vβ∗(xN). Supposing the contrary, we define zN ∈ XN by
zβ∗ = xβ∗ and zα = yα for all α 6= β∗. Clearly, ui(zN) = vβ∗(zN) = vβ∗(xN) ≥ vβ∗(yN) =
ui(yN). Since d(xi, zi) < d(xi, yi), we have a contradiction with the assumption yN B>i xN .

Finally, let α ∈ K and vα(yN) 6= vα(xN), hence B ∩ π(α, yN) 6= ∅. Picking β ∈
B ∩ π(α, yN), we have β∗ ≥ β ≥ α. Since vβ∗(yN) > vβ∗(xN), (3.10) holds.

It is impossible to derive an almost unrestricted FIP from the above argument: the
inequality vβ∗(yN) > vβ∗(xN) need not hold without the “cost-efficiency” of the improve-
ment. Whether the conditions of Theorem 3.15 imply the property itself remains an open
question.

Proposition 3.16. A perfect information game form on an acyclic graph has an almost
unrestricted FIP with admissible change relations defined by the “costs” (3.7) if each Di is
an anti-chain, i.e., all β, β′ ∈ Di are incomparable in the order on K.

Proof. Let yN B>i xN . In the notation from the proof of Theorem 3.15, we have B = {β∗},
hence vβ∗(yN) = ui(yN) > ui(xN) = vβ∗(xN), hence yN Â xN .

It is funny to contrast Proposition 3.16 with Theorem 3.9.

Proposition 3.17. A perfect information game form on an acyclic graph has the FIP if
each Di is a singleton.

Proof. Retaining the notation from the proof of Theorem 3.15 and arguing in the same
way, it is easy to show that yN Â xN whenever yN BInd xN .

The converse to Proposition 3.17 is wrong. There is no plausible conjecture about
necessary and sufficient conditions for FIP in this class of game forms.

3.3 Cardinal utilities and potentials

Although our main subject are games with ordinal preferences and we do not consider mixed
extensions, it seems impossible not to say a few words about cardinal utilities. Actually,
Monderer and Shapley (1996) paid most attention to that case. Moreover, they assumed
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that the utilities of all players are measured in the same scale; we make the same assumption
here.

Let Γ be a game with such “co-cardinal” utilities. Monderer and Shapley (1996) defined
an exact potential of Γ as a function P : XN → R such that

ui(yN)− ui(xN) = P (yN)− P (xN) (3.11)

whenever i ∈ N , yN , xN ∈ XN , and y−i = x−i. An ordinal potential of Γ is a function
P : XN → R such that

sign(ui(yN)− ui(xN)) = sign(P (yN)− P (xN)) (3.12)

whenever i ∈ N , yN , xN ∈ XN , and y−i = x−i. The latter notion is indeed ordinal,
i.e., invariant under strictly increasing transformations of utilities. Voorneveld and Norde
(1996) showed that the existence of an ordinal potential is equivalent to the absence of
“weak improvement cycles.”

Obviously, (3.11) implies (3.12), of which it is the most natural cardinal analogue.

Theorem 3.18. For every game form G, the following statements are equivalent.

1. Every derivative game G(υN) admits an exact potential.

2. Every derivative game G(υN) admits an ordinal potential.

3. G is dictatorial.

Proof. The implications [Statement 3 ⇒ Statement 1 ⇒ Statement 2] are straightforward.
Let Statement 2 hold; then G has the FIP. Let xN ∈ XN , i ∈ N , and yi ∈ Xi; we say that
yi is effective at xN if g(yi, x−i) 6= g(xN).

Step 3.18.1. Let xN ∈ XN . If a player has a strategy effective at xN , then no strategy of
any other player is effective at xN .

Proof. Suppose the contrary: two players have effective strategies at the same strategy
profile. Taking into account Proposition 3.4, we see that G must contain a 2× 2 fragment
of the type a c

b b with b 6= a 6= c. Assuming, without restricting generality, that i chooses
rows and j columns, we consider a utility vector υN such that υi(a) > υi(b) ≥ υi(c) and
υj(c) > υj(a). Clearly, G(υN) cannot admit an ordinal potential.

Step 3.18.2. If yi is effective at xN , zi ∈ Xi, j ∈ N \ {i} and zj ∈ Xj, then zj is not
effective at (zi, x−i).

Proof. We have either g(zi, x−i) 6= g(xN) or g(zi, x−i) 6= g(yi, x−i), hence either xi or yi is
effective at (zi, x−i). Now Step 3.18.1 applies.

Step 3.18.3. If yi is effective at xN , then player i is a dictator.
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Proof. For every zi ∈ Xi, we define p(zi) = g(zi, x−i). By Step 3.18.2, g(zi, z−i) = p(zi)
whenever z−i differs from x−i in the choice of one player, i.e., given j ∈ N \ {i} and
zj ∈ Xj, we have g(xi, zj, x−ij) = p(xi) 6= p(yi) = g(yi, zj, x−ij). Therefore, yi is effective at
(xi, zj, x−ij), so the same Step 3.18.2 applies again and we have g(zi, z−i) = p(zi) whenever
z−i differs from x−i in the choice of two players. Iterating the reasoning, we see that
g(zi, z−i) = p(zi) for all z−i ∈ X−i, i.e., player i is a dictator.

If #g(XN) = 1, then every player is a dictator. If g(xN) 6= g(yN), there is a sequence
x0

N , x1
N , . . . , xn

N such that x0
N = xN , xn

N = yN , and xk+1
−i(k) = xk

−i(k) for each k ∈ {0, . . . , n−1}
and some i(k) ∈ N . Clearly, we must have g(xk

N) 6= g(xk+1
N ) for some k, hence Step 3.18.3

applies.

Remark. Theorem 3.18 remains valid if Statements 1 and 2 are restricted to injective
utilities (i.e., strict preferences): If b 6= c in Step 3.18.1, then we may assume υi(b) > υi(c).

We call G a nearly potential game form if there is a liberal admissible change relation
`i on XN for each i ∈ N , and a function P : XN → R for every derivative game G(υN) such
that (3.11) holds whenever i ∈ N , yN , xN ∈ XN , xN `i yN , and g(yN) 6= g(xN). We call G
an almost potential game form if there is a function P : XN → R for every derivative game
G(υN) such that (3.11) holds whenever i ∈ N , yN , xN ∈ XN , x−i = y−i, and g(yN) 6= g(xN).
Clearly, every almost potential game form has the FIP while every nearly potential game
form has an almost unrestricted FIP.

Proposition 3.19. Every perfect information game form is a nearly potential one. If ν
is injective, i.e., each player has at most one decision node, then it is an almost potential
game form.

Proof. Defining the admissible change relations by the “costs” (3.7) and potential P as in
the proof of Theorem 3.14, we refer to (3.8). If each Di is a singleton, then every change of
strategy producing a change of outcome is admissible.

Proposition 3.20. If a free perfect information game form is an almost potential one, then
ν is injective.

Proof. By Theorem 3.9, each Di is a chain, so if ν is not injective, we must have ν(α) =
ν(α′) = i while α < α′. By the non-degeneracy assumptions, there must be β ∈ Dj such
that α < β < α′ and j 6= i. Since G is free, there must be a fragment of the type

a b b
a c d

where player i chooses columns and player j rows, and different letters denote different
outcomes. Individual changes of strategies starting at the northwestern corner produce
this cycle of outcomes: a → b → c → d → b → a. Therefore, (3.11) would imply
that υi(b)− υi(a) + υj(c)− υj(b) + υi(d)− υi(c) + υj(b)− υj(d) + υi(a)− υi(b) = 0, hence
υi(d)−υi(c) = υj(d)−υj(c). Clearly, the equality does not hold for all utility functions.
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The assumption that the game form is free cannot be dropped. Example 4.11 below
disproves putative hypotheses like “every nearly (or almost) potential game form can be
represented as a perfect information game form”; on the other hand, such examples seem
rare, so a plausible conjecture may be obtainable.

4 FCP Game Forms

4.1 Characterization

Given I ∈ N \ {N}, a superfragment of G is a game form with two players, “I” and “−I,”
nonempty subsets of XI and X−I as strategy sets, respectively, and the appropriate restric-
tion of g. The FCP(+) of G obviously implies the same property of every superfragment;
no such assertion holds for the FIP.

A game form G is supertight if every 2×2 superfragment of G contains a simple strategy;
in other words, if the condition

{g(x′I , x
′
−I), g(x′′I , x

′′
−I)} ∩ {g(x′I , x

′′
−I), g(x′′I , x

′
−I)} 6= ∅ (4.1)

holds for every I ∈ N , x′I , x
′′
I ∈ XI and x′−I , x

′′
−I ∈ X−I .

Remark. Boros et al. (2010) call such game forms “totally tight”; again, a lone adjective
seems preferable. Boros et al. (2009) proved that every supertight game form is separable.

Proposition 4.1. Let G be a game form such that g(XN) = {q, a}. Then G is supertight
if and only if there is an ordering ºI on XI for every I ∈ N such that

∀I ∈ N ∀xN , x′N ∈ XN

[
[g(x′N) = q & x′I ºI xI & x′−I = x−I ] ⇒ g(xN) = q

]
. (4.2)

An interpretation should be clear: all strategies of a player or a coalition are (weakly)
ordered according to how much effort is spent in trying to switch from a status quo ante
outcome q to the unique available alternative; whenever the effort proves insufficient, less
effort cannot be sufficient. The term “a binary lobbing game form” may be appropriate.

Proof. Necessity. Let (4.1) hold everywhere. For each I ∈ N , we define a binary relation
on XI :

yI ºI xI ­ ∀x−I ∈ X−I [g(yI , x−I) = q ⇒ g(xI , x−I) = q]; (4.3)

the relation is obviously a preorder. Incomparability of yI and xI would immediately imply
a violation of (4.1); therefore, ºI is an ordering for every I ∈ N . The “monotonicity”
requirement (4.2) immediately follows from (4.3).

Sufficiency. Suppose that (4.2) holds, but (4.1) is violated by a superfragment. With-
out restricting generality, x′′I ºI x′I and x′′−I º−I x′−I ; therefore, g(x′I , x

′
−I) = q. The sup-

posed negation of (4.1) implies that g(x′′I , x
′
−I) = g(x′I , x

′′
−I) = a, but then g(x′′I , x

′′
−I) = a

by (4.2).
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Theorem 4.2. A game form G has the FCP if and only if G is either dictatorial, or
supertight with #g(XN) ≤ 2.

Remark. So far, there is no explanation for the obvious similarity with Arrow’s impossi-
bility theorem.

Proof. Sufficiency. A dictatorial game form poses no problem. Let G be supertight with
g(XN) = {a, q} and x0

N , x1
N , . . . , xm

N = x0
N be a coalition improvement cycle in a derivative

game G(υN). Without restricting generality, g(x0
N) = a, hence g(x2k

N ) = a, g(x2k+1
N ) = q,

and m is even. We denote I = {i ∈ N | υi(a) > υi(q)}, J = {i ∈ N | υi(q) > υi(a)},
and N0 = {i ∈ N | υi(a) = υi(q)}. Each player i ∈ N0 chooses the same strategy at
each xk

N . Obviously, x2k+1
I = x2k

I and x2k+2
−I = x2k+1

−I for all k. By Proposition 4.1, we have

x2k+2
I ÂI x2k+1

I = x2k
I for each k, which contradicts the assumption xm

N = x0
N .

Necessity. Let G have the FCP; then (4.1) holds by Proposition 3.4.

Step 4.2.1. #g(X ′
N) ≤ 2 for every 2× 2 superfragment of G.

Proof. Suppose the contrary: there is a superfragment of G of the type a b
d c with a 6= b 6=

c 6= a. Let I choose rows and −I columns. We consider a utility vector υN such that
υi(a) > υi(c) > υi(b) for each i ∈ I and υi(b) > υi(a) > υi(c) for each i /∈ I. A coalition
improvement cycle in G(υN) is obvious: a → b → c → a.

Suppose that G is not dictatorial. Then for each i ∈ N there is xi ∈ Xi such
that #g(xi, X−i) ≥ 2. Moreover, at least two players are not “dummies,” i.e., there is
x−i ∈ X−i such that #g(Xi, x−i) ≥ 2. Whenever i ∈ N , xi, x

′
i ∈ Xi, x−i, x

′
−i ∈ X−i and

g(x′i, x−i) 6= g(xi, x−i) 6= g(xi, x
′
−i), there holds g(x′i, x−i) = g(xi, x

′
−i) by Step 4.2.1. It

follows immediately that #g(xi, X−i) ≤ 2 for every non-dummy i ∈ N and xi ∈ Xi.

If #g(XN) > 2, there must exist i ∈ N , xi, x
′
i ∈ Xi and a, b, c, d ∈ A such that

a 6= b 6= c 6= a, b 6= d 6= c, g(xi, X−i) = {a, b}, and g(x′i, X−i) = {c, d}. We pick x−i ∈ X−i

such that g(xi, x−i) = b. If g(x′i, x−i) = d, we pick x′−i ∈ X−i such that g(x′i, x
′
−i) = c

and obtain a contradiction with Step 4.2.1. If g(x′i, x−i) = c, we pick x′−i ∈ X−i such that
g(x′i, x

′
−i) = d and again obtain a contradiction with Step 4.2.1.

Theorem 4.3. A game form G has the FCP+ if and only if it has the FCP and either
#g(XN) = 1 or #N ≤ 2.

Proof. Sufficiency. Let #N = 2. Given a utility vector υN , we take υ∗N with the property

υ∗i (a) > υ∗i (b) ⇐⇒
[
υi(a) > υi(b) or [υi(a) = υi(b) & υ−i(a) > υ−i(b)]

]

for each i ∈ N and a, b ∈ A. Clearly, a weak coalition improvement path in G(υN) is a
coalition improvement path in G(υ∗N), hence G has the FCP+ as well as the FCP.

Necessity. Let #g(XN) > 1; then there are i ∈ N xi, x
′
i ∈ Xi, and x−i ∈ X−i such

that a = g(xi, x−i) 6= g(x′i, x−i) = b. Supposing #N > 2, we can pick j, k ∈ N such that
j 6= i 6= k 6= j. Whenever υi(a) = υi(b), υj(a) > υj(b), and υk(a) < υk(b), we have a weak
coalition improvement cycle where player i switches between xi and x′i back and forth, while
the other players choose x−i.

22



4.2 Voting by veto

The title of this subsection refers to a class of voting procedures; each of them defines a
game form. There are finite sets of players N and of outcomes, or alternatives, A. The
players may have arbitrary preferences over the outcomes. A voting by veto procedure
specifies positive integer numbers λa and µi for each a ∈ A and i ∈ N : µi is the number of
black balls given to player i; λa is the “veto-resistance” of outcome a. Each player allocates
his/her black balls among the outcomes; if the number of balls allocated to a ∈ A equals
or exceeds λa, the outcome is vetoed. To ensure the existence of non-vetoed outcomes, we
impose the restriction ∑

a∈A

λa ≥
∑
i∈N

µi + 1. (4.4)

A linear order is assumed on A; if several outcomes are not vetoed, the highest of them is
selected.

To describe strategies formally, we assume there is a finite set D of black balls with an
ownership mapping ν : D → N . Balls from Di = ν−1(i) are given to player i; we assume
#Di = µi. A strategy of player i is a mapping xi : Di → A; a strategy profile can be
understood as a mapping xN : D → A. For each I ∈ N , we denote DI =

⋃
i∈I Di; every

strategy of the coalition can be understood as a mapping xI : DI → A. Given a ∈ A,
I ∈ N , and xI ∈ XI , we denote κ(a, xI) = #x−1

I (a), the number of balls cast to a by I
under xI . An outcome a is vetoed at a strategy profile xN if κ(a, xN) ≥ λa, and over-vetoed
if the inequality is strict. g(xN) is the highest non-vetoed outcome.

Remark. If there is b ∈ A such that
∑

a>b λa ≥
∑

i∈N µi + 1, then b /∈ g(XN). In a sense,
the elimination of such outcomes would not change the game form; however, their presence
creates no difficulties either.

For brevity, a game form generated by a voting by veto procedure is called a VV game
form.

Two potential extensions of the notion may be worth mentioning. First, we might intro-
duce a distinction between “outcomes” from A and “voting proposals,” the same outcome
being implied by several different proposals (similarly to the notion of a non-free perfect
information game form). Our “positive” results, naturally, remain valid in this situation,
but “negative” ones need not. Since the latter are just examples, the matter seems not to
deserve much attention. Secondly, we might allow non-integer µ’s and λ’s: instead of black
balls, each player is given a certain amount of tar to be allocated among the outcomes.
However, such voting procedures may seem too exotic, and are outside the realm of finite
game forms anyway.

Proposition 4.4. Every ordered voting game form G with integer µ’s and λ’s can be
represented as the fragment of a VV game form Ḡ.

Proof. We retain the same set of outcomes A with the same order. Denoting m = #A− 1,
a− = min A, and a+ = max A, we define veto-resistance in Ḡ as λ̄a = λa for a 6= a− and
λ̄a− = m · ∑i∈N µi + 1; each player i is given µ̄i = m · µi black balls. Inequality (4.4) is
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obvious. Every strategy xi ∈ A in G corresponds to this strategy in Ḡ: put µi balls at
each a ∈ [xi + 1, . . . , a+] and all the rest at a− (if xi = a+, put all the balls at a−). It is
easily checked that the highest non-vetoed outcome when all players use such strategies is
the same as g(xN) defined by (3.4).

Proposition 4.5. Every free perfect information game form G can be represented as the
fragment of a VV game form Ḡ.

Proof. For each α ∈ D, we define α↑ = {a ∈ T | a > α} and mα = #α↑. Then we
define Ā = T ∪ {α0} and order Ā in an arbitrary way with the only restriction that the
relations α0 < a for every a ∈ T are retained. Finally, we define µ̄i =

∑
α∈Di

mα for each

i ∈ N , λ̄a = 1 for all a ∈ T , and λ̄α0 =
∑

i∈N µ̄i + 1. Inequality (4.4) is again obvious.
The choice of β ∈ Xα (α ∈ Di) in G corresponds, in Ḡ, to putting a black ball at each
a ∈ α↑ \ β↑, and putting all the remaining (of mα) balls at α0. It is easily checked that
when all players use such strategies, just two outcomes from Ā remain non-vetoed: α0 and
τ(α0, xN) = g(xN).

An analog of Proposition 4.5 for non-free perfect information game forms holds if we
allow “non-free” VV game forms; the proof is essentially the same. If we just drop the
assumption that G is free, the proposition will not survive.

Example 4.6. Let us consider a two-person perfect information game form with three
decision nodes; we assume D1 = {α0} and D2 = {β′, β′′}.

a
2←−−− β′

1←−−− α0
1−−−→ β′′

2−−−→ a

2

y
y2

q q

Supposing that it can be represented as the fragment of a VV game form, we may assume
q > a by symmetry.

The number of black balls allocated by player 1 to q under the choice of β′ (β′′) is
denoted m′

1 (m′′
1); without restricting generality, m′

1 ≥ m′′
1. Let us denote x̄2 the strategy

of player 2 that prescribes the choice of q at β′ and a at β′′. The number of black balls
allocated to q under x̄2 is denoted m2. Since g(β′′, x̄2) = a, we have m′′

1 + m2 ≥ λq; but
then m′

1 + m2 ≥ λq as well, contradicting g(β′, x̄2) = q.

Proposition 4.7. Every simple game form G can be represented as the fragment of a VV
game form Ḡ.

Proof. Taking into account Proposition 3.8, we may assume that G is a perfect information
game form where D is a chain. We define Ā = A ∪ {α0} and order Ā in an arbitrary way
with the only restriction that α0 < a for every a ∈ A. For each α ∈ D and a ∈ A, we define
m(α, a) = #[γ−1(a) ∩ Xα], i.e., the number of ways to end the play at α producing the
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outcome a. Then, again for each α ∈ D and a ∈ A, we define an integer number η(α, a) by
backward recursion:

η(α, a) = m(α, a) +
∑

β>α

η(β, a).

For each a ∈ A, we define λ̄a = η(α0, a); λ̄α0 = 1 +
∑

a∈A

∑
α>α0

η(α, a). For each i ∈
N , we define µ̄i =

∑
α∈Di

∑
a∈A η(α, a). Now we have

∑
i∈N µ̄i =

∑
a∈A

∑
α∈D η(α, a) =∑

a∈A[η(α0, a) +
∑

α>α0
η(α, a)] =

∑
a∈Ā λ̄a − 1, i.e., (4.4) holds as an equality.

Let us describe how the strategies in G are to be interpreted in Ḡ. The definition of µ̄i

suggests perceiving each D̄i as
⋃

α∈Di
D̄α with #D̄α =

∑
a∈A η(α, a); every D̄α is partitioned

into
⋃

a∈A D̄α(a) with #D̄α(a) = η(α, a), each ball from D̄α(a) having a “preordained
destination” a. Furthermore, there is a subset M(α, a) ⊆ D̄α(a) with #M(α, a) = m(α, a);
we assume a bijection between M(α, a) and γ−1(a) ∩Xα fixed.

The player moving at α ∈ D has two broad alternatives: either end the play here (there
are m(α, a) choices leading to each outcome a ∈ A), or continue (a unique choice, absent if
α = max D). We interpret each choice at α as an allocation of balls from D̄α among a ∈ Ā.
If the decision is to continue, then m(α, a) +

∑
β>α+1 η(β, a) balls from D̄α(a) go to each

a; all the rest goes to α0. If the decision is to finish at β ∈ Xα with γ(β) = a, then each
ball from D̄α(b) (b 6= a) goes to b; each ball from M(α, a) except that corresponding to β
goes to a; all the rest goes to α0 again. Obviously, different choices in G generate different
allocations in Ḡ.

Finally, let us consider an arbitrary decision profile in G. Let the decision at each
β < α ∈ D be to continue, whereas the decision at α be to finish at α′ ∈ Xα with
γ(α′) = a∗. In G, we have g(xN) = a∗ regardless of the choices at β > α. Looking at what
outcomes are vetoed in Ḡ under the corresponding strategy profile, we may assume that
the players move the balls from D̄β’s consecutively, in accordance with the order on D.
Before the choice at α0 is made, there are λ̄a = η(α0, a) = m(α0, a)+

∑
β>α0

η(β, a) “empty
slots” at each a ∈ A; the decision to continue the play fills m(α0, a) +

∑
β>α0+1 η(β, a) of

them. Therefore, after the choice at α0 has been made, there are η(α0 + 1, a) empty slots
at each a ∈ A. A straightforward inductive argument shows that there are η(α, a) empty
slots at each a ∈ A when the choice at α is being made. After the decision to end the
play, η(α, a) balls go to each a 6= a∗, hence they are all vetoed regardless of decisions at
successive nodes. As to a∗, there remain 1 +

∑
β>α η(β, a∗) empty slots there; every β > α

adds at most η(β, a∗) balls. Therefore, a∗ is the highest non-vetoed outcome.

Proposition 4.8. Let Ḡ be a VV game form; let G be a fragment of Ḡ such that #g(XN) ≤
2. Then G has the FCP.

Proof. Without restricting generality, we assume g(XN) = {q, a} with q > a, hence g(xN) =
a if and only if q is vetoed at xN . For each I ∈ N and xI , x

′
I ∈ XI , we define x′I ºI xI ­

κ(q, x′I) ≥ κ(q, xI). It is clear now that G satisfies (4.2), hence the sufficiency part of
Theorem 4.2 applies.
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Example 4.9. Let A = {a, b, c}, a > b > c, N = {1, 2}, and every µ and λ be equal to 1.
The game form is described by the following matrix:

b c b
c a a
b a a

Assuming υ1(a) = υ1(b) = 1, υ1(c) = 0, υ2(a) = υ2(b) = 0, υ2(c) = 1, we see that the
underlined outcomes form an improvement cycle in G(υN); therefore, G does not have even
the FIP (although it is strongly consistent).

The example shows that fragments of VV game forms do not generally possess any nice
property: the underlined 2 × 2 fragment is not even Nash consistent. It carries a subtler
message as well. If we allowed non-free VV game forms, we might assume that a and b
are just different proposals implying the same outcome (υi(a) = υi(b) for both i in the
example), hence #A = 2. Therefore, for Proposition 4.8 to survive, the restriction should
be put on the number of proposals rather than outcomes.

Theorem 4.10. Let G be a game form with N = {1, 2} and A = {q, a}. Then the following
statements are equivalent.

1. G has the FCP.

2. G is simple.

3. G can be represented as the fragment of a VV game form.

Proof. Suppose Statement 1 holds, hence Theorem 4.2 applies. If G is dictatorial, then
both Statements 2 and 3 are obvious. Otherwise, we define an ordering ºi on each Xi by
(4.3). We pick x−i and x+

i (for each i ∈ N) among, respectively, the least and the greatest
strategies in Xi w.r.t. ºi. Let us show that X contains a simple strategy. Pick i ∈ N ; if
g(x−i , x+

−i) = q, then g(x−i , x−i) = q for all x−i ∈ X−i, and we are home; if g(x−i , x+
−i) = a,

then g(xi, x
+
−i) = a for all xi ∈ Xi, and we are home again. Since every fragment of an FCP

game form has the FCP itself, Proposition 3.2 applies, i.e., Statement 2 holds.

The implications Statement 2 ⇒ Statement 3 and Statement 3 ⇒ Statement 1 imme-
diately follow from Propositions 4.7 and 4.8, respectively. Note that the assumption n = 2
is not needed in either case.

Example 4.11. Let N = {1, 2, 3}, player 1 choose rows, player 2 columns, and player 3
matrices. [

q a
q q

] [
a a
q a

]

Condition (4.1) obviously holds, but there is no simple strategy. Thus, the implication
Statement 1 ⇒ Statement 2 from Theorem 4.10 does not hold when n > 2 even if #A = 2.

It is not difficult to check that the game form is an almost potential one; however, it
cannot be represented as a perfect information game form.
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Example 4.12. Let N = {1, 2, 3}, player 1 choose rows, player 2 columns, and player 3
matrices: 


q a a
q q q
q q q







q a a
q q a
q q a







q a a
q a a
q q a







a a a
a a a
q q a


.

Conditions (4.1) are easy to check, hence the game form is supertight. Suppose it can be
represented as the fragment of a VV game form. Since the roles of a and q are perfectly
symmetric, we may, without restricting generality, assume q > a; therefore, a is selected
when and only when q is vetoed. We denote xs

i the number of black balls cast at q by player
i(∈ {1, 2}) when using s-th strategy, counting upwards for player 1 and from the left to
right for player 2. The rightmost matrix shows that x2

1 − x1
1 > x2

2 − x1
2; the leftmost, that

x3
1 − x2

1 > x3
2 − x2

2; therefore, x3
1 − x1

1 > x3
2 − x1

2. On the other hand, each of the middle
matrices shows that x3

2 − x1
2 > x3

1 − x1
1.

Thus, the implication Statement 1 ⇒ Statement 3 from Theorem 4.10 does not hold
when n > 2 even if #A = 2. The invalidity of the converse implication when #A > 2 even
if n = 2 is shown by Example 4.9.

Theorem 4.13. Every VV game form has an almost unrestricted FCP.

Proof. For every xN , yN ∈ XN , a ∈ A, t ∈ D, and I ∈ N , we define:

ε(a, xN) = max{κ(a, xN)− λa, 0}; E(xN) =
∑
a∈A

ε(a, xN)

(over-vetoing at a and total over-vetoing);

β(a, xN) = max{λa − κ(a, xN), 0}
(the number of empty slots at a);

C(xN) = {b ∈ A |
∑

a>b

β(a, xN) < 2 & ε(b, xN) = 0} 3 g(xN);

B(xN) = x−1
N (C(xN))

(the sets of outcomes that are “close enough” to being selected and of the balls cast there);

δ(xN , yN ; t) =





0, if yN(t) = xN(t);

+∞, if yN(t) 6= xN(t) & ε(yN(t), yN) > 0;

d(yN(t), xN(t)) + 1, otherwise [with d defined by (3.5)];

(4.5a)

δx−I
(xI , yI) =

∑
t∈DI

δ(xN , (yI , x−I); t). (4.5b)

For every I ∈ N , the family of “costs” defined in (4.5) generates an admissible change
relation `I , hence an admissible improvement relation B> in every derivative game. The
notion of admissibility combines the ideas from the proofs of Theorems 3.7 and 3.14: the
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players shift as few balls as possible and move each of them as short a distance as possible;
first of all, however, they avoid over-vetoing at any cost.

Given a list of utilities 〈υi〉i∈N , we define

P (xN) = −
∑

t∈B(xN )

υν(t)(xN(t));

yN Â xN ­
[∀a ∈ A [ε(a, xN) ≥ ε(a, yN)] &(

E(xN) > E(yN) or B(xN) ⊂ B(yN) or

[B(xN) = B(yN) & P (xN) < P (yN)]
) ]

. (4.6)

The rest of the proof consists in showing that Â is an order potential for the admissible
improvement relation B>. It seems worthwhile to describe it informally: we monitor the
over-vetoing at each outcome, what balls are cast at C(xN) and who cast them; one strategy
profile “dominates” another if either there is a strict decrease in over-vetoing, or more balls
come under observation, or the balls are the same but the players try to veto worse (for
them) outcomes.

Let xN , yN ∈ XN , I ∈ N , y−I = x−I , a = g(xN), b = g(yN), and D∗ = {t ∈ D | xN(t) 6=
yN(t)}. We have to show that yN Â xN in every derivative game where yN B>I xN .

By the definition of g, two things are necessary and sufficient for b to be selected at yN :
b must not be vetoed; everything above b must be vetoed. Formally:

β(b, yN) > 0 = ε(b, yN); (4.7a)

∀c > b [β(c, yN) = 0]. (4.7b)

We start with the demonstration of the possibility to switch from a to b without any
increase in over-vetoing. If β(b, xN) = 0, then ε(b, xN) + 1 balls must be taken from b to
ensure (4.7a); Inequality (4.4) ensures that the total number of empty slots,

∑
c∈A β(c, xN),

is no less than that. Therefore, the members of I can make (4.7a) fulfilled without creating
over-vetoing. (Since coalition I was able to make b selected, #x−1

I (b) must be large enough.)
Similarly, no over-vetoing could help ensuring (4.7b). Since yI is the least cost way to switch
from a to b, there must be δx−I

(xI , yI) < +∞. Therefore, there was no increase in over-
vetoing at any outcome c ∈ A when xN was replaced with yN , i.e.

∀c ∈ A [ε(c, yN) ≤ ε(c, xN)]. (4.8)

Secondly, if ε(b, xN) > 0, we have E(yN) < E(xN), hence yN Â xN and we are home.
The same conclusion is reached if ε(c, yN) < ε(c, xN) for any c ∈ A. In the following, we
assume that

ε(b, xN) = 0; (4.9a)

∀c ∈ A [ε(c, yN) = ε(c, xN)]. (4.9b)

Thirdly, (4.7) immediately implies b ∈ C(yN). The final argument depends on whether
b > a or a > b.
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A. Let b > a. By (4.9a), shifting just one ball from b is enough to get that outcome
selected; therefore, D∗ = {t∗} and xN(t∗) = b. The minimality of δ(xN , yN ; t∗) implies that
the ball goes to the nearest empty slot, which is a, i.e., yN(t∗) = a. It is clear now that
B(yN) = B(xN) and P (yN)−P (xN) = υν(t∗)(b)− υν(t∗)(a) > 0. Therefore, yN Â xN by the
last disjunctive term in (4.6).

B. Let b < a. We again consider two alternatives. If b /∈ C(xN), then every c ∈ C(xN) is
above b, hence C(xN) ⊂ C(yN), hence B(xN) ⊂ B(yN) because at least one ball was added
at a ∈ C(yN). Therefore, yN Â xN by the second disjunctive term in (4.6).

Now let b ∈ C(xN); then β(a, xN) = 1 and β(c, xN) = 0 for every c such that b < c < a.
Therefore, D∗ = {t∗}, yN(t∗) = a, and xN(t∗) ≤ b. If xN(t∗) = b, then B(yN) = B(xN) and
P (yN)− P (xN) > 0, hence yN Â xN , exactly as in the case of b > a. This alternative must
hold if β(b, xN) = 0. Finally, let xN(t∗) = c < b, hence β(b, xN) > 0, hence c /∈ C(xN). We
see that t∗ ∈ B(yN) \B(xN), hence yN Â xN exactly as in the previous paragraph.

Example 4.9 above shows that the adjective “almost unrestricted” in Theorem 4.13
cannot be dropped; actually, both improvements by player 1 there create over-vetoing.

In principle, the notion of voting by veto can be extended by considering other rules for
the selection of a single non-vetoed outcome at every strategy profile. Assuming that (4.4)
holds as an equality, the existence of a strong equilibrium can be shown for any g (Moulin,
1983). Under a strict inequality, even Nash consistency is not ensured.

Example 4.14. Let A = {a, b, c, d}, N = {1, 2}, every µ and λ be equal to 1. It is
convenient to assume that each player just chooses an outcome, xi, to veto. Let g be
defined as follows: If {x1, x2} ⊆ {c, d}, then g(xN) = a if x1 = x2 and g(xN) = b if x1 6= x2;
otherwise, g(xN) = d if d is not vetoed whereas g(xN) = c if d is vetoed. The rule produces
this matrix:

d d d c
d d d c
d d a b
c c b a

.

Player 1 cannot ensure g(xN) ∈ {a, c}; player 2 cannot ensure g(xN) ∈ {b, d}. Therefore,
the game form is not Nash consistent (Gurvich, 1975, 1988; Moulin, 1976).

It remains unclear to what extent Theorem 4.13 could be generalized to other mappings
g. So far, an almost unrestricted FCP was only established for a rather peculiar tie-breaking
procedure suggested by Gol’berg and Gurvich (1986), which is only defined when (4.4) holds
as an equality. Example 2.1d is generated by that procedure.
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