
Best Response Dynamics in Finite Games

with Additive Aggregation∗

Nikolai S. Kukushkin

Russian Academy of Sciences, Dorodnicyn Computing Center

40, Vavilova, Moscow 119333 Russian Federation

E-mail: ququns@pochta.ru

Abstract

If in a finite strategic game all strategies are scalar, each player is only

affected by the sum of the partners’ choices, and one of three “single crossing”

conditions is satisfied, then every best response improvement path leads to a

Nash equilibrium. Journal of Economic Literature Classification Number: C 72.

∗Financial support from the Russian Foundation for Basic Research (grants 99-01-01238 and 02-
01-00854), from the Russian state program for the support of the leading scientific schools (grant 00-
15-96118), and from Generalitat Valenciana (grant INV 00-08-16) is acknowledged. I thank Francisco
Marhuenda and Carmen Herrero for procuring the latter grant, and Universidad de Alicante, De-
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1 Introduction

Individual myopic adaptation in strategic games has been studied since the time

of A. Cournot. An important step was made recently by Monderer and Shapley

(1996a), who established a link between unilateral improvement dynamics and “po-

tential functions” in finite games and produced an impressive list of games having

the finite improvement path (FIP) property, i.e., where every unilateral improvement

path eventually leads to a Nash equilibrium. Milchtaich (1996) introduced a weaker

finite best response improvement path (FBRP) property and showed that it is present

in some games without FIP. Kukushkin (1999) suggested the use of the language of

binary relations: both FIP and FBRP are easily restated as the acyclicity of the ap-

propriate individual improvement relations. A potential is also understood as a strict

order rather than a numeric function.

This paper applies the Monderer–Shapley–Milchtaich approach to a class of strate-

gic games with natural algebraic properties. First, we assume that all strategies are

scalar and each player is only affected by the sum of the partners’ choices. This class

of games was recognized and axiomatically characterized by Selten (1970, Chapters 8

and 9), and includes economic models such as the private provision of a public good

(bad) and the Cournot oligopoly.

Second, we only consider finite games. Since no market in the world trades in

infinitesimal (or indefinitely large, for that matter) quantities of any goods, this fea-

ture cannot be called unrealistic. The usual argument is that a continuous model is a

convenient approximation to a discrete one when admissible points are dense enough

on the real line. This paper shows that sometimes a discrete model may be more con-

venient. A similar treatment of continuous games is actually possible (Kukushkin,

2000a), but much more difficult technically.

Finally, a monotonicity condition is imposed in each theorem. Two conditions

are quite general in their nature and were recognized as such by Bulow et al. (1985),

who called them strategic complements and strategic substitutes, respectively. Both

conditions are met in economic models quite often, see, e.g., Fudenberg and Tirole

(1991, Section 12.3) and references there. The third only makes sense in games

with additive aggregation; it was first formulated in the Cournot oligopoly model

(P ′ − C ′′ < 0) and is often considered indispensable for the stability of equilibria.

It seems appropriate, therefore, to stress that here the condition is only imposed in
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Theorem 3, where it is coupled with symmetry as in the seminal papers by McManus

(1962, 1964).

Individual adaptation has been studied in games with strategic complementarities.

Topkis (1979, Algorithm I) proved the convergence of best response improvement

paths starting from the very bottom (or the very top) of the strategy profiles space.

Vives (1990) extended the result to paths starting “very high” or “very low”. Milgrom

and Roberts (1990) considered rather general adaptive learning processes, but did not

study their convergence. Friedman and Mezzetti (2001) proved that if the strategy

sets are finite chains, then every strategy profile is connected to a Nash equilibrium

with a unilateral improvement path; they called the property “weak FIP.” Here we are

interested in convergence to an equilibrium of all best response improvement paths,

and we have to additionally assume additivity.

As to improvement dynamics in games with strategic substitutes, a very recent

paper by Dubey et al. (2002), which treats strategic complements and substitutes

uniformly, seems the only relevant reference. A comparison with this paper can be

found in Section 7.9.

From a purely technical viewpoint, there are two principal ways to prove acyclicity.

Sometimes, one can immediately derive a contradiction from the assumed existence

of an improvement cycle, as in Theorem 1 below; alternatively, an explicit definition

of a potential, i.e., of a strict order on the set of strategy profiles such that every

best response improvement pushes the current profile upwards, can be obtained, as

in Theorem 2. In Theorem 3, an intermediate course is taken: an explicit “quasi-

potential” is defined, i.e., a preorder such that every best response improvement either

pushes the profile upwards or leaves it on the same level, and, when every player has

made an improvement, the profile inevitably goes upwards.

The next section contains basic definitions and notation. In Section 3, the three

main theorems are formulated and one of them proved. More complicated proofs of

Theorems 2 and 3 are deferred to Sections 4 and 5, respectively. Section 6, inserted

on a suggestion of the associate editor, describes relationships between the notions

of an order potential, used in this paper, and of a numeric potential, as introduced

by Monderer and Shapley (1996a). A discussion of possible extensions and open

problems in Section 7 concludes the paper.
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2 Basic Notions

A strategic game Γ is defined by a finite set of players N , and strategy sets Xi and

utility functions ui on X =
∏

i∈N Xi for all i ∈ N . Throughout the paper only finite

sets Xi are considered. Γ is called a game with additive aggregation (an AA game)

if each Xi is a subset of the real line (Xi ⊆ R) and, for each i ∈ N , there exists a

function Vi(si, xi) such that ui(x) = Vi(
∑

j 6=i xj, xi). An AA game is regular if every

Xi is the set of integers satisfying ai ≤ xi ≤ bi.

Remark. From the viewpoint of possible interpretations, perhaps, only regular games

deserve attention; however, we do not assume regularity where it is not necessary.

For every AA game, player i ∈ N , and x ∈ X, we denote τ(x) =
∑

i∈N xi and

σi(x) =
∑

j 6=i xj [note that τ(x) = σi(x)+xi for each i ∈ N ]; we also denote T = τ(X)

and Si = σi(X), and define the best response correspondence:

Ri(si) = Argmax
xi∈Xi

Vi(si, xi)

[ in a finite game, Ri(si) 6= ∅ for each si ∈ Si ].

We introduce a few binary relations on X (y, x ∈ X, i ∈ N):

y .i x ⇐⇒ [y−i = x−i & ui(y) > ui(x) & yi ∈ Ri(σi(x))];

y . x ⇐⇒ ∃i ∈ N [y .i x].

A Cournot path is a (finite or infinite) sequence {xk}k=0,1,... such that xk+1 . xk

whenever xk+1 is defined. A Cournot cycle is a Cournot path such that xm = x0 for

some m > 0.

For a finite game, the absence of Cournot cycles obviously means that every

Cournot path, if continued whenever possible, ends at a Nash equilibrium. Thus, the

existence of an equilibrium is implied.

For all admissible si, xi, and δ > 0, we define

Di(si, xi, δ) = Vi(si, xi + δ)− Vi(si, xi). (1)

The increment helps to formulate various useful properties. If Di(si, xi, δ) decreases in

xi, the utility function is concave in own variable; however, this property is useless in

discrete models studied in this paper. If the increment increases in si, there is Topkis’s
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increasing differences property, which implies that the best response correspondence

Ri is increasing in the sense of Veinott (Topkis, 1978); if every Vi has the property,

a Nash equilibrium exists by the Tarski (1955) fixed point theorem. If the increment

decreases in si for each i ∈ N , the existence of a Nash equilibrium follows from the

main theorem of Kukushkin (1994); the proof of the latter was based on a construction

invented by Novshek (1985) for continuous games.

Finally, in a regular AA game, the situation deserves attention when Di(si, xi, δ)

increases in a diagonal direction, with xi decreasing, si increasing, and their sum

keeping constant. Kukushkin (2000b) established the existence of an equilibrium in

quasisymmetric discrete games with this property of utilities, extending the results

obtained by McManus (1962, 1964) for symmetric continuous Cournot models. It

was also noted in that paper that the condition can be regarded as innocuous in the

context of the voluntary provision of a public good: it is satisfied if no increase in the

consumption of the private good could increase its relative value to the consumer.

The three main theorems of this paper establish the absence of Cournot cycles

under some ordinal versions of the three above properties, each of which could be

named “single crossing” (Milgrom and Shannon, 1994).

3 Theorems

An AA game satisfies the strategic complements condition if

Di(si, xi, δ) ≥ 0 ⇒ Di(si + ∆, xi, δ) ≥ 0 (2)

for all i ∈ N and all admissible si, xi, and δ, ∆ ≥ 0.

Theorem 1. No AA game with strategic complements admits a Cournot cycle.

Proof. Let x0, x1, . . . , xm = x0 be a Cournot cycle. We pick k such that τ(xk) maxi-

mizes τ(x) on the cycle. Let xk+1 .i xk; then xk+1
i ∈ Ri(σi(x

k)), xk
i /∈ Ri(σi(x

k)), and

xk+1
i < xk

i . On the other hand, xk
i must equal xh+1

i ∈ Ri(σi(x
h)) for some h; then

Di(σi(x
h), xk+1

i , δ) ≥ 0 for δ = xk
i − xk+1

i > 0. Now σi(x
h) = σi(x

h+1) ≤ σi(x
k) by the

choice of k, hence Di(σi(x
k), xk+1

i , δ) ≥ 0 by (2), contradicting xk+1 .i xk.

An AA game satisfies the strict strategic substitutes condition if

Di(si, xi, δ) ≥ 0 ⇒ Di(si −∆, xi, δ) > 0 (3)
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for all i ∈ N and all admissible si, xi, and δ, ∆ > 0.

Theorem 2. No AA game with strict strategic substitutes admits a Cournot cycle.

For mysterious reasons, our third condition has no commonly accepted name al-

though it is widely used in the literature (usually in a cardinal form). Kukushkin

(2000b) suggested the term “dual strategic substitutes” because both (3) and (4)

mean that sign(Di) decreases along the coordinate axes in the coordinates 〈 total of

all strategies, own strategy 〉 (which are as natural as 〈si, xi〉 used in this paper), while

(2) means that sign(Di) increases along the first axis.

Di(si, xi, δ) ≥ 0 ⇒ Di(si + ∆, xi −∆, δ) > 0 (4)

for all i ∈ N and all admissible si, xi, and δ, ∆ > 0.

Remark. If the game is not regular, there may be no admissible ∆ at all in (4), making

the condition vacuous.

An AA game is symmetric if all Xi are identical and all utilities are “isomorphic”:

ui(x) = V (σi(x), xi) (with the same V for all i ∈ N).

Theorem 3. No symmetric regular AA game satisfying (4) admits a Cournot cycle.

4 Proof of Theorem 2

Lemma 4.1. If Vi(si, xi) satisfies (3), s′i < s′′i , x′i ∈ Ri(s
′
i), and x′′i ∈ Ri(s

′′
i ), then

x′i ≥ x′′i .

Proof. Since x′′i ∈ Ri(s
′′
i ), Di(s

′′
i , x

′
i, x

′′
i −x′i) ≥ 0. If x′i < x′′i , then Di(s

′
i, x

′
i, x

′′
i −x′i) > 0

by (3), which contradicts x′i ∈ Ri(s
′
i).

For each i ∈ N , xi ∈ Xi, x ∈ X, and t ∈ T , we define:

Zi(xi, t) = {z ∈ X| zi ∈ Ri(σi(z)) & zi ≤ xi & τ(z) ≥ t};

Ξi(xi, t) = {zi ∈ Xi| ∃z−i[(z−i, zi) ∈ Zi(xi, t)]};
ξi(xi, t) = max Ξi(xi, t) (if Ξi(xi, t) = ∅, then ξi(xi, t) = min Xi );

ξ(x, t) = 〈ξi(xi, t)〉i∈N ∈ X.
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An inequality ξ(y, t) ≥ ξ(x, t) is understood coordinate-wise; ξ(y, t) > ξ(x, t) means

ξ(y, t) ≥ ξ(x, t) but not ξ(x, t) ≥ ξ(y, t) (Pareto dominance).

While following the proofs of the lemmas below, the reader might find it helpful

to study on pictures how the graph of a decreasing mapping, Ri(si), can intersect the

“east–south–eastern” corners cut off by the inequalities in the definition of Zi(xi, t)

from the plane with coordinates 〈si, zi〉 [ taking into account that τ(z) = si + zi ];

there are too many possible configurations to be printed here. As to the meaning of

the whole construction, I can only quote Kukushkin (1994): “it remains somewhat a

mystery why it works at all.”

Lemma 4.2. These statements hold for every i ∈ N , t, t′, t′′ ∈ T , and xi, x
′
i, x

′′
i ∈ Xi:

4.2.1. xi ≥ ξi(xi, t);

4.2.2. x′′i ≥ x′i ⇒ ξi(x
′′
i , t) ≥ ξi(x

′
i, t);

4.2.3. t′′ ≥ t′ ⇒ ξi(xi, t
′′) ≤ ξi(xi, t

′);

4.2.4. ξi(x
′′
i , t) > ξi(x

′
i, t) ⇒ ξi(x

′′
i , t) > x′i;

4.2.5. t′′ ≥ t′ ⇒ ξi(ξi(xi, t
′), t′′) = ξi(xi, t

′′);

4.2.6. [ξi(x
′′
i , t

′) ≥ ξi(x
′
i, t

′) & t′′ ≥ t′] ⇒ ξi(x
′′
i , t

′′) ≥ ξi(x
′
i, t

′′).

Proof. The statement [4.2.1] immediately follows from the definition; [4.2.2], from

Zi(x
′
i, t) ⊆ Zi(x

′′
i , t); [4.2.3], from Zi(xi, t

′′) ⊆ Zi(xi, t
′). The left hand side of [4.2.4]

implies the existence of z ∈ Zi(x
′′
i , t) with zi = ξi(x

′′
i , t); now if x′i ≥ ξi(x

′′
i , t), then

z ∈ Zi(x
′
i, t), hence ξi(x

′
i, t) ≥ ξi(x

′′
i , t), contradicting the assumption. Turning to

[4.2.5], we notice that ξi(ξi(xi, t
′), t′′) ≤ ξi(xi, t

′′) by [4.2.1] and [4.2.2]. To prove

the opposite inequality, we assume the contrary: ξi(ξi(xi, t
′), t′′) < ξi(xi, t

′′); then

ξi(xi, t
′) < ξi(xi, t

′′) by [4.2.4], which contradicts [4.2.3]. Finally, [4.2.6] immediately

follows from [4.2.5] and [4.2.2].

Now we define these three binary relations on X:

y Â′ x ⇐⇒ ∃t∗ ≥ max{τ(x), τ(y)} [ξ(y, t∗) > ξ(x, t∗)];

y Â′′ x ⇐⇒ [τ(y) < τ(x) & ξ(y, τ(x)) ≥ ξ(x, τ(x))];

y Â x ⇐⇒ [y Â′ x or y Â′′ x].

The relation Â is obviously irreflexive.
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Lemma 4.3. The relation Â is transitive.

Proof. With every pair y, x ∈ X such that y Â x, we associate τ ∗(y, x) ∈ T such that

τ ∗(y, x) ≥ max{τ(x), τ(y)}, ξ(y, τ ∗(y, x)) > ξ(x, τ ∗(y, x)) if y Â′ x, and τ ∗(y, x) =

τ(x) if y Â′′ x; in the latter case, ξ(y, τ ∗(y, x)) ≥ ξ(x, τ ∗(y, x)). Now, having z Â y Â x,

we define t∗ = max{τ ∗(y, x), τ ∗(z, y)}; by Lemma 4.2, ξ(z, t∗) ≥ ξ(y, t∗) ≥ ξ(x, t∗). If

t∗ can be associated with a Â′ relation, one of the inequalities is strict, hence ξ(z, t∗) >

ξ(x, t∗), hence z Â′ x. Otherwise, y Â′′ x, t∗ = τ(x) > τ(y), and τ(x) > τ ∗(z, y) ≥ τ(z);

now ξ(z, τ(x)) ≥ ξ(x, τ(x)) implies z Â′′ x.

Lemma 4.4. If y . x, then y Â x.

Proof. Let y .i x; we have to consider two alternatives.

Let yi > xi; we define t∗ = τ(y) > τ(x). We have y ∈ Zi(yi, t
∗), hence ξi(yi, t

∗) =

yi > xi ≥ ξi(xi, t
∗); on the other hand, for j 6= i, we have ξj(yj, t

∗) = ξj(xj, t
∗) since

yj = xj. Thus ξ(y, t∗) > ξ(x, t∗), hence y Â′ x.

Now let yi < xi; then τ(y) < τ(x). For every j 6= i, we have ξj(yj, τ(x)) =

ξj(xj, τ(x)) since yj = xj. Suppose ξi(yi, τ(x)) < ξi(xi, τ(x)) and pick z ∈ Zi(xi, τ(x))

for which zi = ξi(xi, τ(x)); then xi ≥ zi > yi by [4.2.1] and [4.2.4]. Since τ(z) ≥ τ(x),

we have σi(z) ≥ σi(x) = σi(y), but σi(z) = σi(x) is impossible because of xi /∈
Ri(σi(x)). Now σi(z) > σi(x), zi > yi, zi ∈ Ri(σi(z)), and yi ∈ Ri(σi(x)) contradict

Lemma 4.1. Therefore, ξ(y, τ(x)) ≥ ξ(x, τ(x)), hence y Â′′ x.

The impossibility of a Cournot cycle now immediately follows from Lemmas 4.3

and 4.4. Theorem 2 is proved.

5 Proof of Theorem 3

Considering symmetric games, we denote Y = Xi for all i ∈ N and omit the subscript

i at V, S, R, D, etc.

Lemma 5.1. If V (s, ξ) satisfies (4), s′ < s′′, ξ′ ∈ R(s′), and ξ′′ ∈ R(s′′), then

s′ + ξ′ ≤ s′′ + ξ′′.
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Proof. Supposing the contrary, we denote ∆ = s′′ − s′ > 0, δ = ξ′ − ξ′′ − ∆ > 0.

Since ξ′′ ∈ R(s′′), D(s′′, ξ′′, δ) ≤ 0; (4) then implies D(s′, ξ′′ + ∆, δ) < 0, hence

V (s′, ξ′′ + ∆ [= ξ′ − δ]) > V (s′, ξ′), which contradicts ξ′ ∈ R(s′).

For every x ∈ X and m ∈ Y , we define:

µ(x) = max
i∈N

xi; M(x) = Argmax
i∈N

xi;

Ψ(m) = {t ∈ T | ∀s ∈ S [s + m ≥ t ⇒ [m ∈ R(s) or ∀ξ ∈ R(s) (s + ξ ≥ t)]]};
Φ(x) = {t ∈ Ψ(µ(x))| t ≤ τ(x)}; ϕ(x) = max Φ(x)

[note that min T ∈ Φ(x) 6= ∅ and ϕ(x) ≤ τ(x) for every x ∈ X by definition];

y º x ⇐⇒ [
[ϕ(y) > ϕ(x)] or [ϕ(y) = ϕ(x) & µ(y) < µ(x)] or

[ϕ(y) = ϕ(x) & µ(y) = µ(x) & M(y) ⊆ M(x)]
]
;

y Â x ⇐⇒ [
[ϕ(y) > ϕ(x)] or [ϕ(y) = ϕ(x) & µ(y) < µ(x)] or

[ϕ(y) = ϕ(x) & µ(y) = µ(x) & M(y) ⊂ M(x)]
]
.

Obviously, º is transitive and Â is the asymmetric component of º (y Â x ⇐⇒
[y º x and not x º y]).

The above constructions, unlike those from the previous section, admit an intuitive

explanation. t ∈ Ψ(m) means that any strategy profile which sums up to t or more

and contains no component greater than m cannot sum up to less than t after any

best response improvement; ϕ(x) is thus “the greatest self-supporting level below x.”

If µ does not increase (at a step of the process), whatever was self-supporting remains

self-supporting, so ϕ cannot decrease (Lemma 5.2). When µ increases, we cannot be

so sure about the previously self-supporting levels; fortunately, the new sum is then

self-supporting itself (Lemma 5.3).

Lemma 5.2. If y .i x and yi ≤ µ(x), then ϕ(y) ≥ ϕ(x).

Proof. Let s0 be min {s ∈ S| s + µ(x) ≥ ϕ(x)} [actually, either s0 = ϕ(x) − µ(x) or

s0 = min S ]. If, for t = ϕ(x) and s = s0, the second alternative in the definition

of Ψ(µ(x)) above holds, then, by Lemma 5.1, s + ξ ≥ ϕ(x) for all s ≥ s0 and

ξ ∈ R(s), in particular, for s = σi(x) and ξ = yi; therefore, τ(y) ≥ ϕ(x) and, since
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µ(y) ≤ µ(x), ϕ(x) ∈ Φ(y), hence ϕ(x) ≤ ϕ(y). If µ(x) ∈ R(s0), then, by Lemma 5.1,

s + ξ ≥ s0 + µ(x) for all s > s0 and ξ ∈ R(s), hence ϕ(x) = s0 + µ(x); since

xi /∈ R(σi(x)), σi(x) > s0, hence τ(y) ≥ ϕ(x), hence ϕ(x) ≤ ϕ(y) exactly as in the

previous case.

Lemma 5.3. If y .i x and yi ≥ µ(x), then ϕ(y) > ϕ(x).

Proof. We obviously have µ(y) = yi > xi, hence τ(y) > τ(x). Furthermore, yi ∈
R(σi(y)) implies, by Lemma 5.1, that s + ξ ≥ τ(y) for all s > σi(y) and ξ ∈ R(s),

hence τ(y) ∈ Φ(y), hence ϕ(y) = τ(y) > τ(x) ≥ ϕ(x).

Lemma 5.4. Let y .i x; then y º x. If i ∈ M(x), then y Â x. If x º y, then

M(y) = M(x).

Proof. Let i ∈ M(x); if yi > xi, then yi > µ(x), hence y Â x by Lemma 5.3. Let

yi < xi; then ϕ(y) ≥ ϕ(x) by Lemma 5.2. If M(x) = {i}, then µ(y) < µ(x), hence

y Â x. If {i} ⊂ M(x), then µ(y) = µ(x) and M(y) ⊂ M(x); again, y Â x.

Let i /∈ M(x); if yi ≥ µ(x), then Lemma 5.3 implies y Â x; otherwise, we have

µ(y) = µ(x), M(y) = M(x), and ϕ(y) ≥ ϕ(x) by Lemma 5.2.

Supposing the existence of symmetric regular AA games satisfying (4), but ad-

mitting Cournot cycles, we pick such a game with a minimal number of players. Let

x0, x1, . . . , xm = x0 be a Cournot cycle. If xk+1 Â xk for some k, we have a contra-

diction with the transitivity of º. Otherwise, Lemma 5.4 implies M(x0) = M(x1) =

· · · = M(xm−1) = N∗ and xk+1 .i xk for i ∈ N∗ never takes place, i.e., xk
i for i ∈ N∗

does not depend on k. The last statement implies that the reduced game with N \N∗

as the set of players also admits (the same) Cournot cycle, which contradicts the

supposed minimality of N . Theorem 3 is proved.

6 Numeric and Order Potentials

In this section, we consider arbitrary finite games. The best response correspondence

Ri(·) (i ∈ N) will be perceived as defined on X−i:

Ri(x−i) = Argmax
xi∈Xi

ui(xi, x−i).
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Besides the Cournot (best response) relation defined at the start of Section 2, a large

number of other relations on X are worth being considered; e.g., y . x ⇐⇒ ∃i ∈
N [y−i = x−i & ui(y) > ui(x)] (Monderer and Shapley’s unilateral improvement

relation), or y . x ⇐⇒ ∀i ∈ N [yi = xi ∈ Ri(x−i) or xi /∈ Ri(x−i) 3 yi] (a version

of simultaneous best response “improvement”), or y . x ⇐⇒ ∃I ∈ 2N \ {∅} [y−I =

x−I & ∀i ∈ I [ui(y) > ui(x)]] (a version of coalition improvement), to name just a

few. Statements of highest generality are independent of exactly what is meant by ..

Thus, let . be a binary relation on a finite set X. An improvement path (for .) is

a sequence {xk}k=0,1,... such that xk+1 . xk whenever xk+1 is defined. If xk is defined

exactly for k = 0, . . . , m, we call m ≥ 0 the length of the path (thus a path consisting

of a single point has the length 0). The relation . has the finite improvement path

(FIP) property if there exists no infinite improvement path; the property is obviously

equivalent to the absence of improvement cycles, i.e., to the acyclicity of the relation.

The relation . has the weak FIP property if every x ∈ X is connected to a maximizer

for . with an improvement path, i.e., there is a finite improvement path {x0, . . . , xm}
(m ≥ 0) such that x0 = x and xm is a maximizer. Clearly, FIP implies weak FIP,

which, in turn, implies the existence of a maximizer for ..

Remark. Monderer and Shapley (1996a) introduced the term FIP for a particular

relation, viz. for the individual improvement relation in a strategic game; here we

apply it to an abstract binary relation. The hope is that the context will always

allow us to avoid confusion; besides, the “abstract” FIP is the property of a binary

relation whereas “Monderer and Shapley’s” FIP is the property of a game.

We say that a function P : X → R is a numeric potential for . if

y . x ⇒ P (y) > P (x) (5)

for all y, x ∈ X (utility theorists would say that P weakly represents .). An order

potential for . is an irreflexive and transitive binary relation Â on X such that

y . x ⇒ y Â x

for all y, x ∈ X. A weak order potential for . is an irreflexive and transitive binary

relation Â on X such that

∃y ∈ X [y . x] ⇒ ∃z ∈ X [z . x & z Â x]

11



for all x ∈ X. A weak numeric potential for . is a function P : X → R such that

∃y ∈ X [y . x] ⇒ ∃z ∈ X [z . x & P (z) > P (x)]

for all x ∈ X.

Proposition 6.1. For any binary relation . on a finite set X, the following state-

ments are equivalent:

6.1.1. . admits a numeric potential;

6.1.2. . admits an order potential;

6.1.3. . has the FIP property.

Proof. The implications [6.1.1] ⇒ [6.1.2] and [6.1.2] ⇒ [6.1.3] are straightforward. To

prove [6.1.3] ⇒ [6.1.1], we define p(x) = [the maximal length of an improvement path

starting at x] (≤ #X − 1) and P (x) = −p(x) for every x ∈ X. Now y . x implies

that every improvement path starting at y can be extended (on the left) to a path

starting at x; therefore, p(x) ≥ p(y) + 1, hence P (y) > P (x).

Remark. Proposition 6.1 generalizes Lemma 2.5 of Monderer and Shapley (1996a).

Proposition 6.2. For any binary relation . on a finite set X, the following state-

ments are equivalent:

6.2.1. . admits a weak numeric potential;

6.2.2. . admits a weak order potential;

6.2.3. . has the weak FIP property.

Proof. The implication [6.2.1] ⇒ [6.2.2] is obvious. To prove [6.2.2] ⇒ [6.2.3], we

define the following rule for continuing improvement paths: if xk is not a maximizer,

we pick xk+1 such that xk+1.xk and xk+1 Â xk. Now, starting with an arbitrary x0 and

applying the rule, we obtain an improvement path that cannot cycle and only stops at

a maximizer for .; therefore, we have the weak FIP indeed. To prove [6.2.3] ⇒ [6.2.1],

we define p(x) = [the minimal length of an improvement path starting at x and ending

at a maximizer] (≤ #X − 1) and P (x) = −p(x) for every y, x ∈ X. Now y . x implies

p(x) > 0; we pick an improvement path {xk}k=0,...,p(x) such that x0 = x and xp(x) is a

maximizer, and define z = x1. Clearly, p(z) = p(x) − 1, hence P (z) > P (x); on the

other hand, z = x1 . x0 = x.

12



Remark. There is no tradition of considering weak potentials in the literature. Both

Milchtaich (1996) and Friedman and Mezzetti (2001) established the weak FIP prop-

erty of some improvement relations in strategic games without producing explicit

potentials.

Henceforth, we return to finite strategic games and denote . the Cournot relation

as defined in Section 2. The (weak) FIP property of this relation will be called

(weak) FBRP property of the game, following Milchtaich (1996). As suggested by the

associate editor, a numeric potential for . will be called a generalized best response

potential of the game.

Proposition 6.3. For any finite game, a function P : X → R is a generalized best

response potential if and only if for every i ∈ N and x−i ∈ X−i, Ri(x−i) is an upper

contour for the function P (·, x−i), i.e., there exists a threshold level w(x−i) ∈ R such

that

Ri(x−i) = {x′i ∈ Xi| P (x′i, x−i) ≥ w(x−i)}. (6)

Proof. If P satisfies (6) and y . x, i.e., y−i = x−i and xi /∈ Ri(x−i) 3 yi, then

P (y) ≥ w(x−i) > P (x), implying (5). Let P satisfy (5) and x−i ∈ X−i; we pick xi ∈
Ri(x−i) minimizing P (·, x−i) on Ri(x−i) and denote w(x−i) = P (xi, x−i). Whenever

yi ∈ Ri(x−i), we have P (yi, x−i) ≥ w(x−i) by definition; whenever yi /∈ Ri(x−i),

we have (xi, x−i) . (yi, x−i), hence, by (5), w(x−i) = P (x) > P (yi, x−i). Now (6) is

obvious.

The equality

Ri(x−i) = Argmax
x′i∈Xi

P (x′i, x−i) (7)

suffices, but it need not hold as the example from Monderer and Shapley (1996a,

p. 129) shows (in a 2 × 2 game, the best response and a better response amount

to the same thing). The condition is much more natural when the “fictitious play”

property (Monderer and Shapley, 1996b; Huang, 2002) is under consideration; there

seems to be no result on the FP property of games admitting a potential in the sense

of (6). The characterization of games admitting a potential satisfying (7) in terms

of “best response cycles” (Voorneveld, 2000) resembles Propositions 6.1 and 6.3 only

superficially: a “best response compatible path” may pass through a Nash equilibrium

without noticing it.
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A property intermediate between FBRP and weak FBRP deserves attention. A

finite game has the restricted FBRP property if there exist nonempty R′
i(x−i) ⊆

Ri(x−i), for all i ∈ N and x−i ∈ X−i, such that the relation y .∗ x ⇐⇒ ∃i ∈
N [y−i = x−i & ui(y) > ui(x) & yi ∈ R′

i(x−i)] is acyclic (i.e., has the “abstract” FIP

property). Clearly, FBRP ⇒ restricted FBRP ⇒ weak FBRP.

Remark. FBRP itself can be considered a restricted version of Monderer and Shapley’s

FIP; however, it hardly makes sense to formalize the idea here.

A restricted best response potential is an irreflexive and transitive binary relation

Â on X such that

∃y ∈ X [y .i x] ⇒ ∃z ∈ X [z .i x & z Â x]

for all x ∈ X and i ∈ N . Dubey et al. (2002) defined a “pseudopotential” as a

function P : X → R such that

Argmax
x′i∈Xi

P (x′i, x−i) ⊆ Ri(x−i) (8)

for all i ∈ N and x−i ∈ X−i (their continuity condition is satisfied automatically in a

finite game); their Theorem 3 states, in particular, that every finite game admitting a

pseudopotential has a Nash equilibrium. Proposition 6.3 above immediately implies

that every generalized best response potential is a pseudopotential.

Proposition 6.4. For any finite game Γ, these statements are equivalent:

6.4.1. Γ admits a restricted best response potential;

6.4.2. Γ admits a pseudopotential in the sense of (8);

6.4.3. Γ has the restricted FBRP property.

Proof. If [6.4.1] holds, we define y ..i x ⇐⇒ y .i x & y Â x and y .. x ⇐⇒ ∃i ∈
N [y ..i x]. Obviously, Â is an order potential for ..; Proposition 6.1 implies the

existence of a numeric potential P for ... Let us show that P satisfies (8). Suppose

the contrary: xi ∈ Argmaxx′i∈Xi
P (x′i, x−i), but xi /∈ Ri(x−i). Picking yi ∈ Ri(x−i),

we see that (yi, x−i) .i x, hence there is z ∈ X such that z ..i x, hence P (z) > P (x);

clearly, z−i = x−i, which contradicts the choice of xi.

If [6.4.2] holds, we define R′
i(x−i) = Argmaxx′i∈Xi

P (x′i, x−i) [⊆ Ri(x−i) by (8)].

Obviously, P is a numeric potential for .∗, hence .∗ is acyclic, i.e., [6.4.3] holds.
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If [6.4.3] holds, we denote Â an order potential for .∗, existing by Proposition 6.1.

It is easy to see that Â is a restricted best response potential.

Remark. The proof of [6.4.2] ⇒ [6.4.3] also shows that every pseudopotential is a

weak numeric best response potential.

Proposition 6.5. A finite two person game has the weak FBRP property if and only

if it has the restricted FBRP property.

Proof. The sufficiency holds for every finite game. Let a game with #N = 2 have

the weak FBRP property. In the light of Proposition 6.4, it is sufficient to produce

a pseudopotential. We use the construction from the proof of Proposition 6.2 with

some modification utilizing the two person assumption.

For x ∈ X, we define I(x) = {i ∈ N | xi /∈ Ri(x−i)}, and denote X∗ = {x ∈
X| I(x) = N}. Since a best response cannot be improved upon, y .i x ⇒ i /∈ I(y);

therefore, xk /∈ X∗ for all Cournot paths x0, x1, . . . and all k > 0. Now we define

p(x) for x ∈ X \ X∗ exactly as in Proposition 6.2; for x ∈ X∗, we define p(x) =

maxi∈N miny.ix p(y) + 1; finally, P (x) = −p(x) for all x ∈ X. It is easy to see that

P satisfies the equation

P (x) = min
i∈I(x)

max
y.ix

P (y) − 1 (9)

(since #N = 2, the minimum in (9) is essential for x ∈ X∗ only) with the boundary

condition P (x) = 0 for Nash equilibria.

Equation (9) ensures that P is a pseudopotential (even regardless of #N = 2):

Let i ∈ N , x−i ∈ X−i, and xi /∈ Ri(x−i); then i ∈ I(x). Let z .i x maximize P (y) over

all y .i x; it follows immediately from (9) that P (z) > P (x). Therefore, xi does not

maximize P (·, x−i).

Remark. A weak numeric best response potential need not be a pseudopotential, even

in a two person game.

To summarize, both numeric and order approaches to finite potential games, in-

cluding best response potentials, coalition improvement potentials (see, e.g., Holz-

man and Law–Yone, 1997), etc., are theoretically equivalent; the choice, in each case,

should be based on convenience. The definition of the numeric potential in the proof

of Proposition 6.1 is easily converted into a dynamic programming algorithm; for two

or three person games with not too many strategies, the algorithm only needs a pen
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and a piece of paper to work (see Section 7.10). The same is true for the weak nu-

meric potential from Proposition 6.2. However, such algorithms could hardly be used

to establish that every game from an infinite class admits a potential. The proofs

of the theorems of this paper demonstrate various ways to do so; in none of them a

potential emerges as a numeric function, even though Propositions 6.1 and 6.3 imply

that every game satisfying the conditions of any of the theorems admits a numeric

potential in the sense of (6).

For binary relations on infinite sets, only two implications, [6.1.1] ⇒ [6.1.2] ⇐
[6.1.3], remain of Proposition 6.1. One inevitably gets a feeling that the FIP property

is “too good to be true.” Assuming X a separable metric space, Kukushkin (2000a)

considered improvement paths parameterized by ordinal (generally, transfinite) num-

bers; the absence of improvement cycles is then equivalent to the existence of an order

potential (as defined in Kukushkin, 1999) and to the “countable improvement path”

property, i.e., to the impossibility of an uncountable improvement path, which, in

turn, implies that every improvement path in a compact space eventually reaches an

equilibrium. Analogues of Theorems 1–3 hold in that setting; even the constructions

proving Theorems 2 and 3 remain essentially the same (only more technical details is

needed). Certainly, one does not have to accept the theory, but there seems to be no

alternative.

7 Concluding Remarks

7.1. Although the subtraction of utilities is used in (1), the properties (2–4) are

purely ordinal, i.e., invariant under any strictly increasing transformation of the utility

function. Accordingly, this paper bears no relation whatsoever to the literature on

cardinal notions of a potential (including a considerable part of Monderer and Shapley,

1996a).

7.2. Exact analogues of Theorems 1 and 2 are valid for games with separable (not

necessarily additive) aggregation; the proofs are virtually the same as above because

subtraction is never used in either. Section 7 of Dubey et al. (2002) suggests that

even separability need not be necessary. Without any assumption on aggregation,

both theorems are definitely wrong.

As to Theorem 3, subtraction is essential in Lemma 5.1; although the condition (4)
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can be reformulated without subtraction, it can prove meaningless. However, assum-

ing that each player is only affected by a separable (and symmetric), but not necessar-

ily additive, aggregate, and postulating the “cumulative monotonicity” (Lemma 5.1)

of the best replies, one can then prove the impossibility of a Cournot cycle in the

same way as in Section 5 (again, there is no subtraction there).

7.3. It remains unclear whether Theorem 2 holds under the nonstrict strategic sub-

stitutes condition, i.e., under (3) with the nonstrict inequality. As to Theorem 3, it

is definitely wrong under the “nonstrict dual strategic substitutes” condition.

Consider a symmetric regular AA game with N = {1, 2}, X1 = X2 = {0, 1, 2, 3},
and utilities defined by the following matrix V (with the partner’s choice, “si,” on

the abscissae axis, directed from left to right, and the player’s own choice, “xi,” on

the ordinates axis, directed upwards):

0 2 1 1

1 1 2 2

2 2 1 1

1 1 2 0

The nonstrict version of (4) is easily checked. We depict the utilities matrices, again

assuming that the axes go from left to right and from bottom to top, thus breaking

with a venerated tradition to have rows numbered in the opposite order; however,

we follow the tradition in treating the vertical axis as belonging to player 1 and the

horizontal one as belonging to player 2:

(0, 0) (2, 1) (1, 2) (1, 1)

(1, 2) (1, 1) (2, 2) (2, 1)

(2, 1) (2, 2) (1, 1) (1, 2)

(1, 1) (1, 2) (2, 1) (0, 0)

Now a Cournot cycle is easy to see (underlined above).

7.4. It is easy to see that, if Ri(·) is replaced (naturally, starting from Section 2)

with R′
i(·) ⊆ Ri(·) satisfying the statement of Lemma 4.1 [or Lemma 5.1], all further

arguments in Section 4 [or 5] remain valid. The nonstrict version of (3) [or (4)] implies

the existence of a singleton selection from the best response correspondence with

this property: the greatest best response will do. Therefore, the nonstrict strategic

substitutes condition in a finite game with additive aggregation ensures, at least, the
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restricted FBRP property. The same is true for (4) with symmetry. (The point of

the example in Section 7.3 was that player 1 used a selection violating the cumulative

monotonicity.)

7.5. An equilibrium exists under (4), even in the nonstrict version, in quasisymmetric

regular games, i.e., when V is the same for all i ∈ N , but Xi may differ (Kukushkin,

2000b); it remains unclear whether Cournot cycles can emerge in such games (even

the weak FBRP property is by no means obvious).

7.6. The absence of Cournot cycles does not imply Monderer and Shapley’s FIP

property:

(0, 0) (1, 3) (3, 4)

(3, 1) (3, 3) (4, 0)

(4, 3) (0, 4) (0, 0)

.

This is even a game with strictly increasing differences, but it admits an improvement

cycle (underlined above). Such examples have been known to researchers in the field

for quite some time (e.g., Sela, 1992), but seem to have never been published.

7.7. When #N > 2, Proposition 6.5 works only one way. Let us consider a three

person 2× 2× 2 game (where player 1 chooses rows, player 2 columns, and player 3

matrices): [
(0, 1, 0) (1, 0, 1)

(1, 0, 1) (0, 1, 1)

] [
(1, 1, 1) (0, 0, 0)

(0, 0, 0) (0, 0, 0)

]
.

The “northwestern” corner of the right matrix is a unique Nash equilibrium; the weak

FBRP is obvious. Nevertheless, there is no restricted FBRP because the unique best

responses of players 1 and 2 in the left matrix form a cycle.

The example clarifies the difference between the two properties. Under the re-

stricted FBRP, we can impose independent restrictions on each player’s actions en-

suring that an equilibrium will be reached eventually. Under the weak FBRP, co-

operation between the players may be needed: if player 1 always moves from the

northwestern corner of the left matrix before player 3, the equilibrium will never be

reached. (Explicit cooperation can be replaced with a stochastic choice of the player

to move at each step, as in Milchtaich, 1996, or Friedman and Mezzetti, 2001.)

7.8. Quite a few authors considered processes where, at each step, all players make

their best response improvements simultaneously: an endomorphism X → X (if
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the uniqueness of the best responses is assumed additionally) may seem a simpler

mathematical object than the Cournot relation .. However, the behaviour of the

players in such processes is distinctly less rational than in those considered here: In

this paper, there is one active player at each step, who increases his utility level;

other players may suffer, but, at least, they do not contribute to their suffering. In

a process with simultaneous moves, the players may participate in diminishing their

own utilities. It is not surprising, therefore, that our assumptions do not exclude

the cycling of such processes. On the other hand, the claim of Rand (1978) to have

shown the possibility of rather complicated simultaneous best response improvement

dynamics in a Cournot duopoly with zero costs (where the nonstrict version of (4)

holds) is unfounded: the reaction functions there violate the cumulative monotonicity

property, established in such models by McManus (1962).

7.9. There are two quite recent papers on improvement dynamics in games with

additive aggregation. It seems worthwhile to compare them with this paper.

Dindos̆ and Mezzetti (2001) study the convergence to the set of Nash equilibria of

some stochastic better reply processes; in the case of a finite game, this amounts to

studying the weak FIP property. The authors concentrate on continuous games, how-

ever, relying on fashionable analytical techniques and boldly piling up assumptions.

Considering discretization, they assume that any discrete model must contain the

equilibria of the continuous model (where they exist by concavity); thus, our regular

games would be inadmissible in most cases. This paper concentrates on finite games,

in order to investigate the underlying combinatorics.

Dubey et al. (2002) is much closer in spirit to this paper. Its main advantage is

that their scheme (a first version of which was developed by Huang, 2002, for some-

what different purposes) treats strategic complements and substitutes symmetrically.

This should be contrasted with the fact that the proofs of Theorems 1 and 2 here

have literally nothing in common despite considerable similarity in formulations [ the

asymmetry could be vindicated, though, were it proven that Theorem 2 is wrong

under nonstrict (3) ]. Second, they can treat some nonseparable forms of aggregation

which avoid this approach; for instance, the sum of all partners’ strategies (in each

player’s utility) can be replaced with the sum of the strategies of neighbours, provided

the reciprocity condition holds: if i is j’s neighbour, then j is i’s neighbour.

The weakest point of the scheme is its all but absolute refusal to have anything
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to do with multiple responses; accordingly, the main results are about “pseudopoten-

tials” rather than potentials. It cannot also be applied to general (nonadditive) sep-

arable aggregates covered by this paper. Apparently, we should hope for a synthesis

in the future.

7.10. The three theorems of this paper do not exhaust all possible conditions for the

absence of Cournot cycles. Let us consider the following bimatrix game:

d (0, 0) (2, 1) (0, 1) (1, 2)

c (1, 2) (1, 1) (1, 1) (0, 0)

b (1, 0) (1, 1) (1, 1) (0, 0)

a (2, 1) (0, 0) (0, 0) (1, 2)

A B C D

It has even Monderer and Shapley’s FIP property: the numeric potential defined in

the proof of Proposition 6.1 looks as follows:

d −5 −1 −4 0

c −2 −3 −3 −4

b −3 −2 0 −3

a −1 −4 −4 0

A B C D

On the other hand, the game cannot be made symmetric by any reshuffling of the

strategies and/or monotonic transformations of utilities (e.g., no strategy of player 1

participates in two distinct equilibria while D of player 2 does), so Theorem 3 cannot

be applicable. Were Theorem 2 applicable, the standard trick with reversing the order

on one of Xi’s would make Theorem 1 applicable too.

Let us suppose that the strategies of each player can be embedded into the real

line (i.e., ordered) in such a way that (2) holds. Looking at the “southwestern” corner

of the utility matrix, we see that the pairs 〈A, B〉 and 〈a, b〉 must be ordered in the

same way, i.e., either A > B and a > b, or A < B and a < b. Similarly, in the

same way must be ordered 〈A,B〉 and 〈c, d〉, as well as 〈C,D〉 and 〈c, d〉. However,

when we look at the “southeastern” corner, we can see that 〈C, D〉 and 〈a, b〉 must

be ordered oppositely (i.e., if C < D, then a > b; if C > D, then a < b). Clearly,

these requirements are incompatible.
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