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Abstract

We study what topological assumptions should be added to the acyclicity of individual best re-
sponse improvements in order to ensure the existence of a (pure strategy) Nash equilibrium in a
strategic game, as well as the possibility to reach a Nash equilibrium in the limit of a best response
improvement path. MSC2010 Classification: 91A10; JEL Classification: C 72.
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1 Introduction

Cournot tâtonnement is the oldest and one of the most natural dynamic scenarios of individual myopic
adaptation in strategic games. It has been studied in various contexts and from various viewpoints, see,
e.g., Topkis [25], Bernheim [1], Moulin [20], Vives [27], Milgrom and Roberts[16], Kandori and Rob [8],
and Milchtaich [15].

The introduction of the concept of a potential game by Monderer and Shapley [18] stimulated studies
of similarities and dissimilarities between better and best response dynamics. Since Monderer and
Shapley paid most attention to the cardinal concept of an exact potential, they defined every kind of
a potential as a real-valued function. When Voorneveld [28] introduced a “best-response potential,” he
followed their lead. For a finite game, the restriction to numeric potentials is innocuous; in the general
case, it is not so. Yet, nobody has demonstrated so far that the possibility of a numeric representation
has anything to do with improvement dynamics.

Kukushkin [9, Section 6] defined a “Cournot potential” as a partial order on the set of strategy
profiles with respect to which every best response improvement by a single player pushes the current
strategy profile upwards. In a finite game, the existence of such an order is equivalent to the “finite best
response property” as defined by Milchtaich [15]. Naturally, Voorneveld’s best-response potential always
defines a Cournot potential; the converse is generally wrong, even in a finite game, see the example on
p. 129 of Monderer and Shapley [18].

When attention is turned to infinite games, the acyclicity of (either better or best response) improve-
ments does not imply even the existence of a Nash equilibrium, to say nothing of the convergence of
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adaptive dynamics. Nonetheless, the main theorem of Kukushkin [14] showed that in a game with com-
pact strategy sets and “continuous enough” preferences, the acyclicity of all individual improvements
ensures the existence of a (pure strategy) Nash equilibrium and the possibility to reach it (perhaps, ap-
proximately) with a unilateral improvement path. The acyclicity of only the best response improvements,
however, does not ensure even the mere existence of a Nash equilibrium, even in a compact-continuous
two-person game [14, Example 1].

In this paper, we assume that the strategy sets are compact metric spaces, and study what topological
conditions should be added to the definition of a Cournot potential in order to ensure the existence of a
(pure strategy) Nash equilibrium or, additionally, the possibility to reach a Nash equilibrium in the limit
(or as a cluster point) of a best response improvement path. Roughly speaking, we consider two such
additional requirements: ω-transitivity, and ω-transitivity plus lower semicontinuity. The first ensures
the existence of an equilibrium (as well as “transfinite convergence” to equilibria of all best response
improvement paths). The second, the possibility to reach the set of Nash equilibria in the limit of a best
response improvement path – an infinitary version of the weak FBRP (Milchtaich [15]) – and convergence
to the set of Nash equilibria of all best response improvement paths in the case of two players.

We do not require the utility functions to be continuous, only assume that the best responses exist
everywhere; a well-known sufficient condition for this is the upper semicontinuity of each utility function
in own choice. Quite often, the upper hemicontinuity of the best response correspondences also helps;
a sufficient condition for that is the upper semicontinuity of each utility function in the total strategy
profile and continuity in the choices of others.

While the acyclicity of best response improvements can be shown by reductio ad absurdum, as in
Theorem 2 of Kandori and Rob [8] or Theorem 1 of Kukushkin [9], it is difficult to imagine how the
existence of, say, a continuous Cournot potential could be established without producing one explicitly.
Fortunately, there are natural classes of strategic games where such potentials have already been found;
two of them are briefly described in this paper. In the first example, “games with structured utilities,”
there is even an exact (at least, an ordinal) potential as defined by Monderer and Shapley [18]. In the
second, “aggregative games,” arbitrary improvements may form cycles. Our results shed new light on
Cournot dynamics in games from either class. Sequential Cournot tâtonnement in aggregative games
was considered by Jensen [6], but his results are not directly comparable to ours, see Section 10.3.

In Section 2, the basic definitions are given. Section 3 contains the main “positive” results; Section 4,
additional “positive” results which assume the presence of an ordinal version of Voorneveld’s [28] best-
response potential. The uniqueness of the best responses, which eliminates the difference between
Cournot and Voorneveld potentials, also implies a few more results presented in Section 5. In Section 6,
we introduce two weaker notions of a potential, which broaden the scope of applications. Sections 7
and 8 present known classes of games where the assumptions of (some of) our theorems are satisfied.
Section 9 contains “negative” results, showing the impossibility of easy generalizations. A discussion of
miscellaneous related questions in Section 10 concludes the paper.
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2 Preliminaries

Our basic model is a strategic game with ordinal utilities. It is defined by a finite set of players N , and
strategy sets Xi and ordinal utility functions ui : XN → R, where XN :=

∏
i∈N Xi, for all i ∈ N . We

denote X−i :=
∏

j∈N\{i}Xj for each i ∈ N . Given a strategy profile xN ∈ XN and i ∈ N , we denote
xi and x−i its projections to Xi and X−i, respectively; a pair (xi, x−i) uniquely determines xN . In the
case of #N = 2, we denote −i the partner/rival of player i.

Defining the best response correspondence Ri : X−i → 2Xi for each i ∈ N in the usual way,

Ri(x−i) := Argmax
xi∈Xi

ui(xi, x−i)

for every x−i ∈ X−i, we introduce the best response improvement relation on XN (i ∈ N , yN , xN ∈ XN ):

yN ◃BR
i xN 
 [y−i = x−i & xi /∈ Ri(x−i) ∋ yi]; (1a)

yN ◃BR xN 
 ∃i ∈ N [yN ◃BR
i xN ]. (1b)

If xN ∈ XN is a Nash equilibrium, then it is a maximizer of ◃BR on XN , i.e., the relation yN ◃BR xN
cannot hold for any yN ∈ XN . If Ri(x−i) ̸= ∅ for all i ∈ N and x−i ∈ X−i, then, conversely, every
maximizer of ◃BR on XN is a Nash equilibrium.

A Cournot path is a finite or infinite sequence ⟨xkN ⟩k=0,1,... such that xk+1
N ◃BR xkN whenever k ≥ 0

and xk+1
N is defined. A Cournot potential is an irreflexive and transitive binary relation ≻ on XN such

that
∀xN , yN ∈ XN

[
yN ◃BR xN ⇒ yN ≻ xN

]
. (2)

The existence of a Cournot potential is equivalent to the absence of Cournot cycles, i.e., Cournot paths
⟨x0N , x1N , . . . , xmN ⟩ such that m > 0 and x0N = xmN . For a finite game, this fact implies that every Cournot
path, if continued whenever possible, reaches a Nash equilibrium in a finite number of steps. Example 1
of Kukushkin [14] shows that a compact-continuous game may admit a Cournot potential and still
possess no Nash equilibrium, to say nothing of the convergence of Cournot paths.

Henceforth, we assume that eachXi is a compact metric space and endowXN with, say, the maximum
metric. We do not impose any explicit continuity-style restriction on the utilities; all assumptions are
formulated in terms of the best response correspondences. In particular, we assume throughout that
Ri(x−i) ̸= ∅ for every i ∈ N and x−i ∈ X−i. The upper semicontinuity of ui in own choice xi is
sufficient for that though by no means necessary. In many results, we assume that each Ri is upper
hemicontinuous. A sufficient condition for that is the upper semicontinuity of ui in xN and continuity
in x−i.

A (finite or infinite) sequence ⟨xkN ⟩k=0,1,... in XN converges to a subset Y ⊆ XN if either it is finite
and ends at xmN ∈ Y or it is infinite and all its cluster points belong to Y .

Let ≻ be a binary relation on a metric space X. An improvement path of ≻ is a (finite or infinite)
sequence ⟨xk⟩k in X such that xk+1 ≻ xk whenever xk+1 is defined. Clearly, ≻ is a Cournot potential if
and only if every Cournot path is an improvement path of ≻.
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A binary relation ≻ on a metric space X is called ω-transitive if it is transitive and xω ≻ x0 whenever
an improvement path ⟨xk⟩k∈N of ≻ in X converges to xω ∈ X. A relation ≻ is upper semicontinuous
if all its lower contour sets, {x ∈ X | y ≻ x} (y ∈ X), are open; dually, ≻ is lower semicontinuous
if open are all its upper contour sets, {y ∈ X | y ≻ x} (x ∈ X). A relation ≻ is continuous if its
“graph,” {(x, y) ∈ X2 | y ≻ x}, is open. Clearly, every continuous relation is both upper and lower
semicontinuous.

It turns out that two properties of a Cournot potential are most relevant for the questions we address
here: ω-transitivity and the conjunction of ω-transitivity and lower semicontinuity. These two simple
statements, and one not so simple, are helpful in the following.

Lemma 2.1. Let ≻ be an ω-transitive binary relation on a metric space X. Let xω ∈ X be a cluster
point of an infinite improvement path ⟨xk⟩k∈N of ≻. Then xω ≻ xk for all k ∈ N.

Proof. By the transitivity of ≻, we have xh ≻ xk whenever h > k. Since xω is a cluster point, there
is a strictly increasing sequence ⟨kh⟩h∈N such that xkh → xω. Since ⟨xkh⟩h≥h̄ for each h̄ ∈ N is also an

improvement path of ≻ converging to xω, we have xω ≻ xkh for all h ∈ N by ω-transitivity. For every
other k ∈ N, there is h ∈ N such that kh > k, and hence xω ≻ xkh ≻ xk.

Lemma 2.2. Let ≻ be an irreflexive, ω-transitive and lower semicontinuous binary relation on a metric
space X. Let ⟨xk⟩k∈N be an infinite improvement path of ≻ and Xω ⊆ X be the set of its cluster points.
Then

∀yω, xω ∈ Xω
[
yω ̸≻ xω

]
. (3)

Proof. By Lemma 2.1, we have xω ≻ xk for each k ∈ N. If we supposed that yω ≻ xω, we would have
xk ≻ xω whenever xk is close enough to yω by the lower semicontinuity, i.e., a contradiction.

Theorem 2.3 (Part of Theorem 1 of Kukushkin [12]). Let X be a compact metric space, ≻ be an
irreflexive and ω-transitive binary relation on X, and M(X,≻) := {x ∈ X | @ y ∈ X [y ≻ x]} be the set
of maximizers of ≻ on X. Then for every x ∈ X \M(X,≻) there is y ∈M(X,≻) such that y ≻ x.

Remark. The theorem immediately implies that M(X,≻) ̸= ∅.

The intuition behind the theorem is quite straightforward: since x /∈M(X,≻) there is x1 ∈ X such
that x1 ≻ x; if x1 ∈ M(X,≻), we are home; otherwise, there is x2 ∈ X such that x2 ≻ x1 ≻ x, etc. If
there emerges an infinite improvement path ⟨xk⟩k∈N of ≻, then we pick a cluster point xω; by Lemma 2.1,
xω ≻ x. Again, if xω ∈ M(X,≻), we are home; otherwise, there is xω+1 ∈ X such that xω+1 ≻ xω ≻ x,
etc. Since X is compact, the process can only stop at an xα ∈M(X,≻).

However, rather heavy technical tools are needed in order to prove that this process cannot continue
“really forever.” The key role is played by the fact that every compact metric space is second countable.
An irreflexive and ω-transitive binary relation on an arbitrary compact Hausdorff topological space may
admit no maximizer at all.
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3 Main theorems

Theorem 3.1. Let each Xi in a strategic game Γ be a compact metric space. Let Γ admit an ω-transitive
Cournot potential. Then Γ possesses a (pure strategy) Nash equilibrium.

Proof. By Theorem 2.3, there exists a maximizer x0N of the potential ≻ on XN . By (2), x0N is also a
maximizer of ◃BR on XN , i.e., a Nash equilibrium.

Theorem 3.2. Let Γ be a strategic game where #N = 2, each Xi is a compact metric space, and
each Ri is upper hemicontinuous. Let Γ admit an ω-transitive Cournot potential ≻. Let ⟨xkN ⟩k∈N be an
infinite Cournot path. Then there is a Nash equilibrium among cluster points of the path.

Proof. We denote Xω ⊆ XN the set of cluster points of ⟨xkN ⟩k∈N and pick a maximizer xωN of ≻ on Xω; it
exists by Theorem 2.3 since Xω is compact. As in the proof of Lemma 2.1, we pick a strictly increasing
sequence ⟨kh⟩h∈N such that xkhN → xωN . Since N is finite, we may, without restricting generality, assume

that xkhi ∈ Ri(x
kh
−i) for an i ∈ N and all h; therefore, xωi ∈ Ri(x

ω
−i) since Ri is upper hemicontinuous.

Then we denote yhN := xkh+1
N (h ∈ N); clearly, yhN ◃BR

−i x
kh
N , and hence xkhi = yhi and yh−i ∈ R−i(x

kh
i ).

Without restricting generality, yhN → yωN ∈ Xω; hence xωi = yωi and yω−i ∈ R−i(x
ω
i ) since R−i is upper

hemicontinuous. Now an assumption that xω−i /∈ R−i(x
ω
i ) would lead to yωN ◃BR

−i x
ω
N and hence yωN ≻ xωN

by (2), contradicting the choice of xωN . Thus, xωN is a Nash equilibrium indeed.

Remark. The assumption that each Ri is upper hemicontinuous cannot simply be dropped, see Exam-
ple 9.1 below. Example 9.2, due to Powell [22], shows the same for the assumption #N = 2.

Lemma 3.3. Let Γ be a strategic game where each Xi is a compact metric space and each Ri is upper
hemicontinuous. Let Γ admit an ω-transitive Cournot potential ≻ which is also lower semicontinuous.
Let ⟨xkN ⟩k∈N be an infinite Cournot path and Xω ⊆ XN be the set of its cluster points. Then, for every
xωN ∈ Xω, there holds xωi ∈ Ri(x

ω
−i) for at least two different players i ∈ N .

Proof. As in the proof of Theorem 3.2, we pick a strictly increasing sequence ⟨kh⟩h∈N such that xkhN → xωN
and denote yhN := xkh+1

N (h ∈ N). Without restricting generality, xkhi ∈ Ri(x
kh
−i) for an i ∈ N and all h,

yhN → yωN ∈ Xω, and yhN ◃BR
j xkhN ; hence yhj ∈ Rj(y

h
−j), for a j ∈ N and all h. Note that i ̸= j since

xkhj /∈ Rj(x
kh
−j), and that yω−j = xω−j . By the upper hemicontinuity of Ri and Rj , we have xωi ∈ Ri(x

ω
−i)

and yωj ∈ Ri(y
ω
−j). Finally, an assumption that xωj /∈ Rj(x

ω
−j) would imply yωN ◃BR xωN ; hence yωN ≻ xωN

by (2), contradicting (3).

Theorem 3.4. Let Γ be a strategic game where #N = 2, each Xi is a compact metric space, and
each Ri is upper hemicontinuous. Let Γ admit an ω-transitive Cournot potential ≻ which is also lower
semicontinuous. Then every Cournot path converges to the set of Nash equilibria.

Immediately follows from Lemma 3.3.

Remark. All assumptions are essential here as Examples 9.1, 9.2, and 9.3 show. Example 9.4 shows
that the convergence of every Cournot path to a Nash equilibrium cannot be asserted.
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Theorem 3.5. Let each Xi in a strategic game Γ be a compact metric space and each Ri be upper
hemicontinuous. Let Γ admit an ω-transitive Cournot potential ≻ which is also lower semicontinuous.
Then for every x0N ∈ XN there exists a Cournot path starting at x0N and converging to the set of Nash
equilibria.

Proof. Given x0N ∈ XN , we recursively define a Cournot path ⟨xkN ⟩k. If xkN is a Nash equilibrium,
the process stops, and we are home. Otherwise, we define N∗(k) := {i ∈ N | xki /∈ Ri(x

k
−i)} and

X∗(k) :=
∪

i∈N∗(k)

(
Xi × {xk−i}

)
; X∗(k) is compact. Then we pick a maximizer xk+1

N = (xk+1
i(k) , x

k
−i(k)) of

≻ on X∗(k). By (2), we have xk+1
i(k) ∈ R(xk−i(k)), hence x

k+1
N ◃BR xkN , hence xk+1

N ≻ xkN .

Assuming the path infinite, we denote Xω ⊆ XN the set of its cluster points. Supposing, to the
contrary, that xωi /∈ Ri(x

ω
−i) for xωN ∈ Xω and i ∈ N , we pick a strictly increasing sequence ⟨kh⟩h∈N

such that xkhN → xωN . Since Ri is upper hemicontinuous, we must have xkhi /∈ Ri(x
kh
−i), and hence

i ∈ N∗(kh), for all h ∈ N large enough. Then we pick yN ∈ XN such that yN ◃BR
i xωN and hence

yN ≻ xωN by (2). By the lower semicontinuity of ≻, we have (yi, x
kh
−i) ≻ xωN for all h large enough. By

Lemma 2.1, (yi, x
kh
−i) ≻ xkN for such h and all k; in particular, (yi, x

kh
−i) ≻ xkh+1

N for all h large enough.

Since (yi, x
kh
−i) ∈ X∗(kh), this contradicts the choice of xkh+1

N .

Theorem 3.6. Let Γ be a strategic game where #N = 2 and each Xi is a compact metric space. Let Γ
admit an ω-transitive Cournot potential ≻ which is also lower semicontinuous. Then for every x0N ∈ XN

there exists a Cournot path starting at x0N and converging to the set of Nash equilibria.

Proof. Given x0N ∈ XN , we recursively define a Cournot path ⟨xkN ⟩k in exactly the same way as in the
proof of Theorem 3.5. Assuming the path infinite, we again denote Xω ⊆ XN the set of its cluster
points.

Supposing, to the contrary, that xωi /∈ Ri(x
ω
−i) for xωN ∈ Xω and i ∈ N , we again pick a strictly

increasing sequence ⟨kh⟩h∈N such that xkhN → xωN as well as yN ∈ XN such that yN ◃BR
i xωN and hence

yN ≻ xωN ≻ xkN for each k ∈ N. Without restricting generality, we may assume that either xkhi /∈ Ri(x
kh
−i)

for all h, or xkh−i /∈ R−i(x
kh
i ) for all h. In the first case, we obtain a contradiction in exactly the same

way as in the proof of Theorem 3.5.

In the second case, we notice that xkhN ◃BR
i xkh−1

N ; hence i ∈ N∗(kh−1), for each h. Since xkh−1
−i = xkh−i,

we have (yi, x
kh−1
−i ) ≻ xkhN for all h ∈ N large enough by the lower semicontinuity of ≻, which contradicts

the choice of xkhN since (yi, x
kh−1
−i ) ∈ X∗(kh − 1).

Remark. Example 9.5 shows that the assumption that eachRi is upper hemicontinuous in Theorem 3.5,
as well as the assumption #N = 2 in Theorem 3.6, cannot simply be dropped.

4 Voorneveld potentials

In this section, we consider a purely ordinal version of what Voorneveld [28] called the “best-response
potential.” In addition to the requirements of a Cournot potential, we demand that a switch from one
best response to another leaves the current strategy profile on exactly the same level.
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A preorder is a reflexive and transitive binary relation. If ≽ is a preorder, then its asymmetric
component, y ≻ x 
 [y ≽ x & x ̸≽ y], is irreflexive and transitive; its symmetric component, y ∼ x 

y ≽ x & x ≽ y, is an equivalence relation. If a preorder is ω-transitive, then its asymmetric component
is also ω-transitive; the converse statement is generally wrong.

Now we introduce the best response relation on XN (i ∈ N , yN , xN ∈ XN ):

yN DBR
i xN 
 [y−i = x−i & yi ∈ Ri(x−i)];

yN DBR xN 
 ∃i ∈ N [yN DBR
i xN ].

Then yN ◃BR xN if and only if yN DBR xN but not xN DBR yN . A Voorneveld potential of a strategic
game is a preorder ≽ on XN such that

∀xN , yN ∈ XN

[
yN DBR xN ⇒ yN ≽ xN

]
,

while its asymmetric component ≻ satisfies (2), i.e., is a Cournot potential.

A best response compatible path is a finite or infinite sequences ⟨xkN ⟩k=0,1,...,m such that xk+1
N DBR xkN

for all relevant k. A Voorneveld cycle is a best response compatible path ⟨xkN ⟩k=0,1,...,m such that m > 0,
x0N = xmN , and xk+1

N ◃BR xkN for at least one k. The existence of a Voorneveld potential is equivalent to
the absence of Voorneveld cycles [28]. In the same style, we call an infinite best response compatible path
⟨xkN ⟩k∈N a Voorneveld path if xk+1

N ◃BR xkN for an infinite number of k ∈ N. Unfortunately, Voorneveld
cycles or paths seem to allow no interpretation in terms of individual myopic decision making: who is
responsible for making an actual improvement at some of the steps?

The presence of a Voorneveld potential makes the upper hemicontinuity ofRi in Theorems 3.4 and 3.5
redundant. Theorem 3.2, however, does not allow such a replacement, see Example 9.6.

Lemma 4.1. Let Γ be a strategic game where each Xi is a compact metric space. Let Γ admit a
Voorneveld potential ≽ whose asymmetric component ≻ is ω-transitive and lower semicontinuous. Let
i ∈ N and ⟨xkN ⟩k∈N be such that xkN → xωN , xki ∈ Ri(x

k
−i) and xk+1

N ≻ xkN for all k ∈ N. Then
xωi ∈ Ri(x

ω
−i).

Proof. By Lemma 2.1, we have xωN ≻ xkN for each k ∈ N. Supposing that xωi /∈ Ri(x
ω
−i), we pick

yi ∈ Ri(x
ω
−i). Then (yi, x

ω
−i) ◃BR

i xωN ; hence (yi, x
ω
−i) ≻ xωN ; hence (yi, x

ω
−i) ≻ xkN for each k ∈ N. By

the lower semicontinuity of ≻, we have (yi, x
k
−i) ≻ xωN ≻ xkN for all k ∈ N large enough. However, the

assumption xki ∈ Ri(x
k
−i) implies that xkN DBR

i (yi, x
k
−i); hence x

k
N ≽ (yi, x

k
−i).

Theorem 4.2. Let Γ be a strategic game where #N = 2 and each Xi is a compact metric space. Let
Γ admit a Voorneveld potential whose asymmetric component is ω-transitive and lower semicontinuous.
Then every Cournot path converges to the set of Nash equilibria.

Theorem 4.3. Let each Xi in a strategic game Γ be a compact metric space and let Γ admit a Voorneveld
potential whose asymmetric component is ω-transitive and lower semicontinuous. Then for every x0N ∈
XN there exists a Cournot path starting at x0N and converging to the set of Nash equilibria.

In both cases, the proofs virtually repeat those of Theorems 3.4 and 3.5, respectively, only references
to the upper hemicontinuity of Ri should be replaced with those to Lemma 4.1.
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Remark. Lemma 4.1 remains valid if ≽ is ω-transitive itself, while xk+1
N ≽ xkN for all k ∈ N. Nonetheless,

it seems unlikely that Theorem 4.2 would remain valid if the “Cournot path” is replaced with “Voorneveld
path,” even if ≽ is assumed ω-transitive itself. No counterexample is known at the moment, though.

5 Unique best responses

If each best response correspondence in a strategic game is single-valued, then a Cournot potential
amounts to the same thing as a Voorneveld potential. Therefore, the uniqueness of the best responses
allows us to dispense with the upper hemicontinuity of Ri in the same way as in Section 4. It also allows
us to obtain a couple of results where just the presence of a Voorneveld potential would be insufficient.
Throughout this section, we use the notation Ri(x−i) = {ri(x−i)} whenever the uniqueness is assumed
or established.

Lemma 5.1. Let Γ be a strategic game where each Xi is a compact metric space. Let Γ admit an
ω-transitive Cournot potential ≻ which is also lower semicontinuous. Let i ∈ N and ⟨xkN ⟩k∈N be such
that xkN → xωN , Ri(x

k
−i) = {xki } and xk+1

N ≻ xkN for all k ∈ N. Then xωi ∈ Ri(x
ω
−i).

Proof. Supposing the contrary, xωi /∈ Ri(x
ω
−i), and picking yi ∈ Ri(x

ω
−i), we obtain (yi, x

ω
−i) ◃BR

i xωN ;
hence (yi, x

ω
−i) ≻ xωN . By the lower semicontinuity of ≻, we have (yi, x

k
−i) ≻ xωN ≻ xkN for all k ∈ N

large enough. However, the assumption xki = ri(x
k
−i) implies that xki = yi or x

k
N ◃BR

i (yi, x
k
−i); hence,

xkN = (yi, x
k
−i) or x

k
N ≻ (yi, x

k
−i).

Theorem 5.2. Let Γ be a strategic game where #N = 2 and each Xi is a compact metric space. Let
Γ admit an ω-transitive Cournot potential ≻ which is also lower semicontinuous. Let ⟨xkN ⟩k∈N be a
Cournot path such that #Ri(x

k
−i) = 1 for both i ∈ N and all k ∈ N. Then ⟨xkN ⟩k∈N converges to the set

of Nash equilibria.

The proof virtually repeats that of Theorem 3.4, only references to the upper hemicontinuity of Ri

in Lemma 3.3 should be replaced with those to Lemma 5.1.

Theorem 5.3. Let each Xi in a strategic game Γ be a compact metric space and let #Ri(x−i) = 1
for all i ∈ N and x−i ∈ X−i. Let Γ admit an ω-transitive Cournot potential ≻ which is also lower
semicontinuous. Then for every x0N ∈ XN there exists a Cournot path starting at x0N and converging to
the set of Nash equilibria.

Immediately follows from Theorem 4.3.

We call a Cournot path ⟨xkN ⟩k inclusive if for each player i ∈ N , there holds xki ∈ Ri(x
k
−i) for some

k. A Cournot path ⟨xkN ⟩k is totally inclusive if, whenever xmN is defined, the path ⟨xkN ⟩k≥m is inclusive.
Thus, a totally inclusive path either is infinite or ends at a Nash equilibrium. We call an infinite Cournot
path ⟨xkN ⟩k∈N uniformly inclusive if there is a natural number m ∈ N such that for each i ∈ N and each
k ∈ N, there is h ∈ N such that k ≤ h ≤ k+m and xhi ∈ Ri(x

h
−i). Every infinite Cournot path generated

by the sequential tâtonnement process as defined by Moulin [20, p. 87], see also Theorem 2 of Jensen [6],
is uniformly inclusive with m = #N − 1.
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Theorem 5.4. Let Γ be a strategic game where each Xi is a compact metric space. Let Γ admit
an ω-transitive Cournot potential ≻ which is also lower semicontinuous. Let ⟨xkN ⟩k∈N be a uniformly
inclusive Cournot path and Xω ⊆ XN be the set of its cluster points. Let #Ri(x

k
−i) = 1 and #Ri(x

ω
−i) =

1 for all i ∈ N , k ∈ N, and xωN ∈ Xω. Then ⟨xkN ⟩k∈N converges to the set of Nash equilibria.

Proof. Let xωN ∈ Xω; we pick a strictly increasing sequence ⟨kh⟩h∈N such that xkhN → xωN .

Claim 5.4.1. For each s ∈ N, the sequence ⟨xkh+s
N ⟩h converges to xωN .

Proof of Claim 5.4.1. We argue by induction in s. For s = 0, the definition of ⟨kh⟩h∈N suffices. The
general induction step is identical with the case of s = 1. Since XN is compact and N is finite, for
every subsequence ⟨k′h⟩h∈N of ⟨kh⟩h∈N, there are i ∈ N and a subsequence ⟨k′′h⟩h∈N of ⟨k′h⟩h∈N such that

x
k′′h+1

N → yωN ∈ Xω and x
k′′h+1

N ◃BR
i x

k′′h
N . Then x

k′′h+1
i = ri(x

k′′h+1
−i ) and x

k′′h+1
−i = x

k′′h
−i for all h; hence,

yω−i = xω−i and y
ω
i = ri(y

ω
−i) = ri(x

ω
−i) by Lemma 5.1. An assumption that xωi ̸= yωi would contradict

(3); hence yωN = xωN . Thus, xωN is the unique cluster point of ⟨xkh+1
N ⟩h∈N; therefore, xkh+1

N → xωN .

Let us fix i ∈ N . Since the path is uniformly inclusive, there is an s ∈ {0, . . . ,m} for each h ∈ N
such that xkh+s

i = ri(x
kh+s
−i ). By Claim 5.4.1, for every δ > 0 there is h̄ ∈ N such that the distance

between xkh+s
N and xωN is less than δ for each s ∈ {0, . . . ,m} and h > h̄. Therefore, there is a strictly

increasing sequence ⟨k′h⟩h∈N such that x
k′h
N → xωN and x

k′h
i = ri(x

k′h
−i). Now Lemma 5.1 is applicable,

implying xωi = ri(x
ω
−i). Since i ∈ N was arbitrary, xωN is a Nash equilibrium.

Remark. If #N = 2, then every infinite Cournot path is uniformly inclusive (with m = 1). In this case,
the assertion of Theorem 5.4 becomes identical to that of Theorem 5.2, but the assumptions of the latter
are weaker. Example 9.7 shows that the uniformity assumption in Theorem 5.4 cannot be dropped.
Example 9.2 shows that the uniqueness of the best responses in that theorem cannot be replaced with
their upper hemicontinuity (for #N > 2), or with the presence of a Voorneveld potential.

Theorem 5.5. Let Γ be a strategic game where #N = 3 and each Xi is a compact metric space. Let
Γ admit an ω-transitive Cournot potential ≻ which is also lower semicontinuous. Let ⟨xkN ⟩k∈N be an
infinite totally inclusive Cournot path and Xω ⊆ XN be the set of its cluster points. Let #Ri(x

k
−i) = 1

and #Ri(x
ω
−i) = 1 for all i ∈ N , k ∈ N, and xωN ∈ Xω. Then Xω contains a Nash equilibrium.

Proof. For each i ∈ N , we denote Xi the set of xωN ∈ Xω for which there exists a strictly increasing

sequence ⟨kh⟩h∈N such that xkhN → xωN and xkhi = ri(x
kh
−i) for each h ∈ N. By Lemma 5.1, xωi = ri(x

ω
−i)

for every xωN ∈ X i. For each pair I ⊂ N , #I = 2, we denote XI :=
∩

i∈I X
i. Whenever I ̸= J , XI ∩XJ

consists of Nash equilibria. By Lemma 3.3 (modified in light of Lemma 5.1), Xω =
∪

I X
I . Since the

path is inclusive, X i ̸= ∅ for each i ∈ N ; hence at least two sets XI are nonempty too.

Assuming, to the contrary, that Xω contains no Nash equilibrium, we must have XI ∩XJ = ∅ for
all pairs I ̸= J . Since each XI is closed, there are open subsets V I such that XI ⊆ V I for each I and
V I ∩ V J = ∅ whenever I ̸= J . Therefore, there exist I ̸= J and a strictly increasing sequence ⟨kh⟩h∈N
such that xkhN ∈ V J , xkh+1

N ∈ V I , and xkh+1
N ◃BR

i xkhN for all h ∈ N and the same i ∈ N . Without

restricting generality, we may assume that xkhN → xωN ∈ XJ and xkh+1
N → yωN ∈ XI . Clearly, yω−i = xω−i;
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by Lemma 5.1, yωi = ri(y
ω
−i). Now, if xωi ̸= yωi , then y

ω
N ◃BR

i xωN ; hence yωN ≻ xωN by (2), contradicting
(3). If xωi = yωi , then y

ω
N = xωN ∈ XI ∩XJ = ∅.

Remark. Example 9.2 shows that the uniqueness of the best responses cannot be replaced with the
presence of a Voorneveld potential; even uniqueness along the path, as in Theorem 5.2, would be in-
sufficient. Example 9.7 shows that one could not assert that every xωN ∈ Xω in Theorem 5.5 is a Nash
equilibrium. Example 9.8, that even this theorem would be wrong for #N > 3.

6 Weaker concepts

To broaden the scope of applications, we introduce two weaker notions: a “partial Cournot potential”
and a “restricted Cournot potential.” In the first case, we require (2) to hold only for some pairs
xN , yN ∈ XN ; in the second, (2) is required to hold for “admissible” best responses only. Both weakenings
can be combined, naturally, defining a “partial restricted Cournot potential.” The implications of the
presence of a Cournot potential in a weaker sense are weaker too, but not very much.

We call a subset X0 ⊆ XN BR-closed if it satisfies the following conditions.

1. If yN ◃BR xN and xN ∈ X0, then yN ∈ X0 too.

2. If ⟨xkN ⟩k∈N is an infinite Cournot path, xωN is its cluster point, and xkN ∈ X0 for each k, then
xωN ∈ X0.

We call an irreflexive and transitive binary relation ≻ on XN a partial Cournot potential if there is
a BR-closed subset ∅ ̸= X0 ⊆ XN such that (2) holds whenever xN ∈ X0 (hence yN ∈ X0 too).

Theorem 6.1. Lemma 3.3, as well as Theorems 3.2 and 3.4, remain valid if the “Cournot potential”
in each of them is replaced with “partial Cournot potential” whereas every Cournot path mentioned is
contained in X0.

A straightforward proof is omitted. Other results from Section 3 need a more careful treatment.

Theorem 6.2. Let each Xi in a strategic game Γ be a compact metric space. Let Γ admit an ω-transitive
partial Cournot potential such that either X0 is closed, or the condition

[
[xN ∈ X0 & yN ≻ xN ] ⇒ yN ∈

X0
]
holds. Then Γ possesses a (pure strategy) Nash equilibrium.

Proof. In the first case, we invoke Theorem 2.3 exactly as in the proof of Theorem 3.1. In the second
case, we start with picking an xN ∈ X0. If xN is a maximizer of ≻ on XN , then it is a Nash equilibrium
by (2). Otherwise, by the same Theorem 2.3, there is a maximizer yN of ≻ on XN such that yN ≻ xN .
By our assumption, yN ∈ X0 and hence is a Nash equilibrium by (2) again.

Remark. The additional restrictions on X0 in Theorem 6.2 could be dropped if we required Condition 2
in the definition of a BR-closed subset to hold for transfinite Cournot paths as well.

To extend Theorems 3.5 and 3.6 to games with a partial Cournot potential, more serious modifications
are needed. First, we call a subset X0 ⊆ XN BR-accessible if a finite Cournot path ending in X0 can
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be started from every strategy profile in XN . Generally, a BR-closed subset need not be BR-accessible;
therefore, we virtually have to add such an assumption. Even after that, more assumptions are needed.
We provide three different sets of such additions. In each case, the proof follows the same scheme as
that of Theorem 3.5, but with some modifications in the construction of the “right” Cournot path and
in how the final contradiction is obtained.

The following assumption is the most complicated when looked at, but the most convenient to apply:

∀xN , zN ∈ X0 ∀i ∈ N ∀yi ∈ Xi

[
[xi ∈ Ri(x−i) & (yi, x−i) ≻ zN ] ⇒ xN ≻ zN

]
. (4)

The condition may look intolerably artificial, but it is satisfied, e.g., if ≻ can be represented by a function
P : XN → R in the sense that yN ≻ xN ⇐⇒ P (yN ) > P (xN ), and if Ri(x−i) ⊆ Argmaxyi∈Xi

P (yi, x−i)
whenever xN ∈ X0.

Theorem 6.3. Let each Xi in a strategic game Γ be a compact metric space and each Ri be upper
hemicontinuous. Let Γ admit an ω-transitive and lower semicontinuous partial Cournot potential ≻
with a BR-accessible subset X0 ⊆ XN such that the condition (4) holds. Then for every xN ∈ XN there
exists a Cournot path starting at xN and converging to the set of Nash equilibria.

Proof. Given xN ∈ XN , we start with a finite Cournot path ending in X0. Once there, we recursively
define a Cournot path ⟨xkN ⟩k in X0. Having xkN ∈ X0, we define N∗(k) := {i ∈ N | xki /∈ Ri(x

k
−i)} and

X∗(k) :=
∪

i∈N∗(k)

(
Ri(x

k
−i)×{xk−i}

)
. If N∗(k) = ∅, xkN is a Nash equilibrium, and we are already home.

Otherwise, X∗(k) is compact and X∗(k) ⊆ X0 since the latter is BR-closed. Then we pick a maximizer
xk+1
N = (xk+1

i(k) , x
k
−i(k)) of ≻ on X∗(k). By definition, we have xk+1

i(k) ∈ Ri(k)(x
k
−i(k)); hence x

k+1
N ◃BR xkN ,

hence xk+1
N ∈ X0 and xk+1

N ≻ xkN .

Supposing, to the contrary, that xωi /∈ Ri(x
ω
−i) for a cluster point of the path, we pick yN ∈ XN such

that yN ◃BR
i xωN ; hence yN ≻ xωN by (2). Exactly as in the proof of Theorem 3.5, we have (yi, x

kh
−i) ≻ xωN

and hence (yi, x
kh
−i) ≻ xkh+1

N . If yi ∈ Ri(x
kh
−i), we immediately have a contradiction with the choice

of xkh+1
N . Otherwise, we pick a zi ∈ Ri(x

kh
−i) and obtain the same contradiction, applying (4) with

xN := (zi, x
kh
−i) [∈ X∗(kh)], yi as is, and zN := xkh+1

N .

Theorem 6.4. Let each Xi in a strategic game Γ be a compact metric space and each Ri be upper
hemicontinuous. Let Γ admit an ω-transitive and lower semicontinuous partial Cournot potential ≻
with a BR-accessible subset X0 =

∏
i∈N X0

i ⊆ XN . Then for every xN ∈ XN there exists a Cournot
path starting at xN and converging to the set of Nash equilibria.

Proof. Exactly as in the proof of Theorem 6.3, we start with a finite Cournot path ending in X0, and
then recursively define a Cournot path ⟨xkN ⟩k in X0, picking a maximizer xk+1

N = (xk+1
i(k) , x

k
−i(k)) of ≻ on

X∗(k) :=
∪

i∈N∗(k)

(
Ri(x

k
−i)× {xk−i}

)
; clearly, xk+1

N ∈ X0 and xk+1
N ≻ xkN .

Supposing, to the contrary, that xωi /∈ Ri(x
ω
−i) for a cluster point of the path, we pick yN ∈ XN such

that yN ◃BR
i xωN ; hence yN ∈ X0 since X0 is BR-absorbing; hence yi ∈ X0

i and hence (yi, x
kh
−i) ∈ X0

too. Now, if yi ∈ Ri(x
kh
−i), we immediately have a contradiction with the choice of xkh+1

N . Otherwise,

we pick a zi ∈ Ri(x
kh
−i). Since (zi, x

kh
−i) ◃BR

i (yi, x
kh
−i) ∈ X0, we have (zi, x

kh
−i) ≻ (yi, x

kh
−i) by (2) therefore,

(zi, x
kh
−i) ≻ xkh+1

N with the same contradiction.
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Theorem 6.5. Let each Xi in a strategic game Γ be a compact metric space and each Ri be upper
hemicontinuous. Let Γ admit an ω-transitive and lower semicontinuous partial Cournot potential ≻
with a BR-accessible subset X0 ⊆ XN such that the condition

[
[xN ∈ X0 & yN ≻ xN ] ⇒ yN ∈ X0

]
holds. Then for every xN ∈ XN there exists a Cournot path starting at xN and converging to the set of
Nash equilibria.

Proof. As in the proof of Theorem 6.3, we start with a finite Cournot path ending in X0. Once there,
we recursively define a Cournot path ⟨xkN ⟩k in X0, picking a maximizer xk+1

N = (xk+1
i(k) , x

k
−i(k)) of ≻ on

X∗(k) := X0 ∩
∪

i∈N∗(k)

(
Xi × {xk−i}

)
, which exists for the same reasons as in the proof of Theorem 6.2.

Obviously, xk+1
i(k) ∈ R(xk−i(k)); hence x

k+1
N ≻ xkN and xk+1

N ∈ X0. An assumption that xωi /∈ Ri(x
ω
−i) for a

cluster point of the path leads to a contradiction with the choice of xkh+1
N in the same way as in the proof

of Theorem 3.5: once (yi, x
kh
−i) ≻ xω, we must have (yi, x

kh
−i) ∈ X0 and hence (yi, x

kh
−i) ∈ X∗(kh).

When #N = 2, one would like to drop the upper hemicontinuity assumption in Theorems 6.3 – 6.5
in the same manner as in Theorem 3.6. In the last case, this is done in exactly the same way without
any problem. In the other cases, there emerges a problem with the central construction of the Cournot
path: the existence of a maximizer of ≻ on X∗(k) cannot be taken for granted. The problem can be
solved by assuming that, for every i ∈ N and x−i ∈ X−i, Ri(x−i) is closed in Xi. The assumption
is not innocuous, but weaker than the upper hemicontinuity. Then X∗(k) will be compact and hence
Theorem 2.3 will be applicable. In the case of Theorem 6.4, a broader assumption will do: for each
i ∈ N , either X0

i or every Ri(x−i) (x−i ∈ X−i) is closed in Xi. Then X∗(k), defined as the product of
either X0

i × {xk−i} or Ri(x
k
−i)× {xk−i}, will be compact and every maximizer of ≻ on X∗(k) will belong

to X0.

A BR-attractor is a BR-closed subsetX0 ⊆ XN such that there is no infinite totally inclusive Cournot
path in XN \X0. In other words, every totally inclusive Cournot path started in X0 \XN either enters
X0 at some stage (and then remains there) or ends at a Nash equilibrium. Strictly speaking, a BR-
attractor need not be BR-accessible, but the former property has all implications of the latter and some
more.

Theorem 6.6. Theorems 3.2 and 3.4 remain valid if the “Cournot potential” in each of them is replaced
with “partial Cournot potential” provided X0 is a BR-attractor. Theorems 6.3 – 6.5 remain valid if the
condition “X0 is BR-accessible” is replaced with “X0 is a BR-attractor.”

A straightforward proof is omitted.

Given correspondences R∗
i : X−i → 2Xi such that

∅ ̸= R∗
i (x−i) ⊆ Ri(x−i) (5)

for every i ∈ N and x−i ∈ X−i (“admissible best responses”), we define the admissible best response
improvement relation ◃ABR on XN by replacing (1) with

yN ◃ABR
i xN 
 [y−i = x−i & xi /∈ Ri(x−i) & yi ∈ R∗

i (x−i)];

yN ◃ABR xN 
 ∃i ∈ N [yN ◃ABR
i xN ].
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We call an irreflexive and transitive binary relation ≻ on XN a restricted Cournot potential if there are
correspondences R∗

i : X−i → 2Xi \ {∅} such that (2) holds for ◃ABR. A Cournot path is admissible if
xk+1
N ◃ABR xkN for each relevant k.

Remark. The notions of admissible best responses and restricted potentials first appeared in Kukushkin
[9] (Proposition 6.4). If we define admissible best responses by R∗

i (x−i) := Ri(x−i) for all i ∈ N and
x−i ∈ X−i, then every restricted Cournot potential is just a Cournot potential. When all best responses
are single-valued, there is no other way to define admissible best responses.

Theorem 6.7. Lemma 3.3, as well as Theorems 3.1, 3.2, and 3.4, remain valid if the “Cournot poten-
tial” in each of them is replaced with “restricted Cournot potential,” the assumptions on Ri are shifted
onto R∗

i , and only admissible Cournot paths are allowed.

A straightforward proof is omitted.

To extend Theorems 3.5 and 3.6 to games with a restricted Cournot potential, we need an additional
assumption, an analog of (4):

∀xN , zN ∈ XN ∀i ∈ N ∀yi ∈ Xi

[
[xi ∈ R∗

i (x−i) & (yi, x−i) ≻ zN ] ⇒ xN ≻ zN
]
. (6)

The assumption is satisfied, e.g., if ≻ can be represented by a function P : XN → R in the sense that
yN ≻ xN ⇐⇒ P (yN ) > P (xN ), and if R∗

i (x−i) ⊆ Argmaxyi∈Xi
P (yi, x−i) ⊆ Ri(x−i).

Theorem 6.8. Let each Xi in a strategic game Γ be a compact metric space. Let Γ admit an ω-transitive
and lower semicontinuous restricted Cournot potential ≻ such that each R∗

i is upper hemicontinuous and
(6) is satisfied. Then for every x0N ∈ XN there exists an admissible Cournot path starting at x0N and
converging to the set of Nash equilibria.

Proof. Given x0N ∈ XN , we recursively define a Cournot path ⟨xkN ⟩k in X0 in a way similar to the
proofs of Theorems 3.5 and 6.3. Given xkN ∈ X0, we define N∗(k) := {i ∈ N | xki /∈ Ri(x

k
−i)} and

X∗(k) :=
∪

i∈N∗(k)

(
R∗

i (x
k
−i)×{xk−i}

)
. If N∗(k) = ∅, xkN is a Nash equilibrium, and we are already home.

Otherwise, we pick a maximizer xk+1
N = (xk+1

i(k) , x
k
−i(k)) of ≻ on X∗(k), which exists because X∗(k) is

compact. By definition, we have xk+1
i(k) ∈ R∗

i(k)(x
k
−i(k)); hence x

k+1
N ◃ABR xkN , hence xk+1

N ≻ xkN .

Supposing, to the contrary, that xωi /∈ Ri(x
ω
−i) for a cluster point of the path, we argue similarly

to the proof of Theorem 6.3. First, we pick yN for which yN ◃ABR
i xωN , obtaining yN ≻ xωN and

hence (yi, x
kh
−i) ≻ xkh+1

N . Second, if yi ∈ R∗
i (x

kh
−i), then (yi, x

kh
−i) ∈ X∗(kh) and we immediately have

a contradiction with the choice of xkh+1
N . Otherwise, we pick a zi ∈ R∗

i (x
kh
−i) and obtain the same

contradiction, applying (6) with xN := (zi, x
kh
−i) [∈ X∗(kh)], yi as is, and zN := xkh+1

N .

When #N = 2, we can drop the upper hemicontinuity assumption in Theorem 6.8, demanding
instead that every R∗

i (x
kh
−i) is closed in Xi.

7 Games with structured utilities

A game with structured utilities (and additive aggregation) may have an arbitrary finite set of players
N and arbitrary sets of strategies whereas the utility functions satisfy certain structural requirements.
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There is a set A of processes and a finite subset Υi ⊆ A of processes where each player i ∈ N participates
(given exogenously). With every α ∈ A, an intermediate utility function is associated, φα : XN(α) → R,
where N(α) := {i ∈ N | α ∈ Υi}. The “ultimate” utility functions of the players are built of the
intermediate utilities:

ui(xN ) :=
∑
α∈Υi

φα(xN(α)), (7)

where i ∈ N and xN ∈ XN . Defining P : XN → R by

P (xN ) :=
∑
α∈A

φα(xN(α)), (8)

we immediately see that P is an exact potential as defined by Monderer and Shapley [18]:

P (xN ) =
∑
α∈Υi

φα(xN(α)) +
∑

α∈A\Υi

φα(xN(α)) = ui(xN ) +Qi(x−i)

for all i ∈ N and xN ∈ XN ; clearly, it is a Voorneveld potential as well. If all functions φα are continuous,
then P is continuous too. If we additionally assume, e.g., each set Xi to be convex and each function
φα strictly concave, then the results of Section 5 become applicable.

Given continuous and strictly increasing mappings λi : R → R, we may extend this approach further,
replacing (7) with

ui(xN ) = λi
(∑
α∈Υi

φα(xN(α))
)
, (9)

for all i ∈ N and xN ∈ XN . Then P (xN ) :=
∑

α∈A φα(xN(α)) is an ordinal potential, and hence a
continuous Voorneveld potential again.

The construction described by (7), even by (9), may seem trivial; however, it works in quite interesting
models, and sometimes in non-trivial ways. Actually, Theorem 5 from Kukushkin [11] shows that a
strategic game admits an exact potential if and only if it can be represented as a game with structured
utilities and additive aggregation rule (7).

Example 7.1. Let us consider “network transmission games,” see, e.g., Facchinei et al. [3] and references
therein, which are somewhat similar to Rosenthal’s [23] congestion games, but do not belong to the class.
There is a directed graph with the set of links E; each player i ∈ N is assigned a path πi ⊆ E in the graph
(between a source and a target) and sends a flow xi ∈ [0, bi] ⊂ R along the path, getting a reward wi(xi)
depending on her flow and bearing costs

∑
e∈πi

ce(
∑

j: e∈πj
xj) depending on the total flow through each

link in πi. Setting A := E ∪ N , Υi := πi ∪ {i}, φi(xi) := wi(xi) and φe(xN(e)) := −ce(
∑

j∈N(e) xj) for
each e ∈ E, we see that (7) holds for each player. Therefore, all results of Sections 3 and 4 are applicable.

Example 7.2. Let us consider a Cournot oligopoly with a linear inverse demand function. The strategies
are Xi := [0,Ki]; the utilities, ui(xN ) := xi ·max{a− b ·

∑
j∈N xj , 0} − Ci(xi), where a, b > 0 and each

Ci : R+ → R+ is continuous and such that Ci(0) = 0 (an assumption that Ci is increasing is natural,
but redundant). We denote X0 := {xN ∈ XN | a − b ·

∑
i∈N xi ≥ 0}. Clearly, 0N ∈ X0 ̸= ∅.

Whenever yN ◃BR
i xN , there holds yN ∈ X0 or Ci(yi) = 0; therefore, no player can make more than one

improvement in XN \X0, and hence X0 is a BR-attractor. Funnily, X0 need not be BR-accessible since
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there may be an equilibrium where a − b ·
∑

i∈N xi < 0, but Ci(xi) = 0 for all i ∈ N . It is easy to see
that (7) is satisfied on X0 with A := {N, {i}i∈N}, φN (xN ) := −b ·

∑
i,j∈N i ̸=j xixj/2, Υ

i := {N, {i}} ⊆ A

and φi(xi) := axi − bx2i − Ci(xi) for each i ∈ N . The potential function (8) takes the form

P (xN ) =
∑
i∈N

[
axi − bx2i − Ci(xi)

]
− b ·

∑
i,j∈N i ̸=j

xixj/2.

Since (4) holds on X0, Theorems 6.1, 6.2, 6.3, and 6.6 are applicable.

Example 7.3. Let us consider a Cournot oligopoly with identical linear cost functions: Xi := [0,Ki];
ui(xN ) := xi ·F (

∑
j∈N xj)−c ·xi, where F : R+ → R+ is continuous (an assumption that F is decreasing

is natural, but redundant) and c ≥ 0. Assuming F (0) > c, we set

P (xN ) :=
[
F
(∑
i∈N

xi
)
− c

]
·
∏
i∈N

xi (10)

and X0 := {xN ∈ XN | P (xN ) > 0} ̸= ∅. It is easily checked that (9) is satisfied on X0 with the same
sets A and Υi as in Example 7.2, λ(u) := exp(u), φN (xN ) := log(F (

∑
i∈N xi)− c), and φi(xi) := log(xi)

for each i ∈ N . The function P defined in (10) is the superposition of λ and the potential (8); hence X0

is BR-closed and P represents a partial Cournot potential on X0. Whenever yN ◃BR
i xN , there holds

F (
∑

i∈N yi) ≥ c or yi = 0; therefore, X0 is a BR-attractor. Again, X0 need not be BR-accessible since
there may be an equilibrium where F (

∑
i∈N xi) = c (if F (t) = c on a long enough interval in R+). Thus,

Theorems 6.1, 6.2, 6.3, 6.5, and 6.6 are applicable.

It is instructive to compare Examples 7.2 and 7.3: in the first case, we impose serious restrictions
on the demand, while the cost functions may be arbitrary (continuous); in the second, “dually,” cost
functions are severely restricted while the demand is arbitrary (continuous). And essentially the same
construction of a potential (8) works in both cases. Actually, both examples were present in Monderer
and Shapley [18], but without noticing their deep similarity. There also was no notion of a partial poten-
tial in [18] and hence rather roundabout language had to be employed (“quasi-Cournot competition”).

Example 7.4. Let us consider the voluntary provision of a public good with Cobb-Douglas utilities:
Xi := [0,Ki]; there are continuous production functions f : XN → R and gi : Xi → R such that f(0) =
gi(0) = 0, f(xN ) > 0 whenever xN > 0, and gi(yi) > 0 whenever yi > 0; the utility functions are
ui(xN ) := [f(xN )]α · [gi(Ki − xi)]

1−α with 0 < α < 1. Monotonicity of f and gi would be natural, but is
not needed; f need not be symmetric.

Assuming Ki > 0 for each i ∈ N , we set X0 := {xN ∈ XN | ∀i ∈ N [0 < xi < Ki]} ̸= ∅; X0 is a
BR-accessible BR-attractor. Again, (9) is satisfied on X0 with the same sets A and Υi as in Examples 7.2
and 7.3, λ(u) := exp(u), φN (xN ) := α log(f(xN )), and φi(xi) := (1−α) log(gi(Ki − xi)) for each i ∈ N .

The function P (xN ) := [f(xN )]α ·
∏

i∈N
[
gi(Ki − xi)

]1−α
represents a partial Cournot potential on X0

[the logarithm of P is of the form (8)]. Thus, Theorems 6.1, 6.2, 6.3, 6.5, and 6.6 are applicable.
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8 Aggregative games with the single crossing conditions

A rather general (though not the most general imaginable) definition of an aggregative game sounds as
follows: each Xi is a compact subset of R, and there are mappings σi : X−i → R such that

ui(xN ) = Ui(σi(x−i), xi)

for all i ∈ N and xN ∈ XN . For each i ∈ N , we denote Si := σi(X−i) ⊂ R, and redefine the best
response correspondence:

Ri(si) := Argmax
xi∈Xi

Ui(si, xi).

Our assumption Ri(x−i) ̸= ∅ is equivalent to Ri(si) ̸= ∅ for each si ∈ Si.

We also assume that each player’s best responses are increasing in si (in a rather strong sense):

[s′i > si & x′i ∈ Ri(s
′
i) & xi ∈ Ri(si)] ⇒ x′i ≥ xi (11)

for all i ∈ N and s′i, si ∈ Si. The following strict single crossing condition [17] is sufficient for (11):

[x′i > xi & s′i > si & Ui(si, x
′
i) ≥ Ui(si, xi)] ⇒ Ui(s

′
i, x

′
i) > Ui(s

′
i, xi) (12)

for all i ∈ N , x′i, xi ∈ Xi, and s
′
i, si ∈ Si.

If each σi is increasing in each xj , then the existence of a Nash equilibrium (but not the acyclicity of
the best response improvements) immediately follows from Tarski’s fixed point theorem. Novshek [21]
was the first to notice that the existence also obtains in the case of σi(x−i) = −

∑
j ̸=i xj ; this fact has

nothing to do with Tarski’s theorem. Kukushkin [9] proved the impossibility of Cournot cycles in both
Novshek’ case and when σi(x−i) =

∑
j ̸=i xj . Dubey et al. [2] modified a trick invented by Huang [5] for

different purposes and constructed a “pseudopotential,” which proves the existence of an equilibrium,
in a broader class of aggregative games. A much broader class where the trick still works was discovered
by Jensen [6]; the class may be the broadest possible although it is unclear how such a claim could be
proven. (The technical assumptions of Jensen’s Theorem 1, however, should have been much stronger,
see Jensen [7].)

From our viewpoint, the trick constructs a continuous partial Cournot potential, actually, a Voorn-
eveld potential. We describe it in some detail for a case of intermediate generality [10], sufficient for
many applications in economics. Let

σi(x−i) =
∑
j ̸=i

aijxj , (13)

with aij = aji ∈ R for all i ̸= j. Assuming that each best response correspondence Ri is upper
hemicontinuous and satisfies (11), the approach of Huang–Dubey et al. recommends the following steps.
First, we pick a selection ri from each Ri, e.g., ri(si) := minRi(si) for every si ∈ Si; then we extend ri
to the whole closed interval [minSi,maxSi] preserving its monotonicity; finally, we define

P (xN ) :=
∑
i∈N

[
−xi ·maxSi +

∫ maxSi

minSi

min{xi, ri(si)} dsi
]
+

1

2

[ ∑
i,j∈N i ̸=j

aij · xi · xj
]
. (14)
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Straightforward calculations show that P (yi, x−i) ≥ P (xN ) whenever yi ∈ Ri(σi(x−i)), and that P (yN ) >
P (xN ) whenever yN ◃BR

i xN and xi ∈ X0
i :=

∪
si∈Si

Ri(si). Therefore, P represents a continuous partial
Cournot potential satisfying (2) on X0 :=

∏
i∈N X0

i , which is a BR-attractor. Thus, Theorems 6.1, 6.3,
6.4, and 6.6 are applicable.

Remark. When aij ≥ 0 for all j ̸= i, we have a game with strategic complementarity; when aij ≤ 0 for
all j ̸= i, a game with strategic substitutability. A more general situation with coefficients of both signs
is also possible.

The following weak single crossing condition, introduced in Shannon [24],

[x′i > xi & s′i > si & Ui(si, x
′
i) > Ui(si, xi)] ⇒ Ui(s

′
i, x

′
i) ≥ Ui(s

′
i, xi) (15)

for all i ∈ N , x′i, xi ∈ Xi, and s
′
i, si ∈ Si, ensures the monotonicity of Ri in a rather weak sense:

[s′i > si & x′i ∈ Ri(s
′
i) & xi ∈ Ri(si)] ⇒ [min{x′i, xi} ∈ Ri(si) or max{x′i, xi} ∈ Ri(s

′
i)] (16)

for all i ∈ N and s′i, si ∈ Si. Since every Ri(si) is compact, (16) implies, by Theorem 3.2 of Veinott [26],
the existence of an increasing selection ri from Ri. Defining R∗

i as the closure of the graph of ri, we
immediately see that R∗

i is upper hemicontinuous and satisfies both (5) and (11). In other words, if the
best responses are upper hemicontinuous and increasing in the sense of (16), while aggregation rules σi
belong to the class described by Jensen [6], i.e., allow the Huang-Dubey-et-al. trick to work, then the
game admits a partial restricted Cournot potential satisfying both (4) and (6). Therefore, Theorems 6.7
and 6.8 are applicable, i.e., Nash equilibria exist and can be reached with admissible Cournot paths from
anywhere.

Example 8.1. Let us consider a Cournot oligopoly once more. Xi := [0,Ki]; ui(xN ) := xi·F (
∑

j∈N xj)−
Ci(xi), where F : R+ → R+ is continuous, F (t) = 0 for t ≥ t+ ∈ R+, F is twice continuously differentiable
on [0, t+],

F ′(t) + tF ′′(t) ≤ 0 (17)

for all t ∈ [0, t+], and each Ci : R+ → R+ is continuous and such that Ci(0) = 0 (an assumption that
Ci is increasing is again natural, but not needed). Novshek [21] showed the existence of an equilibrium
under those assumptions. Clearly, (13) holds with aij = −1. Assuming strict inequality in (17), we
easily derive (12). Therefore, setting X0

i :=
∪

si∈Si
Ri(si), we see that the function P defined by (14)

represents a continuous partial Cournot potential on X0 :=
∏

i∈N X0
i . Clearly, X0 is a (BR-accessible)

BR-attractor. Thus, Theorems 6.1, 6.3, 6.4, and 6.6 are applicable. When (17) only holds as a non-strict
inequality, we derive (15) and hence the existence of a continuous partial restricted Cournot potential.

Remark. Under the assumptions of Example 7.2, (17) holds as a strict inequality; in a sense, Exam-
ple 8.1 incorporates that example. On the other hand, the set X0 as defined there is much broader.

Quite a number of other economics models where our theorems are applicable via the constructions
described in this section can be found in Dubey et al. [2] and, especially, in Jensen [6].
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9 “Counterexamples”

This section consists of examples showing the impossibility of easy generalizations.

Example 9.1. Let us consider a game where N := {1, 2}, Xi := [0, 1] ∪ {2}, and the preferences are
defined by these utility functions:

ui(xN ) :=


min{2xi − x−i,−2xi + x−i + 2}, xN ∈ [0, 1]× [0, 1];

1, xi = 2, x−i ∈ [0, 1[;

2, xi = 2, x−i = 1;

xi, x−i = 2.

Each utility function ui is upper semicontinuous in xN and continuous in xi; the only discontinuity in
x−i happens when x−i = 1 and xi = 2. The best responses are easy to compute:

Ri(x−i) =

{
{2}, x−i ∈ {1, 2};
{2, x−i/2 + 1/2}, x−i ∈ [0, 1[.

There is a unique Nash equilibrium, (2, 2).

To define a Cournot potential, we introduce an auxiliary function on R2: ψ(x, y) := min{x, −x +
y + 1}. Then we define a continuous function on XN :

P (xN ) :=

{
max{ψ(x1, x2), ψ(x2, x1)}, xN ∈ [0, 1]× [0, 1];

2 + mini xi, otherwise.

Claim 9.1.1. If yN ◃BR xN , then P (yN ) > P (xN ), i.e., P represents a Cournot potential.

Proof of Claim 9.1.1. Let yN ◃BR
i xN ; if x−i = 2, we are home immediately. Let x−i ∈ [0, 1]; hence

xi ∈ [0, 1] too, and hence P (xN ) ≤ 1. If yi = 2, then P (yN ) ≥ 2 > P (xN ). Let yi ∈ [0, 1]; then
yi = x−i/2 + 1/2 > x−i. We have ψ(yi, x−i) = yi > x−i ≥ ψ(x−i, yi) and hence P (yN ) = yi. Meanwhile,
ψ(x−i, xi) ≤ x−i < yi and ψ(xi, x−i) < yi = maxzi∈[0,1] ψ(zi, x−i); therefore, P (yN ) > P (xN ) again.

Since Ri are not upper hemicontinuous, neither Theorem 3.2, nor Theorem 3.4 is applicable here.
Indeed, a Cournot path converging to (1, 1), which is not an equilibrium, can be started from every
strategy profile in [0, 1[× [0, 1[. On the other hand, Theorem 3.6 is applicable; actually, the unique Nash
equilibrium can be reached from every strategy profile after, at most, two best response improvements.

The following example is essentially due to Powell [22].

Example 9.2. Let us consider a game where N := {1, 2, 3}, Xi := [−2, 2], and the preferences of each
player are defined by the same continuous utility function:

u(xN ) :=
∑

i,j∈N, i̸=j

xi · xj/2−
∑
i∈N

[
max{xi − 1, 0,−1− xi}

]2
.
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Clearly, the game belongs to the class considered in Section 7 and u is an exact potential; hence it
represents a continuous Cournot potential. Note that the game also belongs to the class considered in
Section 8 with σi(x−i) :=

∑
j ̸=i xj ; the strict single crossing condition (12) is easy to check. Note also

that u is concave in each xi.

The best responses are easy to compute; given i ∈ N and x−i ∈ X−i, we denote si :=
∑

j ̸=i xj .

Ri(x−i) =



{2}, si ≥ 2;

{1 + si/2}, 0 < si ≤ 2;

[−1, 1], si = 0;

{−1 + si/2}, −2 ≤ si < 0;

{−2}, si ≤ −2.

There are two Nash equilibria maximizing the utility/potential: (2, 2, 2) and (−2,−2,−2). (0, 0, 0) is
also a Nash equilibrium.

Fixing an arbitrary δ ∈]0, 1/4[, we consider a sequential Cournot path starting at x0N := (1+4δ,−1−
2δ, 1+δ): x1N = (−1−δ/2,−1−2δ, 1+δ); x2N = (−1−δ/2, 1+δ/4, 1+δ); x3N = (−1−δ/2, 1+δ/4,−1−δ/8);
x4N = (1+ δ/16, 1+ δ/4,−1− δ/8); x5N = (1+ δ/16,−1− δ/32,−1− δ/8); x6N = (1+ δ/16,−1− δ/32, 1+
δ/64). Comparing x0N and x6N , we see how the path will continue ad infinitum. Thus, it has six cluster
points: (1,−1, 1), (−1,−1, 1), (−1, 1, 1), (−1, 1,−1), (1, 1,−1), and (1,−1,−1), none of which is an
equilibrium.

We see that Theorem 3.4 cannot be extended to #N > 2, while Theorems 5.4 and 5.5 would be
wrong without the uniqueness of the best responses, even in the presence of a Voorneveld potential.

Example 9.3. In a plane with polar coordinates (ρ, φ) (ρ ≥ 0, 0 ≤ φ < 2π), we define a compact subset

X :=
{
(ρ, φ) | 1 ≤ ρ ≤ 2

}
and a mapping f : X → X by

f(ρ, φ) :=

{(
1,min{3φ/2, π + φ/2}

)
, ρ = 1;(

(ρ+ 1)/2,min{3φ/2, π + φ/2} ⊕ π/[1− log2(ρ− 1)]
)
, ρ > 1;

where ⊕ denotes addition modulo 2π. Clearly, f is continuous and (1, 0) is its unique fixed point.
Defining X0 := {(ρ, φ) ∈ X | ρ = 1} and X∗ := X \ X0, we immediately see that fk(x) converges to
(1, 0) whenever x ∈ X0 and to X0 whenever x ∈ X∗.

Now we define a strategic game: N := {1, 2}, X1 := X2 := X, ui(xN ) := −d(xi, f(x−i)), where d
denotes distance in the plane. Both utilities are continuous; the best responses are unique, Ri(x−i) =
{f(x−i)}. The strategy profile ((1, 0), (1, 0)) is a unique Nash equilibrium.

Then we define a function P : X ×X → R in this way:

P (x1, x2) :=


0, ρ1 = ρ2 = 1 & φ1 = φ2 = 0;

mini φi +maxi ui(xN )− 2π, ρ1 = ρ2 = 1 & maxi φi > 0;

mini(1− ρi) + maxi ui(xN )− 2π, otherwise.

The function is upper semicontinuous, but not continuous.
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Claim 9.3.1. If x′N ◃BR xN , then P (x′N ) > P (xN ), i.e., P represents a Cournot potential.

Proof of Claim 9.3.1. Let x′−i = x−i and x
′
i = f(x−i) ̸= xi; hence ui(x

′
N ) = 0 ≥ u−i(x

′
N ). If x−i = (1, 0),

then P (xN ) < 0 = P (x′N ) and we are home.

Let ρ−i = 1 and φ−i > 0. Then ρ′i = 1 and φ′
i > φ−i; hence P (x

′
N ) = φ−i − 2π. If ρi > 1, then

P (xN ) < −2π < P (x′N ). If ρi = 1, then we consider two alternatives. If φi ≥ φ−i, then maxi ui(xN ) < 0,
and hence P (xN ) < φ−i − 2π = P (x′N ); if φi < φ−i, then P (xN ) ≤ φi − 2π < P (x′N ).

Finally, let ρ−i > 1. Then P (x′N ) = 1 − ρ−i − 2π. If ρi ≤ ρ−i, then x−i ̸= f(xi); hence P (xN ) <
1− ρ−i − 2π = P (x′N ). If ρi > ρ−i, then P (xN ) ≤ 1− ρi − 2π < P (x′N ).

We see that the assumptions of Theorem 3.2 are satisfied. Moreover, the potential is upper semicon-
tinuous, and the best responses are single-valued. Meanwhile, every Cournot path started from X∗×X∗

has an infinite number of cluster points besides the unique equilibrium, i.e., does not converge to the
set of equilibria. Thus, the lower semicontinuity of the potential in Theorems 3.4, 3.5, 3.6, 4.2, 4.3, 5.2,
5.3, and 5.4 is essential.

Example 9.4. We consider a modification of Example 9.3 with the same subset X

X :=
{
(ρ, φ) | 1 ≤ ρ ≤ 2

}
of the plane with polar coordinates and a different continuous mapping f : X → X,

f(ρ, φ) :=

{
(ρ, φ), ρ = 1,(
(ρ+ 1)/2, φ⊕ π/[1− log2(ρ− 1)]

)
, ρ > 1,

where ⊕ again denotes addition modulo 2π. Defining X0 := {(ρ, φ) ∈ X | ρ = 1} and X∗ := X \X0, we
immediately see that f(x) = x whenever x ∈ X0, and fk(x) converges to X0 whenever x ∈ X∗.

Now we define a strategic game in exactly the same way as in Example 9.3: N := {1, 2}, X1 :=
X2 := X, ui(xN ) := −d(xi, f(x−i)), where d denotes distance in the plane. Again, both utilities are
continuous; the best responses are unique, Ri(x−i) = {f(x−i)}. The set of Nash equilibria of the game
is {xN ∈ X0 ×X0 | x1 = x2}.

Then we define a continuous function P : X ×X → R by

P (xN ) := min
i
(1− ρi) + max

i
ui(xN ).

An argument similar to the proof of Claim 9.3.1, but even simpler, shows that P represents a Cournot
potential. Meanwhile, the set of cluster points of any Cournot path started from X∗ ×X∗ is the whole
set of Nash equilibria of the game. We see that the assumptions of Theorem 3.4, even Theorem 5.4, do
not ensure the convergence of every Cournot path to a Nash equilibrium.

Example 9.5. Let us consider a game where N := {1, 2, 3}, X1 := X2 := [0, 1], X3 := {0, 1}, and the
preferences are defined by these utility functions: u3(xN ) := 1 if xN = (1, 1, 1), u3(xN ) := 0 otherwise,
whereas for i ∈ {1, 2}, ui(xN ) := min{2xi−x3−i,−2xi+x3−i+2}. Both functions u1, u2 are continuous
in xN ; u3 is upper semicontinuous in xN and continuous in x3. The best responses are easy to compute:
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Ri(x−i) = {x3−i/2 + 1/2} for i = 1, 2, R3(x−3) = {1} if x−3 = (1, 1), and R3(x−3) = X3 otherwise.
There is a unique Nash equilibrium, (1, 1, 1).

To define a Cournot potential, we use the same auxiliary function on R2 as in Example 9.1: ψ(x, y) :=
min{x,−x+y+1} and define a continuous function on XN by P (xN ) := max{ψ(x1, x2), ψ(x2, x1)}+x3.

Claim 9.5.1. If yN ◃BR xN , then P (yN ) > P (xN ), i.e., P represents a Cournot potential.

Proof of Claim 9.5.1. For player 1 or 2, the argument is the same as in the proof of Claim 9.1.1, one
only has to consider fewer cases. The situation yN ◃BR

3 xN is only possible when y−3 = x−3 = (1, 1),
x3 = 0 and y3 = 1.

Every Cournot path started from [0, 1[× [0, 1[×{0} converges to (1, 1, 0), which is not an equilibrium.
Thus, the upper hemicontinuity assumption in Theorem 3.5, as well as the assumption #N = 2 in
Theorem 3.6 or the presence of a Voorneveld potential in Theorem 4.3, are essential.

Example 9.6. Let us consider a game where N := {1, 2}, Xi := [0, 1], and the preferences of both
players are defined by this common utility function:

u(xN ) :=

{
min{8x1 + 8x2, 13x1 − 2x2 + 5, 13x2 − 2x1 + 5}, ∀i ∈ N xi ≥ 1/2;

min{8x1 + 8x2, 14x1 − 4x2 + 3, 14x2 − 4x1 + 3}, otherwise.

Obviously, u represents a Cournot potential; its upper (but not lower!) semicontinuity is easy to check.
The unique best responses are easy to compute:

Ri(x−i) =

{
{x−i/2 + 1/2}, x−i ≥ 1/2;

{x−i/2 + 1/4}, x−i < 1/2.

There is a unique Nash equilibrium, (1, 1).

Exactly as in Example 9.2, this game belongs to the class considered in Section 8, this time with
σi(x−i) := x−i; the monotonicity condition (11) is obvious.

Since Ri are not upper hemicontinuous, Theorem 3.2 is inapplicable. Indeed, every Cournot path
started from [0, 1/2[×[0, 1/2[ converges to (1/2, 1/2), which is not an equilibrium. We see that the
upper hemicontinuity of the best responses cannot be replaced with their uniqueness here. This example
simultaneously shows Jensen’s [6] Theorem 2 to be, strictly speaking, wrong (the upper semicontinuity
of utility functions is not enough to ensure the upper hemicontinuity of the best responses).

Example 9.7. Having in mind the same set X := {(ρ, φ) | 1 ≤ ρ ≤ 2} and mapping f : X → X as
in Example 9.4, we consider a strategic game with N := {1, 2, 3}, X1 := X2 := X, X3 := [0, π], and a
common utility function of all players

ui(xN ) := P (xN ) := −min{d(x1, f(x2)), d(x2, f(x1))}+min{1− ρ1, 1− ρ2}+
x3 ·

(
ψ(φ1, φ2)− |x3 − ψ(φ1, φ2)|

)
,

where
ψ(φ1, φ2) := max{min{φ1, φ2, 2π − φ1, 2π − φ2} −∆, 0},
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and 0 < ∆ < π/2. Clearly, P is continuous, and represents a Cournot potential of the game.

When x3 = 0, the best responses of players 1 and 2 are the same as in Example 9.4: R1(x−1)
∣∣∣
x3=0

=

{f(x2)} and R2(x−2)
∣∣∣
x3=0

= {f(x1)}. Therefore, the set of cluster points of any Cournot path such that

x03 = 0, ρ01 > ρ02 > 1, x2k+1
N ◃BR

1 x2kN and x2k+2
N ◃BR

2 x2k+1
N is {xN ∈ XN | ρ1 = ρ2 = 1, φ1 = φ2, x3 = 0}.

The utility function u3(xN ) is piecemeal-quadratic in x3 and it is easily checked that it strictly increases
when x3 ≤ ψ(φ1, φ2) and strictly decreases when x3 ≥ ψ(φ1, φ2); therefore, R3(x1, x2) = {ψ(φ1, φ2)}.

Thus, we see that the best responses along the Cournot path, as well as at every cluster point, are
unique. Moreover, the path is totally inclusive since xk3 ∈ R3(x

k
−3) whenever ψ(φk

1, φ
k
2) = 0, which

happens an infinite number of times. However, not every cluster point is an equilibrium (only those
points where ψ(φ1, φ2) = 0). In other words, Theorem 3.4 cannot be extended to #N > 2 even
under the uniqueness of the best responses (unless restricted to uniformly inclusive Cournot paths as in
Theorem 5.4).

Example 9.8. Let us add one more player to Example 9.7, and one more additive term to the common
utility function. Thus, N := {1, 2, 3, 4}, X1 := X2 := X, X3 := X4 := [0, π], and

ui(xN ) := P (xN ) := −min{d(x1, f(x2)), d(x2, f(x1))}+min{1− ρ1, 1− ρ2}+
x3 ·

(
ψ(φ1, φ2)− |x3 − ψ(φ1, φ2)|

)
+ x4 ·

(
ψ∗(φ1, φ2)− |x4 − ψ∗(φ1, φ2)|

)
,

where X, f , ψ and ∆ are the same as in Example 9.7, whereas

ψ∗(φ1, φ2) := max{min{|φ1 − π| , |φ2 − π|} −∆, 0}.

Again, P is continuous and represents a Cournot potential of the game.

When x3 = x4 = 0, the best responses of players 1 and 2 are again the same as in Example 9.4:

R1(x−1)
∣∣∣
x3=x4=0

= {f(x2)} and R2(x−2)
∣∣∣
x3=x4=0

= {f(x1)}. Therefore, every Cournot path such that

x03 = x04 = 0, ρ01 > ρ02 > 1, x2k+1
N ◃BR

1 x2kN and x2k+2
N ◃BR

2 x2k+1
N has the same set {xN ∈ XN | ρ1 =

ρ2 = 1, φ1 = φ2, x3 = x4 = 0} as the set of cluster points. Similarly to the preceding example,
R3(x−3) = {ψ(φ1, φ2)} and R4(x−4) = {ψ∗(φ1, φ2)}.

Again, the best responses along the totally inclusive Cournot path, as well as at every cluster point,
are unique. However, there is no equilibrium among the cluster points of the path because the equalities
ψ(φ1, φ2) = 0 and ψ∗(φ1, φ2) = 0 are incompatible. In other words, Theorem 5.5 would be just wrong
for #N > 3.

10 Concluding remarks

10.1. ω-transitivity of a Cournot potential alone ensures the “transfinite convergence” of every Cournot
path to Nash equilibria. An informal description is given after Theorem 2.3; a formal exposition can
be found in Kukushkin [13]. The concept might seem exotic, but there is something to it. If, e.g., we
replace all Xi = [−2, 2] in Example 9.2 with arbitrary finite subsets, retaining the same common utility
function, then every Cournot path will reach an equilibrium in a finite number of steps. Therefore,
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one can argue that the problem illustrated by the example is just an artifact of the suboptimal way to
introduce infinity: the behavior of transfinite dynamics is much closer to what happens in a finite model.

10.2. It is worth stressing once again: None of the results of this paper needs a numeric potential;
moreover, in each of the “counterexamples” in Section 9, there is a numeric potential, which does not
help. The upper semicontinuity of a Cournot potential does not ensure any better properties of best
response dynamics than just ω-transitivity. (Although an upper semicontinuous relation need not be
ω-transitive even if it is transitive, an upper semicontinuous Cournot potential can always be extended to
an ω-transitive one [13, Theorem 3.23].) The continuity of a Cournot or Voorneveld potential also seems
not to have any serious advantage over its ω-transitivity plus lower semicontinuity. It only gives tiny
technical benefits: If a game admits a Voorneveld potential whose asymmetric component is continuous,
then each Ri is upper hemicontinuous; if a game admits a continuous Cournot potential and all best
responses of player i are single-valued, then ri is continuous too. Under the actual assumptions of
Lemmas 4.1 and 5.1, both claims would be wrong.

10.3. Theorem 2 of Jensen [6] is neither weaker, nor stronger than any result of this paper. It establishes
the convergence of sequential Cournot tâtonnement to Nash equilibria under an assumption concerning
paths where the players consecutively replace one best response with another. A strong point of the
theorem is that it shows Example 9.2 to hinge on the presence of a cycle of DBR rather than on non-
uniqueness as such. On the other hand, it is extremely difficult to imagine its main assumption checked
in any particular model (e.g., the existence of a Voorneveld potential is not enough). The only exception
seems to be a situation where all best responses are single-valued; in this case our Theorem 5.4 is a
bit stronger. It should be noted that Jensen’s proof presumes the upper hemicontinuity of the best
responses, which does not follow from his assumptions, see Example 9.6 and Jensen [7].

10.4. The partial and/or restricted versions of a Voorneveld potential are defined in an obvious way.
The corresponding modification of the results of Sections 4 and 5 follows the same lines as in Section 6.
It is worth noting that there are partial Voorneveld potentials in all examples of Sections 7 and 8.

10.5. If we modify the constructions of Section 7, replacing the sum in (7) with the minimum, cf. [4],
then the leximin ordering on XN will be a potential in the sense of (2) for coalition improvements, and
hence a Cournot potential as well. Since the ordering is not lower semicontinuous, our main results are
inapplicable even though no counterexample is known. Funnily, aggregative games of Section 8 with
σi(x−i) = minj ̸=i xj for all i ∈ N or σi(x−i) = −minj ̸=i xj for all i ∈ N also admit ω-transitive Cournot
potentials. And the existence of a lower semicontinuous (partial) Cournot potential in every such game
also remains neither proven, nor disproved so far.

10.6. The Cournot path leading nowhere in Example 9.2 needs a carefully chosen initial point. It does
not matter here since the only objective of the example is to demonstrate the invalidity of straightforward
extensions of Theorems 3.4 and 5.4. Powell [22] also provides a more complicated example where such
paths can be started from every point in an open subset.

10.7. Most likely, Example 9.7 can be modified so that only one cluster point will be an equilibrium (∆ in
the definition of ψ should depend on ρ1 and ρ2). However, this is hardly important for anything. A much
more intriguing question is whether Theorem 3.4 would still be wrong for #N > 2, and Theorem 5.5
for #N > 3, if all best responses were assumed to be single-valued everywhere. The constructions of
Examples 9.7 and 9.8 seem not to allow an appropriate modification.
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10.8. Everything in this paper is about games with ordinal preferences. For applications of the idea of
potential games to the best responses in the context of cardinal utilities, see, e.g., Morris and Ui [19].
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