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Abstract
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1 Introduction

There are plenty of well-known reasons to be interested in undominated
points (maximal elements) of a binary relation. The relation may describe
the preferences of an individual decision maker, or “aggregate” preferences
of several individuals who have to make a decision together. It may re-
flect preferences and strategic possibilities of several agents who can make
decisions individually or in coalitions; such concepts as the core or Nash
(strong) equilibrium belong here. Abstract fixed point theorems also fit in
this framework although it is more usual to argue in the opposite direction,
deriving the existence of undominated points from such theorems.

A researcher needing, say, the existence of an undominated point (equi-
librium) in her model will be satisfied with any sufficient condition that can
be verified in the model. Those who develop such conditions have to keep
in mind the needs of various researchers; therefore, the wider applicable,
i.e., weaker, is a condition, the better. And a sufficient condition cannot be
weakened if it is also necessary. There is a distinct, though related, reason
to be interested in necessity results: when the conjunction of several con-
ditions is proven to be sufficient for something, it may happen that some
of them are actually irrelevant; proving the necessity rules this unpleasant
possibility out.

There is quite a number of sufficient conditions for a binary relation
given on a metric space to admit undominated points in every nonempty
compact subset (Gillies, 1959; Bergstrom, 1975; Kalai and Schmeidler, 1977;
Mukherji, 1977; Walker, 1977; Campbell and Walker, 1990). Smith (1974)
found that a very weak version of upper semicontinuity is necessary and
sufficient for the property provided the relation in question is an ordering
(weak order); Kukushkin (2008b) proved a similar characterization result
for interval orders.

Every condition in that literature can be loosely described as a combi-
nation of some forms of acyclicity and continuity, or, in more general terms,
as the “prohibition of some configurations.” Formal definitions were given
in Kukushkin (2008a). That paper showed that no condition of the form
could be necessary and sufficient for a binary relation to admit undominated
points in every nonempty compact subset; even an a priori restriction to
transitive relations does not help.

The situation is not so hopeless if a certain degree of rationality is de-
manded of the choice function (Fishburn, 1973; Sen, 1984; Aizerman and
Aleskerov, 1995; Malishevski, 1998) generated by the binary relation. In
the case of choice from finite subsets, the most popular notions of a rational
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choice function lead to well-known characterization results (non-emptiness
is equivalent to acyclicity, path independence to transitivity, etc.). Each of
those restrictions on the relation can also be interpreted as the prohibition of
certain configurations. Kukushkin (2008b) found a similar characterization
of relations ensuring the outcast axiom or, equivalently, path independence
on nonempty compact subsets.

In economics literature, attention is often restricted to convex subsets.
The existence problem in this framework has also been studied intensely
(Mas-Colell, 1974; Shafer, 1974, 1976; Shafer and Sonnenschein, 1975; Kiruta
et al., 1980; Yannelis and Prabhakar, 1983; Danilov and Sotskov, 1985). Ac-
tually, many of the quoted papers considered economic equilibrium rather
than an abstract binary relation, but, technically, the difference is not very
important. There is no characterization result in that literature.

This paper strives to extend the approach of Kukushkin (2008a,b) to
the choice from convex subsets. We modify the notion of a configuration in
accordance with the new context. An overwhelming majority of the results
are negative: the impossibility of necessary and sufficient conditions for
nonempty choice holds even for linear orders. Moreover, even when attention
is restricted to binary relations ensuring a certain level of rationality of the
choice function, a characterization of relations ensuring a higher level of
rationality is impossible.

Almost all previously found sufficient conditions can be described as the
prohibition of configurations; possible exceptions are only Theorems 1.7.4,
1.7.6, and 1.7.7 of Kiruta et al. (1980). It remains unclear at the moment
how far one could advance with conditions of more complicated syntactical
structures. The only “positive” result obtained in this paper, Theorem 9,
can be viewed as a convex analog of Smith’s (1974) characterization theorem.
A crucial difference is that the necessary and sufficient conditions found here
employ an existence quantifier, i.e., checking them requires some “creative”
effort. Unfortunately, the theorem is only proven in the finite-dimensional
case.

The next section contains basic definitions. In Section 3, previous results
are reviewed, providing a justification for our central notion of a configura-
tional condition, which is formally defined in Section 4. Section 5 contains
the main impossibility theorems. In Section 6, an a priori restriction to
quasiconcave relations is imposed. Some topics of secondary importance are
discussed in Section 7.
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2 Basic notions

A binary relation on a set A is a Boolean function on A × A; as usual, we
write y Â x when the relation Â is true on a pair (y, x) and y � x when
it is false. We denote B the lattice of all subsets of A: we never consider
different sets A simultaneously. Given X ∈ B, a point x ∈ X is a maximizer
of Â on X if y � x for any y ∈ X. The set of all maximizers of Â on X is
denoted MÂ(X).

Whenever a binary relation Â on A is given, MÂ(·) defines a mapping
B → B with the property MÂ(X) ⊆ X for every X ∈ B, i.e., a choice
function. The simplest desirable property of a choice function is

MÂ(X) 6= ∅. (1)

We also consider three rationality requirements. A choice function MÂ sat-
isfies the outcast (Nash’s) axiom if

MÂ(X) ⊆ X ′ ⊆ X ⇒ MÂ(X ′) = MÂ(X) (2)

for all X,X ′ ∈ B; it satisfies the path independence (Plott’s) axiom if

X = X ′ ∪X ′′ ⇒ MÂ(X) = MÂ(MÂ(X ′) ∪X ′′) (3)

for all X,X ′, X ′′ ∈ B; it satisfies the revealed preference (Arrow’s) axiom if

[X ′ ⊆ X & MÂ(X) ∩X ′ 6= ∅] ⇒ MÂ(X ′) = MÂ(X) ∩X ′ (4)

for all X,X ′ ∈ B.

Given A and a set C ⊆ B of admissible subsets, we consider five classes
(“levels of rationality”) of binary relations:
R∃(C) consists of all binary relations Â on A such that (1) holds for all
X ∈ C;
ROut(C) consists of all binary relations Â on A such that (1) and (2) hold
for all X,X ′ ∈ C;
RPI(C) consists of all binary relations Â on A such that (1) and (3) hold for
all X, X ′, X ′′ ∈ C;
RRat(C) consists of all binary relations Â on A such that (1), (3), and (4)
hold for all X, X ′, X ′′ ∈ C;
R∃!(C) consists of all binary relations Â on A such that #MÂ(X) = 1 for
all X ∈ C and (3) holds for all X,X ′, X ′′ ∈ C.

Proposition 2.1. R∃!(C) ⊆ RRat(C) ⊆ RPI(C) ⊆ ROut(C) ⊆ R∃(C) for
every C ⊆ B.
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A routine proof is omitted. In principle, more “levels” could be singled
out, but then the linear order may be lost. For instance, (1) and (4) for all
X,X ′ ∈ C define a class of binary relations intermediate between RRat(C)
and ROut(C), which may be incomparable (w.r.t. set inclusion) with RPI(C).
The same is true for the conjunction of #MÂ(X) = 1 and (2) for all X,X ′ ∈
C.

The idea of rational preferences can also be expressed by direct restric-
tions on the binary relation without any reference to choice functions. A
strict order is an irreflexive and transitive relation. An interval order is a
strict order Â such that

[y Â x & a Â b] ⇒ [y Â b or a Â x]. (5)

A semiorder is an interval order such that

z Â y Â x ⇒ ∀a ∈ A [z Â a or a Â x]. (6)

A strict order Â is called an ordering if it is negatively transitive, i.e., z �
y � x ⇒ z � x. A strict order Â is called a total order if y = x whenever
y � x and x � y. Every total order is an ordering while every ordering is a
semiorder.

Those properties of a binary relation have well-known implications for
the choice function, e.g.: if Â is a total order, then #MÂ(X) ≤ 1 for every
X ∈ B; if Â is an ordering, then (4) holds for all X,X ′ ∈ B; if Â is a
semiorder and MÂ(X) 6= ∅, then (3) holds for all X ′, X ′′ ∈ B. Various
implications in the opposite direction are also well known, but they need
the assumption C = B.

Throughout the paper, we consider binary relations on a convex subset
A of a Banach space. The set of all nonempty compact subsets of A is
denoted Comp ⊂ B; the set of all nonempty convex subsets, Conv ⊂ B; the
set of all nonempty compact and convex subsets, Cmpx = Comp ∩ Conv. The
convex hull of X ⊆ A is denoted coX; the topological closure of X, cl X.

3 A review of previous results

Quite a few useful conditions are naturally formulated with the help of “im-
provement paths.” Generally, such paths may be parameterized by arbitrary
well ordered sets (Kukushkin, 2003, 2005); here we can restrict ourselves to
natural numbers.

Given a binary relation Â, an improvement path is a (finite or infinite)
sequence 〈xk〉k=0,1,... such that xk+1 Â xk whenever both sides are defined.
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A relation Â is acyclic if it admits no finite improvement cycle, i.e., no
improvement path such that xm = x0 for an m > 0. A relation is strongly
acyclic if it admits no infinite improvement path.

It seems impossible to ascribe any authorship to these well-known state-
ments.

Theorem A. A binary relation Â on A has the property that MÂ(X) 6= ∅
for every X ∈ B \ {∅} if and only if it is strongly acyclic.

Theorem B. A binary relation Â on A has the property that MÂ(X) 6= ∅
for every finite X ∈ B \ {∅} if and only if it is acyclic.

Let us ponder on the usefulness of the theorems. In the case of Theo-
rem A, a straightforward argument comes to mind immediately: In a “nor-
mal,” continuous model, the cardinality of A is continuum, hence the car-
dinality of B is greater than continuum, while the cardinality of the set of
infinite sequences in A is again continuum. Therefore, checking the “left
hand side” requires much more operations than checking the “right hand
side,” hence the equivalence is of considerable practical importance. When
it comes to Theorem B, this argument does not work: whether we check the
existence of maximizers directly or check the possibility of a cycle, we have
to examine all finite subsets of A.

Looking for an alternative justification, we, first of all, notice that the ar-
gument is not quite convincing anyway. Although we can imagine a supreme
being capable of looking through a continuum of items one by one, such ac-
tivity has nothing to do with everyday realities of those studying mathemat-
ical models: there, the validity of a statement involving an infinite number
of items can only be established by a reasoning, a proof. Both Theorems A
and B allow us to concentrate attention on the (im)possibility of certain
“patterns” rather than taking into account everything that might happen
on an arbitrary (finite) subset of A. Theorem A still has an advantage: it
refers to just one pattern, while Theorem B to an infinite sequence of them.

Now let us turn to maximization on compact subsets. A binary relation
Â on a metric space is called ω-transitive if it is transitive and, whenever
〈xk〉k=0,1,... is an infinite improvement path and xk → xω, there holds xω Â
x0. The property seems to have been first considered by Gillies (1959),
who proved its sufficiency for the existence of maximal elements on compact
sets. A binary relation Â is called ω-acyclic if it is acyclic and, whenever
〈xk〉k=0,1,... is an infinite improvement path and xk → xω, there holds xω 6=
x0. The prohibition of such cycles was introduced by Mukherji (1977) as
“Condition (A5).”
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Theorem C (Smith, 1974). An ordering Â on A has the property that
MÂ(X) 6= ∅ for every compact X ∈ B \ {∅} [in other words, Â belongs to
R∃(Comp)] if and only if it is ω-transitive.

Theorem D (Kukushkin, 2008b). An interval order Â on A belongs to
R∃(Comp) if and only if it is ω-acyclic.

Remark. ω-transitivity and ω-acyclicity are equivalent for semiorders, but
not for interval orders.

Again, the cardinality of Comp is the same as that of the set of all conver-
gent sequences. However, the argument involving “patterns” works: Once
we established what may, or may not, happen when an improvement path
converges, we have no need to think about arbitrary compact subsets.

Without the restriction to interval orders, the sufficiency part of Theo-
rem D is just wrong. Moreover, Theorem G below shows that, in a sense,
there is no possibility to adjust the theorem for the case of arbitrary bi-
nary relations. A characterization result becomes obtainable if we demand
a certain degree of rationality, rather than the mere possibility, of choice.

Theorem E (Kukushkin, 2008b). A binary relation Â on A belongs
to ROut(Comp) if and only if it is irreflexive and ω-transitive. Moreover,
RPI(Comp) = ROut(Comp).

The following statements, whose routine proofs are omitted, should have
been in Kukushkin (2008b).

Proposition 3.1. A binary relation Â on A belongs to RRat(Comp) if and
only if it is an ω-transitive ordering.

Proposition 3.2. A binary relation Â on A belongs to R∃!(Comp) if and
only if it is an ω-transitive total order.

Naturally, neither strong acyclicity, nor ω-transitivity remain necessary
for the existence of maximizers on convex (compact) subsets. Moreover,
even acyclicity is not necessary.

There are several existence results based on the Kakutani Theorem (Mas-
Colell, 1974; Shafer, 1974, 1976; Shafer and Sonnenschein, 1975), which refer
to economic equilibrium models or strategic games; we cite one result about
abstract binary relations.

A binary relation Â is quasiconcave if y Â x whenever y is a convex
combination of y′, y′′ ∈ A such that y′ Â x and y′′ Â x. A binary relation Â
is pseudoconcave if x /∈ co{y ∈ A | y Â x} for every x ∈ A.
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Theorem F (Kiruta et al., 1980, Theorem 1.7.1). A binary relation Â
on A belongs to R∃(Cmpx) if it is pseudoconcave and has open lower contours.

4 Configurations

We denote N = {0, 1, . . . } the chain of natural numbers starting from zero.
An abstract configuration C consists of: DomC ⊆ N; C=, C 6=, CB, C7 ⊆
DomC×DomC; Ct, C6t ⊆ DomC×DomC×DomC; C→, C 6→ ⊆ (DomC)N,
where (DomC)N means the set of mappings N→ DomC, i.e., sequences in
DomC. In the following we use indices κ ∈ {=, 6=, B,7,t, 6t,→, 6→}. We
always assume that DomC 6= ∅, while any Cκ may be empty.

Let Â be a binary relation on a convex subset A of a Banach space
and C be an abstract configuration. A realization of C in A for Â is a
mapping µ : DomC → A such that: µ(k′) = µ(k) whenever (k′, k) ∈ C=;
µ(k′) 6= µ(k) whenever (k′, k) ∈ C6=; µ(k′) Â µ(k) whenever (k′, k) ∈ CB;
µ(k′) � µ(k) whenever (k′, k) ∈ C7; µ(k) is a convex combination of µ(k′)
and µ(k′′) whenever (k, k′, k′′) ∈ Ct; µ(k) is not a convex combination of
µ(k′) and µ(k′′) whenever (k, k′, k′′) ∈ C 6t; µ(ν(k)) → µ(ν(0)) whenever
ν ∈ C→; µ(ν(k)) 6→ µ(ν(0)) whenever ν ∈ C6→.

Many natural properties of binary relations can be expressed as the im-
possibility to realize a certain configuration. In the following list, all Cκ not
explicitly mentioned are assumed empty.
Irreflexivity: DomC = {0}; CB = {(0, 0)}.
Transitivity: DomC = {0, 1, 2}; CB = {(1, 0), (2, 1)}; C7 = {(2, 0)}.
Condition (5): DomC = {0, 1, 2, 3}; CB = {(1, 0), (3, 2)}; C7 = {(1, 2),
(3, 0)}.
Condition (6): DomC = {0, 1, 2, 3}; CB = {(1, 0), (2, 1)}; C7 = {(3, 0),
(2, 3)}.
Negative transitivity: DomC = {0, 1, 2}; CB = {(2, 0)}; C7 = {(1, 0), (2, 1)}.
Open lower contours (lower continuity): DomC = N; CB = {(0, 1)}; C7 =
{(0, k)}k≥2; C→ = {ν+}, where ν+(k) = k + 1.
Weak lower continuity (Campbell and Walker, 1990): DomC = N; CB =
{(0, 1)} ∪ {(k, 0)}k≥2; C→ = {ν+} with the same ν+.
Quasiconcavity: DomC = {0, 1, 2, 3}; CB = {(1, 0), (2, 0)}; C7 = {(3, 0)};
Ct = {(3, 2, 1)}.

A wider range of properties can be described if we include the prohibition
of every configuration from a (finite or infinite) list.
ω-Transitivity: transitivity plus DomC(ω) = N; C

(ω)
B = {(k + 1, k)}k=1,2,...;

C
(ω)
7 = {(0, 1)}; C

(ω)→ = {ν0}, where ν0(k) = k.
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Acyclicity: (m ∈ N) DomC(m) = {0, . . . , m + 1}; C
(m)
B = {(1, 0), (2, 1), . . . ,

(m + 1,m)}; C
(m)
= = {(0,m + 1)}.

ω-Acyclicity: acyclicity plus DomC(ω) = N; C
(ω)
B = {(k + 1, k)}k∈N; and

C
(ω)→ = {ν0} with the same ν0 as in the case of ω-transitivity.

Pseudoconcavity: irreflexivity plus (m ∈ N, m ≥ 2) DomC(m) = {0, 1, . . . ,

m}; C
(m)
B = {(1, 0), (2, 0), . . . , (m, 0)}; C

(2)
t = {(0, 1, 2)}; if m > 2, then

C
(m)
t = {(0, 1, 2m− 2), (2m− 2, 2, 2m− 3), . . . , (m + 1,m− 1,m)}.

Given a mapping R : A → B, i.e., a correspondence, we may define a
binary relation on A by y º x ­ y ∈ R(x). The restrictions on R imposed
in the Kakutani Theorem, except for the nonemptiness of the values, can be
expressed as the impossibility to realize two configurations in A for º. The
convexity of values R(x) is equivalent to the quasiconcavity of º; the closed
graph assumption prohibits this C: DomC = N; CB = {(2k+1, 2k)}k=1,2,...;
C7 = {(1, 0)}; C→ = {ν0, ν1}, where ν0(k) = 2k and ν1(k) = 2k + 1.
Moreover, defining a binary relation on A by y Â x ­ x /∈ R(x) 3 y and
assuming R(x) 6= ∅ for all x ∈ A, we see that a fixed point of R is the same
thing as a maximizer of Â on A. The conditions of the Kakutani Theorem
can be expressed in terms of configurations for Â as well.

A simple configurational condition consists of a set A of indices, and a
set of abstract configurations N (α) for every α ∈ A. We say that such a
condition C holds on A for Â if there is α ∈ A such that no configuration C ∈
N (α) admits a realization in A for Â. The class of all simple configurational
conditions is denoted S.

Every condition from S is “inherited” (Walker, 1977): if such a condition
holds on A for Â, then it also holds on every A′ ⊆ A for the restriction of
Â to A′. It seems natural, therefore, to use such conditions when trying
to characterize properties of binary relations which are inherited by their
nature (like the existence of a maximizer on every compact subset).

Theorem G (Kukushkin, 2008a). There exists no condition C ∈ S such
that C would hold on a subset A of a finite-dimensional vector space for a
transitive binary relation Â on A if and only if Â belongs to R∃(Comp).

Remark. Naturally, a necessary and sufficient condition applicable to ar-
bitrary binary relations is “even more” impossible. Strictly speaking, the
definition of an abstract configuration in Kukushkin (2008a) was narrower:
Ct and C6t were absent. However, it is easily seen from the proof that the
impossibility holds under our definition as well.

The language of configurations can also be used to formulate conditions
on binary relations of a different form. For instance, the class S1 in Kukush-
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kin (2008a) included requirements that a certain configuration be realizable.
Kukushkin (2005) developed a theory of “configurational conditions” with
arbitrary syntactical structure. Since there is no impossibility result con-
cerning such conditions here, we do not need the whole apparatus. Yet,
two basic definitions have to be reproduced because they are essential for
Sections 6.2 and 7.2.

Let C and C ′ be abstract configurations; C ′ is an extension of C (denoted
C ′ ≥ C) if DomC ⊆ DomC ′ and Cκ ⊆ C ′

κ for every κ. Let C ′ ≥ C, and
µ and µ′ be realizations of C and C ′, respectively, in the same A for the
same Â; then µ′ is an extension of µ (denoted µ′ ≥ µ) if µ coincides with
the restriction of µ′ to Dom C.

5 Main impossibility theorems

Theorem 1. There exists no condition C ∈ S such that C would hold on a
convex subset A of a finite-dimensional vector space for a total order Â on
A if and only if Â belongs to R∃(Cmpx). The same impossibility holds with
respect to R∃(Conv).

Proof. We consider A = R. Viewing R as a vector space over the field Q of
rational numbers, we fix a linear operator u : R→ R such that Keru = Q ⊂
R and a bijection σ : Q→ N.

Then we define total orders Â and Â∗ on R by the following lexicographic
constructions:

y Â x ­
[
u(y) > u(x) or [u(y) = u(x) & y > x]

]
;

y Â∗ x ­
[
x /∈ Q 3 y or [y, x ∈ Q & σ(y) < σ(x)] or [y, x /∈ Q & y Â x]

]
.

If X ∈ Conv and #X > 1, then MÂ(X) = ∅ because the set u−1(v) is
dense in A for every v ∈ u(A), which set is unbounded. On the other hand,
MÂ∗(X) 6= ∅ because X ∩ Q 6= ∅. Thus, Â does not belong to R∃(Cmpx),
while Â∗ belongs to R∃(Conv). If a condition C characterizing either class
existed, it would hold on R for Â∗, but not for Â.

Suppose it exists. Then there must be α∗ ∈ A such that no C ∈ N (α∗)
admits a realization in R for Â∗, while at least one C ∈ N (α∗) admits a
realization µ in R for Â. We pick d ∈ R \ {r − µ(k)}r∈Q, k∈Dom µ and define
µ∗ : Domµ → R by µ∗(k) = µ(k) + d. Clearly, the following equivalences
hold for all k, k′, k′′ ∈ N and ν ∈ NN: µ∗(k) = µ∗(k′) ⇐⇒ µ(k) = µ(k′);
µ∗(k) Â µ∗(k′) ⇐⇒ µ(k) Â µ(k′); µ∗(k) is a convex combination of
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µ∗(k′) and µ∗(k′′) if and only if the same holds for µ(k), µ(k′), and µ(k′′);
µ∗(ν(k)) → µ∗(ν(0)) ⇐⇒ µ(ν(k)) → µ(ν(0)). Therefore, µ∗ is also a
realization of C in R for Â. By the definition of d, we have µ∗(Domµ)∩Q =
∅, hence Â and Â∗ coincide on µ∗(Domµ). Thus, µ∗ is a realization of C in
R for Â∗, contradicting the choice of α∗.

Remark. SinceÂ∗ in Theorem 1 is a total order, #MÂ∗(X) = 1 for every X ∈
Conv; therefore, characterization of relations from R∃(Conv) or R∃(Cmpx)
with the property that all MÂ∗(X) are convex or closed is also impossible.

Unlike the situation with C = Comp (Kukushkin, 2005, 2008b), rational-
ity of choice from convex subsets also allows no characterization by simple
configurational conditions. In the following theorems, we show that the
impossibility persists even in the presence of an oracle able to verify lower
levels of rationality.

Theorem 2. There exists no condition C ∈ S such that, whenever A is a
convex subset of a finite-dimensional vector space while Â is an interval order
from R∃(Cmpx), C holds for Â on A if and only if Â belongs to ROut(Cmpx).

Remark. Naturally, the interval order cannot be replaced here with a
semiorder, let alone a total order: whatever C ⊆ B, every semiorder be-
longing to R∃(C) belongs to RPI(C).

Proof. As in the proof of Theorem 1, we assume A = R and define two
interval orders on A:

y Â x ­
[
y > x > 0 or 0 > y > x or y < 0 < x

]
;

y Â∗ x ­
[
y, x /∈ Q & y Â x

]
.

Let X ∈ Cmpx. If 0 ∈ X, then 0 ∈ MÂ(X) 6= ∅; otherwise, maxX ∈
MÂ(X) 6= ∅. On the other hand, for X = [−1, 1] and X ′ = [0, 1], we have
MÂ(X) = {0} ⊂ X ′, but MÂ(X ′) = {0, 1} 6= {0}, i.e., (2) does not hold for
Â. Therefore, Â belongs toR∃(Cmpx)\ROut(Cmpx). For each X ∈ Cmpx such
that #X > 1, we have MÂ∗(X) ⊇ X ∩Q 6= ∅. Moreover, MÂ∗(X) ⊆ X ′ ⊆ X
and X ′ ∈ Cmpx immediately imply X ′ = X, hence (2) for Â∗ holds for all
X,X ′ ∈ Cmpx.

The rest of the proof is similar to that of Theorem 1. If such a con-
dition C existed, it would hold for Â∗, but not for Â. On the other hand,
if µ is a realization of a configuration C in R for Â, we pick d ∈ R++ \
{r/µ(k)}r∈Q, k∈Dom µ, µ(k)6=0 and define µ∗ : Domµ → R by µ∗(k) = d · µ(k).
Clearly, µ∗ is a realization of C in R for Â∗.

12



Theorem 3. There exists no condition C ∈ S such that, whenever A is
a convex subset of a finite-dimensional vector space while Â is an interval
order from ROut(Cmpx), C holds for Â on A if and only if Â belongs to
RPI(Cmpx). The same impossibility holds with respect to ROut(Conv) and
RPI(Conv).

Remark. The interval order cannot be replaced even with a semiorder for
the same reasons as in Theorem 2.

Proof. As in the proof of Theorem 1, we perceive R as a vector space over
the field Q of rational numbers. We fix a subspace Q⊥ ⊂ R such that
R = Q ⊕ Q⊥; clearly, Q⊥ is uncountable and dense in R. Then we fix
q ∈ Q \ {0} and define T = q +Q⊥; note that T ∩Q=∅.

Now we define two interval orders on A = R:

y Â x ­
[
x /∈ T & y /∈ T & y > x

]
;

y Â∗ x ­
[
x /∈ Q 3 y or [x /∈ Q & y /∈ Q & y Â x]

]
.

Whenever X ∈ Conv, we have either #X = 1 or X ∩ T 6= ∅ 6= X ∩ Q,
hence MÂ(X) 6= ∅. Let X ∈ Conv and #X > 1; then either MÂ(X) = X ∩T
or MÂ(X) = (X ∩ T) ∪ {maxX}. If supX /∈ X, then supX ′ = supX /∈ X ′

whenever X ′ ∈ Conv and MÂ(X) ⊆ X ′ ⊆ X, hence MÂ(X ′) = MÂ(X), i.e.,
(2) holds. Otherwise, maxX ∈ X ′, hence MÂ(X ′) = (X ′∩T)∪{maxX ′} =
MÂ(X) and (2) holds again. On the other hand, picking a ∈ T, X = X ′ =
[a− 1, a], b ∈ X \ T, and X ′′ = {b}, we immediately see that X = X ′ ∪X ′′,
but MÂ(X) = X ∩ T 6= (X ∩ T) ∪ {b} = MÂ(MÂ(X ′) ∪X ′′), i.e., (3) does
not hold for Â. Therefore, Â belongs to ROut(Conv) \ RPI(Cmpx).

Similarly, MÂ∗(X) = X ∩Q 6= ∅ whenever X ∈ Conv and #X > 1, hence
MÂ∗(X) = MÂ∗(X ′) for every X ′ ∈ B such that MÂ∗(X) ⊆ X ′ ⊆ X. Now
path independence (3) follows in a standard way; therefore, Â∗ belongs to
RPI(Conv).

The rest of the proof is again similar to that of Theorem 1. If µ is a real-
ization of a configuration C in R forÂ, we pick d ∈ Q⊥\{r−µ(k)}r∈Q, k∈Dom µ

[6= ∅ because Q⊥ is uncountable] and define µ∗ : Dom µ → R by µ∗(k) =
µ(k)+d. By the definition of Q⊥ and T, we have µ∗(k) ∈ T ⇐⇒ µ(k) ∈ T;
by the definition of d, µ∗(k) /∈ Q for any k ∈ Domµ. Therefore, µ∗ is a
realization of C in R for Â∗.
Theorem 4. There exists no condition C ∈ S such that, whenever A is a
convex subset of a finite-dimensional vector space while Â is an interval order
from R∃(Conv), C holds for Â on A if and only if Â belongs to ROut(Conv).
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Remark. Logically, this result should have preceded Theorem 3; however,
its proof employs more complicated constructions. The replacement of the
interval order with a semiorder is again impossible for the same reasons.

Proof. We assume A = R2, viewing the plane as a vector space over R, and
simultaneously introduce polar coordinates by picking e ∈ A with ‖e‖ = 1
and defining ϕ(x) (for x 6= 0) as the angle from e to x measured coun-
terclockwise. Clearly, ‖x‖ ≥ 0 and ϕ(x) (0 ≤ ϕ(x) < 2π) uniquely de-
fine x ∈ A. Defining Q⊥ ⊂ R and T = q + Q⊥ exactly as in the proof
of Theorem 3, we denote T = {x ∈ A \ {0} | log‖x‖ ∈ T} ∪ {0} and
Q = {x ∈ A \ {0} | log‖x‖ ∈ Q}.

Then we define two interval orders on A:

y Â x ­
[
x /∈ T & y /∈ T &

(‖y‖ > ‖x‖ or [‖y‖ = ‖x‖ & ϕ(y) > ϕ(x)]
)]

;

y Â∗ x ­
[
x /∈ Q 3 y or [x /∈ Q & y /∈ Q & y Â x]

]
.

Clearly, Â belongs to R∃(Conv) and Â∗ belongs to RPI(Conv) for the same
reasons as in the proof of Theorem 3. To show that Â does not belong
to ROut(Conv), let us pick r > 0 for which log r /∈ T, and define X =
{x ∈ A | ‖x‖ ≤ r}. Clearly, MÂ(X) = X ∩ T . Defining X ′ = {x ∈ A |
‖x‖ < r} ∪ {r · e}, we obtain X ′ ∈ Conv and MÂ(X) ⊂ X ′ ⊂ X, while
MÂ(X ′) = MÂ(X) ∪ {r · e}, i.e., (2) does not hold.

The rest of the proof is virtually the same as in Theorem 3. If µ is
a realization of a configuration C in R2 for Â, we pick d ∈ Q⊥ \ {r −
log‖µ(k)‖}r∈Q, k∈Dom µ, µ(k)6=0 and define µ∗ : Domµ → R2 by µ∗(k) = exp(d)·
µ(k). By the definition of Q⊥ and T, we have µ∗(k) ∈ T ⇐⇒ µ(k) ∈ T ;
by the definition of d, µ∗(k) /∈ Q for any k ∈ Domµ. Therefore, µ∗ is a
realization of C in R2 for Â∗.
Theorem 5. There exists no condition C ∈ S such that, whenever A is
a convex subset of a finite-dimensional vector space while Â is a semiorder
from RPI(Cmpx), C holds for Â on A if and only if Â belongs to RRat(Cmpx).
The same impossibility holds for RPI(Conv) and RRat(Conv).

Remark. The semiorder cannot be replaced with an ordering, let alone a
total order: whatever C ⊆ B, every ordering belonging to RPI(C) belongs
to RRat(C).

Proof. Denoting Q = Q \ {−1, 0, 1}, we define two semiorders on A = R:

y Â x ­
[
x /∈ {−1, 0, 1} 3 y or [x = −1 & y = 1]

]
;
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y Â∗ x ­
[
x /∈ Q 3 y or [x /∈ Q & y /∈ Q & y Â x]

]
.

Both relations obviously belong to R∃(Conv); since they are semiorders, they
belong to RPI(Conv) as well. To show that Â does not belong to RRat(Cmpx),
let us pick X = [−1, 1] and X ′ = [−1, 0]; clearly, MÂ(X) = {0, 1} while
MÂ(X ′) = {−1, 0}, i.e., (4) does not hold. On the other hand, whenever
X ∈ Conv and #X > 1, we have MÂ∗(X) = X ∩Q, hence (4) for Â∗ holds.

The rest of the proof is standard, but requires plenty of notation. We
denote R−2 =]−∞,−1[, R−1 =]− 1, 0[, R1 =]0, 1[, R2 =]1, +∞[, and R =⋃

h∈{−2,−1,1,2}Rh = R\{−1, 0, 1}. Then we define a mapping R++×R→ R
by

ψ(d, x) =





dx + d− 1, if x ≤ −1;
−(−x)d, if − 1 ≤ x < 0;
0, if x = 0;
xd, if 0 < x ≤ 1;
dx− d + 1, if x ≥ 1.

Clearly, ψ is continuous and strictly increasing in x for every d > 0, and
ψ(d, x) ∈ Rh whenever x ∈ Rh (h ∈ {−2,−1, 1, 2}). Moreover, whenever
v, x ∈ Rh, there exists no more than one d ∈ R++ such that ψ(d, x) = v;
when it exists, we denote it χ(v, x).

Now if µ is a realization of a configuration C in R for Â, we denote Hµ =
{χ(r, µ(k)) | k ∈ Domµ & ∃h ∈ {−2,−1, 1, 2} [r ∈ Q ∩ Rh & µ(k) ∈ Rh]},
pick d ∈ R++\Hµ (6= ∅ because Hµ is countable) and define µ∗ : Domµ → R
by µ∗(k) = ψ(d, µ(k)). By the definition of d, we have µ∗(k) /∈ Q for any
k ∈ Domµ; therefore, µ∗ is a realization of C in R for Â∗ since ψ(d, ·) is
continuous and strictly increasing.

Theorem 6. There exists no condition C ∈ S such that, whenever A is a
convex subset of a finite-dimensional vector space while Â is an ordering
from RRat(Cmpx), C holds for Â on A if and only if Â belongs to R∃!(Cmpx).
The same impossibility holds for RRat(Conv) and R∃!(Conv).

Remark. The ordering cannot be replaced with a total order for the same
reasons as above.

Proof. We consider A = R and fix a bijection σ : Q→ N. Then we define Â
by y � x for all y, x ∈ R and

y Â∗ x ­
[
x /∈ Q 3 y or [y, x ∈ Q & σ(y) < σ(x)]

]
.

Both are obviously orderings.
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For every X ∈ Conv, we have MÂ(X) = X, hence Â belongs to
RRat(Conv) \ R∃!(Cmpx). Whenever X ∈ Conv and #X > 1, we have
MÂ∗(X) = Argminx∈X∩Q σ(x), hence Â∗ belongs to R∃!(Conv).

The rest of the proof is again standard.

6 Quasiconcave relations

The results of the previous section indicate, in particular, that quasiconcav-
ity does not emerge as an indispensable condition if one wants the existence
or rationality of choice from convex subsets. Here we impose the condition
exogenously.

6.1 Simple conditions

The characterization by conditions from S of arbitrary quasiconcave binary
relations ensuring the existence of maximizers on convex subsets remains
impossible.

Theorem 7. There exists no condition C ∈ S such that C would hold on
a convex subset A of a finite-dimensional vector space for a quasiconcave
binary relation Â on A if and only if Â belongs to R∃(Cmpx). The same
impossibility holds with respect to R∃(Conv).

Proof. First, we denote R−1 =] − ∞,−π/2[, R0 =] − π/2, π/2[, R+1 =
]π/2,+∞[, and R = R−1 ∪ R0 ∪ R+1 = R \ {−π/2, π/2}. Similarly to the
proof of Theorem 5, we define a mapping R++ × R→ R by

ψ(d, x) =





d · (x + π/2)− π/2, if x < −π/2;
−π/2, if x = −π/2;
arctan(tanx + d), if − π/2 < x < π/2;
π/2, if x = π/2;
d · (x− π/2) + π/2, if x > π/2.

Clearly, ψ is continuous and strictly increasing in x for every d > 0, and
ψ(d, x) ∈ Rh whenever x ∈ Rh (h = −1, 0, +1). Moreover, whenever v, x ∈
Rh, there exists no more than one d ∈ R++ such that ψ(d, x) = v; when it
exists, we denote it χ(v, x).

Then we fix d̄ ∈]0, 1[ and define a mapping ϕ : R→ R by

ϕ(x) =

{
ψ(d̄, x), if x ∈ R;
−x, otherwise.
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Denoting Q−1 = Q∩R−1, Q+1 = Q∩R+1, Q0 = {x ∈ R0 | tanx ∈ Q}, and
Q = Q−1 ∪Q+1 ∪Q0, we define two binary relations on A = R:

y Â x ­
[
y = ϕ(x)

]
;

y Â∗ x ­
[
x /∈ Q & y /∈ Q & y Â x

]
.

Both are obviously quasiconcave.

The second relation belongs to R∃(Conv) because Q is dense in A. To
show that Â does not belong to R∃(Cmpx), we pick X = [−π/2, π/2]; clearly,
ϕ(x) ∈ X for every x ∈ X, hence MÂ(X) = ∅.

The rest of the proof is again standard. If µ is a realization of a con-
figuration C in R for Â, we denote Hµ = {χ(r, µ(k)) | k ∈ Domµ &
∃h ∈ {−1, 0, +1} [r ∈ Qh & µ(k) ∈ Rh]}, pick d ∈ R++ \ Hµ (6= ∅ be-
cause Hµ is countable) and define µ∗ : Dom µ → R by µ∗(k) = ψ(d, µ(k)).
By the definition of d, we have µ∗(k) /∈ Q for any k ∈ Domµ; besides,
y = ϕ(x) ⇐⇒ ψ(d, y) = ϕ(ψ(d, x)) for all y, x ∈ R. Therefore, µ∗ is a
realization of C in R for Â∗.

Unfortunately, there is neither positive nor negative result about any
narrower class of preferences. The ω-transitivity (plus irreflexivity) of Â
ensures the nonemptyness of MÂ(X) for every X ∈ Cmpx; however, it is not
necessary even when Â is a total order.

Example 6.1. We introduce polar coordinates on A = R2 exactly as in the
proof of Theorem 4 and define a quasiconcave total order Â on A by

y Â x ­
[ ‖y‖ < ‖x‖ or [‖y‖ = ‖x‖ & ϕ(y) > ϕ(x)]

]
.

Whenever X ∈ Cmpx, there is a unique x∗ ∈ X where ‖x‖ is minimized over
X; clearly, MÂ(X) = {x∗} 6= ∅. On the other hand, the improvement path
xk with ‖xk‖ = 1 and ϕ(xk) = 2kπ/(k + 1) converges to xω = x0, obviously
violating the definition of ω-transitivity.

A transitive binary relation Â on a convex subset of a Banach space is
called ω-L-transitive if, whenever 〈xk〉k∈N is an infinite improvement path
such that all vectors xk − x0 belong to the same one-dimensional subspace
and xk → xω, there holds xω Â x0. As in the case of ω-transitivity, xω Â xk

is valid for all k = 0, 1, . . . in this situation, once Â is ω-L-transitive. A
binary relation Â on a convex subset of a Banach space is called strongly
L-acyclic if there is no infinite improvement path 〈xk〉k∈N such that all
vectors xk − x0 belong to the same one-dimensional subspace.
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Proposition 6.2. Let Â be a pseudoconcave semiorder on a convex subset
of a Banach space. If Â belongs to R∃(Cmpx), then it is ω-L-transitive. If
Â belongs to R∃(Conv), then it is strongly L-acyclic.

Proof. First, we may, without restricting generality, assume A ⊆ R. Since
Â is pseudoconcave, y′ Â x and y′′ Â x are incompatible with y′ ≤ x ≤ y′′.

Let 〈xk〉k∈N be an infinite improvement path. We denote N↓ = {k ∈ N |
∀y ∈ A [y Â xk ⇒ y < xk]} and N↑ = {k ∈ N | ∀y ∈ A [y Â xk ⇒ y > xk]}.
By the previous argument, N = N↓∪N↑, hence at least one of them must be
infinite. Without restricting generality, we may assume that N = N↑. (We
may be forced to delete x0 itself; however, no problem will be created even
in the case of the first statement because xk Â x0 for each k ∈ N.)

Proving the first statement, we assume that xk → xω, denote X =
[x0, xω], and pick y ∈ MÂ(X). For every k ∈ N, we have xk+2 Â xk+1 Â xk,
hence y Â xk since Â is a semiorder, hence y > xk; therefore, xω = y Â x0.

Turning to the second statement, we denote X = co{xk}k∈N and again
pick y ∈ MÂ(X). Since Â is a semiorder, we must have y Â xk, hence y > xk

for each k; however, this is incompatible with y ∈ X. Therefore, an infinite
improvement path is impossible.

Corollary. Let Â be a pseudoconcave semiorder on a convex subset A ⊆ R.
Then Â belongs to R∃(Cmpx) if and only if it is ω-transitive, while Â belongs
to R∃(Conv) if and only if it is strongly acyclic.

Example 3 from Kukushkin (2008b) shows that the replacement of the
semiorder in the first statement of Proposition 6.2 with an interval order
makes it just wrong. What is more unpleasant, the converse statement is
wrong even for quasiconcave total orders on the plane.

Example 6.3. We introduce polar coordinates on R2 exactly as in Exam-
ple 6.1 (or in the proof of Theorem 4). There is a unique e⊥ ∈ R2 such that
‖e⊥‖ = 1 and ϕ(e⊥) = π/2. We assume A = {x ∈ R2 | ‖x − e⊥‖ ≤ 1}.
Clearly, 0 < ϕ(x) < π for every x ∈ A \ {0}; for technical convenience, we
assume here ϕ(0) = 0. Then we define a quasiconcave total order Â on A
by

y Â x ­
[
ϕ(y) > ϕ(x) or [ϕ(y) = ϕ(x) & ‖y‖ > ‖x‖] ].

Since ϕ does not attain a maximum on A, we have MÂ(A) = ∅; since A
is compact itself, Â does not belong to R∃(Cmpx). On the other hand, on
every segment of a straight line in A, the order Â coincides with the order
on the real line; therefore, Â is ω-L-transitive.

18



The invalidity of the second statement in Proposition 6.2 for an interval
order is also easy to show. The converse statement is wrong even for order-
ings (a quasiconcave total order cannot belong to R∃(Conv) unless #A = 1).

Example 6.4. Let A = R. We define a quasiconcave interval order Â on A
by a numeric representation

y Â x ­ f−(y) > f+(x),

where

f−(x) =





−2, if x < 0;

−1/(k + 1), if k ≤ x < k + 1 (k ∈ N);

f+(x) =





−1, if x < 0;
0, if x ∈ N;
−1/(k + 2), if k < x < k + 1 (k ∈ N).

Let X ∈ Conv. If X ∩N 6= ∅, then MÂ(X) = X ∩N. Otherwise, both f−

and f+ are constants on X, hence MÂ(X) = X. Therefore, Â belongs to
R∃(Conv) [actually, it even belongs to RPI(Conv)]. On the other hand, Â is
not strongly acyclic: the sequence xk = (4k+1)/2 is an infinite improvement
path.

Example 6.5. We consider the same set A as in Example 6.3 and the same
polar coordinates on R2, again assuming ϕ(0) = 0. For every x ∈ A, we
define k(x) as the greatest k ∈ N for which π−ϕ(x) < 1/k; it is well defined
because ϕ(x) < π. Then we consider the ordering Â on A defined by the
function k(x):

y Â x ­ k(y) > k(x).

It is obviously quasiconcave.

Since k(x) does not attain a maximum on A, we have MÂ(A) = ∅, hence
Â does not belong to R∃(Conv). On the other hand, k(x) is bounded above
on every segment of a straight line in A; therefore, Â is strongly L-acyclic.

6.2 Conditions of the type “∀ ∃”
Some characterization results can be obtained if we allow the use of con-
ditions with two different quantifiers. A transitive binary relation Â on a
convex subset of a Banach space is called ω-C-transitive if, whenever 〈xk〉k∈N
is an infinite improvement path and xk → xω, there is y ∈ cl co{xk}k∈N such
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that y Â xk for each k ∈ N; Â is called strongly C-transitive if, whenever
〈xk〉k∈N is an infinite improvement path, there is y ∈ co{xk}k∈N such that
y Â xk for each k ∈ N. Clearly, strong C-transitivity implies ω-C-transitiv-
ity. If either property holds on A, then it holds on every convex (and closed)
subset of A.

Although we do not reproduce the whole theory developed in Kukushkin
(2005), it seems worthwhile to explain in what sense both conditions belong
to the class ∀ ∃. Let us define abstract configurations C0 and C ′ in this way:
DomC0 = {0} ∪ {2k + 3}k∈N; C0

B = {(2k + 5, 2k + 3)}k∈N; C0→ = {ν∗},
where ν∗(0) = 0 while ν∗(k + 1) = 2k + 3 for all k ∈ N; DomC ′ = N; C ′

B =
CB∪{(2, 2k+3)}k∈N; C ′

t = {(2k+6, 2k+4, 2k+5)}k∈N∪{(4, 3, 5), (2, 1, 0)};
C ′→ = C→ ∪{ν∗∗}, where ν∗∗(0) = 1 while ν∗∗(k +1) = 2k +4 for all k ∈ N.
Clearly, C ′ ≥ C in the sense of the definition at the end of Section 4.

Proposition 6.6. A binary relation Â on a convex subset A of a Banach
space is ω-C-transitive if and only if, for every realization µ of C0 in A for
Â, there exists a realization µ′ ≥ µ of C ′.

Proof. Given a realization µ of C0, the points xk = µ(2k + 3) form an
infinite improvement path converging to xω = µ(0). If a realization µ′ ≥ µ
of C ′ exists, then co{x0, . . . , xk+1} 3 yk = µ′(2k + 4) and yk → yω =
µ′(1) ∈ cl co{xk}k∈N; defining y = µ′(2), we have y Â xk for each k ∈ N
and y ∈ cl co{xk}k∈N. Conversely, if such a y can be found, we have y =
cωxω +

∑
k∈N ckx

k, where all ck and cω are non-negative and cω +
∑

k∈N ck =
1. Denoting µ′(2k + 4) =

∑k
h=0 chxh/

∑k
h=0 ch (if

∑k
h=0 ch = 0, then, say,

µ′(2k+4) = x0), we have µ′(2k+6) ∈ co{µ′(2k+4), µ′(2k+5)} for all k ∈ N;
denoting µ′(1) =

∑
k∈N ckx

k/
∑

k∈N ck (with the same agreement about 0)
and µ′(2) = y, we have µ′(2k + 4) → µ′(1) and µ′(2) ∈ co{µ′(1), µ′(0)}.
Thus, µ′ is a realization of C ′.

Now we define configurations C1 and C(m) (m ∈ N) in this way:
DomC1 = 2 · N; C1

B = {(2k + 2, 2k)}k∈N; DomC(m) = DomC ∪
{1, 3, . . . , 2m + 1}; C

(m)
B = CB ∪ {(2m + 1, 2k)}k∈N; C

(m)
t = {(2k + 3, 2k +

1, 2k)}k∈N ∪ {(1, 0, 2)}.
Proposition 6.7. A binary relation Â on a convex subset A of a Banach
space is strongly C-transitive if and only if, for every realization µ of C1 in
A for Â, there exist m ∈ N and a realization µ′ ≥ µ of C(m).

The proof is similar to that of Proposition 6.6 and hence omitted.
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Theorem 8. Let Â be a quasiconcave, irreflexive and transitive binary rela-
tion on a convex subset A of a finite-dimensional vector space, and X ∈ B.
Then either of the following conditions is sufficient for the property that for
every x ∈ X\MÂ(X) there is y ∈ MÂ(X) such that y Â x (“NM property”):

1. Â is ω-C-transitive and X ∈ Cmpx;

2. Â is strongly C-transitive and X ∈ Conv.

Remark. Both conditions are put into the same theorem because there is
a lot of similarity in the proofs.

Proof. Let X be an appropriate subset of A, i.e., X ∈ Cmpx under Condi-
tion 1, or X ∈ Conv under Condition 2; let x∗ ∈ X \ MÂ(X). For every
x ∈ X, we denote G(x) = {y ∈ X | y Â x} ∈ Conv; note that G(x∗) 6= ∅.
The key step is proving that MÂ(G(x∗)) 6= ∅: if y ∈ MÂ(G(x∗)), then y Â x
by definition while y ∈ MÂ(X) by transitivity.

We, naturally, apply Zorn’s Lemma to G(x∗) ordered by Â: a maximizer
exists if every chain admits an upper bound. Let L ⊆ G(x∗) be a chain
w.r.t. Â. If there is a maximum in L, we are home immediately; otherwise,
G(x) 6= ∅ for every x ∈ L. Now the existence of an upper bound is equivalent
to GL =

⋂
x∈L G(x) 6= ∅.

We denote F (x) = cl G(x) for every x ∈ L and FL =
⋂

x∈L F (x) ⊇ GL.
By the Lindelöf theorem, (see, e.g., Kuratowski, 1966, p. 54), there is a
countable L′ ⊆ L such that FL =

⋂
x∈L′ F (x). Since every countable chain

can be embedded into Q, there is an infinite improvement path 〈xk〉k∈N ⊆ L
such that FL =

⋂
k∈N F (xk). We denote Gω =

⋂
k∈NG(xk); clearly, Gω ⊆

FL.

Let us show Gω 6= ∅. Under Condition 2, we immediately apply the
definition of strong C-transitivity: since y ∈ co{xk}k∈N, we have y ∈ X.
Under Condition 1, X is compact, so we may, without restricting generality,
assume xk → xω ∈ X, and then argue in the same way. Thus, FL 6= ∅ too.

If GL = Gω, we are home; suppose GL ⊂ Gω. Then FL ⊆ cl Gω ⊆ FL,
hence clGω = FL = clG(y) for every y ∈ L∩Gω. Denoting G∞ the relative
interior of FL, we see that G∞ ⊆ G(y) for every y ∈ L, hence GL ⊇ G∞ 6= ∅,
and we are home again.

Remark. The restriction to finite-dimensional spaces was needed for G∞

to be meaningful. It is unclear what could be done without the restriction.

Corollary. Every quasiconcave, irreflexive and ω-C-transitive binary rela-
tion on a convex subset A of a finite-dimensional vector space belongs to
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RPI(Cmpx). Every quasiconcave, irreflexive and strongly C-transitive binary
relation on a convex subset A of a finite-dimensional vector space belongs to
RPI(Conv).

Proof. Routine derivation of (3) from the NM property is omitted.

Theorem 9. Let Â be a quasiconcave semiorder on a convex subset A of
a finite-dimensional vector space. Then Â belongs to R∃(Cmpx) if and only
if it is ω-C-transitive, whereas Â belongs to R∃(Conv) if and only if it is
strongly C-transitive.

Proof. Both sufficiency statements immediately follow from Theorem 8. As
to necessity, we pick y ∈ MÂ(X), where X = cl co{xk}k∈N = co({xk}k∈N ∪
{xω}) in the first case, or X = co{xk}k∈N in the second. In either case,
y Â xk for each k ∈ N because Â is a semiorder.

Neither necessity statement holds for interval orders.

Example 6.8. We assume A = {x ∈ R2 | ‖x‖ ≤ 1} and introduce po-
lar coordinates on R2 exactly as in Example 6.1 (or in the proof of The-
orem 4). Then we define a mapping k : A \ {0} → N by the condition
2(1 − 1/2k(x))π ≤ ϕ(x) < 2(1 − 1/2k(x)+1)π for every x ∈ A \ {0}. Finally,
we define a quasiconcave interval order Â on A by a numeric representation

y Â x ­ f−(y) > f+(x),

where

f−(x) =





−1/2k(x), if ‖x‖ = 1;
−1/2k(x)+1, if 0 < ‖x‖ < 1;
−1/2, if x = 0;

f+(x) =

{
−1/2k(x), if ‖x‖ = 1;
0, if ‖x‖ < 1.

Let us show that Â possesses the NM property on every X ∈ Conv [hence
belongs to RPI(Conv)]. Whenever x ∈ A and ‖x‖ < 1, we have y � x for
all y ∈ A. Let X ∈ Conv and x ∈ X \ MÂ(X), say, X 3 y Â x. If
y ∈ MÂ(X), we are home; otherwise, ‖y‖ = 1 and k(y) > k(x). Picking
a convex combination z of x and y, we immediately see that k(z) ≥ k(x)
while ‖z‖ < 1; therefore, MÂ(X) 3 z Â x. On the other hand, Â is not
even ω-C-transitive. Let us consider the same sequence xk with ‖xk‖ = 1
and ϕ(xk) = 2kπ/(k +1) as in Example 6.1. It is still an improvement path
converging to xω = x0; however, for every y ∈ A, there is k ∈ N such that
y � xk.
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It is worthwhile to note that both statements of Theorem 8, as well
as both sufficiency statements of Theorem 9, become wrong if the quasi-
concavity assumption is dropped. The theorems from Section 5 are silent
on the possibility to characterize those properties of binary relations with
conditions of the type ∀∃; nothing is known about that as of now.

Example 6.9. We assume A = R. Exactly as in the proof of Theorem 3, we
fix Q⊥ ⊂ R such that R = Q⊕Q⊥ viewed as vector spaces over Q. For every
x ∈ R, its projections p(x) ∈ Q and p⊥(x) ∈ Q⊥ such that x = p(x) + p⊥(x)
are uniquely defined.

Clearly, the cardinality of Q⊥ is continuum. Let Λ be a well ordered set
such that: (i) the cardinality of Λ is continuum; (ii) for every α ∈ Λ, the
cardinality of {β ∈ Λ | α > β} is less than continuum. Let π : Q⊥ → Λ be a
bijection. We define a total order Â on R by

y Â x ­
[
π ◦ p⊥(y) > π ◦ p⊥(x) or [π ◦ p⊥(y) = π ◦ p⊥(x) & p(y) > p(x)]

]
.

Since (π ◦ p⊥)−1(α) is dense in R for every α ∈ Λ, and there is no maximum
in Λ, MÂ(X) = ∅ for every X ∈ Conv such that #X > 1. On the other
hand, Â is strongly C-transitive. Let 〈xk〉k∈N be an infinite improvement
path. Then Λ∗ = {π ◦ p⊥(xk)}k∈N ⊂ Λ is countable, hence there is β ∈ Λ
such that β > α for every α ∈ Λ∗. Since (π ◦ p⊥)−1(β) is dense in R, there
is y ∈ co{xk}k∈N such that π ◦ p⊥(y) = β, hence y Â xk for each k ∈ N.

7 Miscellany

7.1 Countability

Theorems A and D have straightforward corollaries.

Corollary. Let Â be a binary relation on a set A. Then MÂ(X) 6= ∅ for
every X ∈ B\{∅} if and only if MÂ(X) 6= ∅ for every countable X ∈ B\{∅}.
Corollary. Let Â be an interval order on a metric space A. Then MÂ(X) 6=
∅ for every X ∈ Comp if and only if MÂ(X) 6= ∅ for every countable X ∈
Comp.

The proof of Theorem 2 from Kukushkin (2008a), quoted above as The-
orem G, shows that the interval order in the second corollary cannot be
replaced with an arbitrary transitive binary relation. It is funny to note
that Theorem B admits no convincing interpretation of this type.
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Naturally, one cannot find much use for “countable convex subsets”;
however, we may consider convex, or closed and convex, hulls of countable
subsets. Since every X ∈ Cmpx belongs to the latter class, one of two
potential corollaries from Theorem 9 is tautological. The other holds under
weaker assumptions.

Proposition 7.1. A semiorder Â on a Banach space A belongs to R∃(Conv)
if and only if MÂ(co{xk}k∈N) 6= ∅ whenever {xk}k∈N ⊆ A.

Proof. The necessity is straightforward. To prove sufficiency, we suppose
the contrary: Â admits a maximizer on the convex hull of every countable
subset, Y ∈ Conv, but MÂ(Y ) = ∅. We pick x0 ∈ Y and recursively construct
two infinite sequences 〈xk〉k∈N, 〈yk〉k∈N in Y such that, for each k ∈ N,

yk ∈ MÂ(co{x0, . . . xk}); (7a)

yk+1 Â yk. (7b)

First, we define y0 = x0; then (7a) for k = 0 holds trivially. Supposing
xh and yh defined for all h ≤ k, we pick xk+1 ∈ Y such that xk+1 Â yk;
this is possible because MÂ(Y ) = ∅. Now we have yk ∈ co{x0, . . . , xk+1} \
MÂ(co{x0, . . . , xk+1}). On the other hand, MÂ(co{x0, . . . , xk+1}) 6= ∅ by
our assumption. SinceÂ is a semiorder, there is yk+1 ∈ MÂ(co{x0, . . . , xk+1})
such that yk+1 Â yk. Thus, both (7a) for k + 1 and (7b) hold.

Having xk and yk defined for all k, we pick y ∈ MÂ(co{xk}k∈N), which
is possible by our assumption. By the definition of the convex hull, there is
k ∈ N such that y ∈ co{x0, . . . xk}. Applying (6) to yk+2 Â yk+1 Â yk from
(7b), we see that either y Â yk or yk+2 Â y must hold. However, the first
relation contradicts (7a) and the second, the choice of y.

Example 7.2. We introduce polar coordinates on R2 exactly as in the proof
of Theorem 4, and define A = {x ∈ R2 | ‖x‖ ≤ 1}, A1 = {x ∈ R2 | ‖x‖ = 1},
A0 = {x ∈ R2 | ‖x‖ = 1/2}, and B = A\ (A1∪A0). Then we fix a ϕ0 ∈]0, π[
which is incommensurable with π. For every x, y ∈ A, we set y Â x if and
only if (at least) one of the three conditions holds: y ∈ A0, x ∈ B, and
ϕ(y) = ϕ(x); y ∈ A1, x ∈ A0, and ϕ(y) = ϕ(x); y ∈ A1 and there are
k, m ∈ N such that k > 0 and ϕ(y) = ϕ(x) + k · ϕ0 + 2m · π. The relation
is transitive and irreflexive. Clearly, MÂ(A) = ∅, i.e., Â does not belong to
R∃(Conv), nor to R∃(Cmpx).

Given X = co{xk}k∈N ⊂ A, let us show that MÂ(X) 6= ∅. If X ⊂ B,
then MÂ(X) = X; if X ∩ A0 6= ∅ = X ∩ A1, then MÂ(X) = X ∩ A0. Let
X1 = X ∩ A1 6= ∅. Since MÂ(X) ⊇ MÂ(X1), we are home if MÂ(X1) 6= ∅.
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Otherwise, X1 is dense in A1, hence A0 ⊂ X. On the other hand, X1 is
countable because A1 consists of extreme points, while A1 is uncountable.
Defining an equivalence relation on A1 by y ∼ x ­ ∃k,m ∈ N [ϕ(y) =
ϕ(x) + k · ϕ0 + 2m · π], we see that A1 is partitioned into a continuum of
countable equivalence classes. Therefore, we may pick x ∈ A1\X1 such that
y � x for any y ∈ X1; then y � x/2 for any y ∈ X, i.e., x/2 ∈ MÂ(X) 6= ∅.

Abandoning the transitivity of Â, we can slightly modify the example
and have y Â x for a unique y ∈ A, given x ∈ A; in other words, Â can
be made quasiconcave. The gap between Proposition 7.1 and Example 7.2
is considerable: nothing is known in this respect about interval orders or
transitive quasiconcave relations.

7.2 “Tautological” characterizations

Theorem 7 of Kukushkin (2005) showed that the class R∃(Comp) can be
characterized, in a tautological way, by a configurational condition of the
type ∀∃@. Here we demonstrate the possibility of similar characterizations
of the classes R(Cmpx).

To the end of the subsection, we employ notation: Λ = {λ : N→ N | k′ >
k ⇒ λ(k′) > λ(k)}; N2 = {2k+1}k∈N; N2 = {ν : N → N2}; N3 = {3k+1}k∈N;
N3 = {ν : N → N3}; N = N2 ∪ N3; N5 = {5k+1}k∈N. Defining various
configurations, we always assume Cκ = ∅ unless explicitly defined otherwise.
These mappings ν : N → N are invoked throughout: νm(0) = m (m =
0, 1, 5); ν7

m(0) = 7 (m = 2, 3); ν0(k+1) = 2k+1 ·3k+1, ν1(k+1) = 2k+1 ·5k+1,
ν5(k+1) = 3k+1 ·5k+1, ν7

2(k+1) = 2k+1 ·5k+1 ·3, and ν7
3(k+1) = 3k+1 ·5k+1 ·2

for all k ∈ N. Given ν ∈ N and λ ∈ Λ, we define νλ : N → N by νλ(0) = 5
and νλ(k + 1) = ν ◦ λ(k) for all k ∈ N.

We define an abstract configuration C∃0 by DomC∃0 = N2 and C∃0κ = ∅
for all κ. For every ν ∈ N2 and λ ∈ Λ, we define a configuration C∃1 [ν, λ] by
DomC∃1 [ν, λ] = DomC∃0 ∪ {5} and C∃1 [ν, λ]→ = {νλ}. Finally, we define
two more configurations, C∃2 and C∃′2 . DomC∃2 = DomC∃0∪(N2 ·N3)∪{0};
C∃2

t = {(2k+1 · 3, 2, 4)}k∈N ∪ {(2k+1 · 3h+2, 2k+1 · 3h+1, 2h+3)}k,h∈N, h+1≤k;

C∃2→ = {ν0}. DomC∃′2 = DomC∃2 ∪ (N2 · N5) ∪ {1}; C
∃′2B = {(1, 0)}; C

∃′2
t =

C∃2
t ∪{(2k+1 ·5, 2, 4)}k∈N∪{(2k+1 ·5h+2, 2k+1 ·5h+1, 2h+3)}k,h∈N, h+1≤k; C

∃′2→ =
C∃2→ ∪ {ν1}.
Proposition 7.3. Let Â be a binary relation on a convex subset A of a Ba-
nach space. Then Â belongs to R∃(Cmpx) if and only if, for every realization
µ of C∃0 in A for Â, either there exists ν ∈ N2 such that no configuration
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C∃1 [ν, λ] (λ ∈ Λ) admits a realization µ′ ≥ µ, or there exists a realization
µ′ ≥ µ of C∃2 such that there is no realization µ′′ ≥ µ′ of C∃′2.

Proof. The proof is somewhat similar to that of Proposition 6.6. A real-
ization µ of C∃0 defines a countable subset {µ(k)}k∈N2 ⊂ A; let us denote
X its convex closure. The first alternative in the formulation means that
X is not compact – there is a sequence ν no subsequence νλ of which
converges – hence nothing is required of it. If µ′ ≥ µ is a realization
of C∃2 , then µ′(2k+1 · 3k+1) ∈ co{µ(2h+1)}h≤k+1 for each k ∈ N, hence
µ′(0) ∈ X. Similarly, the existence of a realization µ′′ ≥ µ′ of C∃′2 would
mean that X 3 µ′′(1) Â µ′(0). Thus, the impossibility of such µ′′ is
equivalent to µ′(0) ∈ MÂ(X), hence the second alternative is equivalent
to MÂ(X) 6= ∅.

Let us define abstract configurations C0 and C1[ν, λ] (ν ∈ N, λ ∈
Λ) to be used in the characterization of various rationality requirements.
DomC0 = N2 ∪ N3 ∪ (N2 · N3) ∪ {0}; C0

t = {(3k+1 · 2, 3, 9)}k∈N ∪ {(3k+1 ·
2h+2, 3k+1 · 2h+1, 3h+3)}k,h∈N, h+1≤k; C0→ = {ν0}. Dom C1[ν, λ] = DomC0 ∪
{5}; C1[ν, λ]t = C0

t; C1[ν, λ]→ = C0→ ∪ {νλ}.
To characterize the class ROut(Cmpx), we first define two configura-

tions, COut2 and COut′2 . DomCOut2 = DomC0 ∪ (N3 · N5) ∪ {5}; COut2
t =

C0
t∪{(3k+1·5, 3, 9)}k∈N∪{(3k+1·5h+2, 3k+1·5h+1, 3h+3)}k,h∈N, h+1≤k; COut2→ =

C0→ ∪ {ν5}. DomCOut′2 = Dom COut2 ∪ (N2 · N5) ∪ {1}; C
Out′2
= = {(1, 5)};

C
Out′2
t = COut2

t ∪{(2k+1·5, 2, 4)}k∈N∪{(2k+1·5h+2, 2k+1·5h+1, 2h+3)}k,h∈N, h+1≤k;

C
Out′2→ = COut2→ ∪ {ν1}.

Then we define three configurations, COut3 , COut′3 , and COut′′3 .
DomCOut3 = DomC0 ∪ (N2 · N5) ∪ {1}; COut3

t = C0
t ∪ {(2k+1 ·

5, 2, 4)}k∈N∪{(2k+1 ·5h+2, 2k+1 ·5h+1, 2h+3)}k,h∈N, h+1≤k; COut3→ = C0→∪{ν1}.
DomCOut′3 = DomCOut3 ∪ (N3 · N5) ∪ {5}; C

Out′3
= = {(1, 5)}; C

Out′3
t =

COut3
t ∪ {(3k+1 · 5, 3, 9)}k∈N ∪ {(3k+1 · 5h+2, 3k+1 · 5h+1, 3h+3)}k,h∈N, h+1≤k;

C
Out′3→ = COut3→ ∪ {ν5}. DomCOut′′3 = DomCOut3 ∪ (N2 · N5 · 3) ∪ {7};

C
Out′′3B = {(7, 1)}; C

Out′′3
t = COut3

t ∪ {(2k+1 · 15, 2, 4)}k∈N ∪ {(2k+1 · 5h+2 ·
3, 2k+1 · 5h+1 · 3, 2h+3)}k,h∈N, h+1≤k; C

Out′′3→ = COut3→ ∪ {ν7
2}.

Finally, we define two more configurations, COut4 and COut5 .
DomCOut4 = DomCOut2 ; COut4B = {(5, 0)}; COut4

t = COut2
t ; COut4→ = COut2→ .

DomCOut5 = DomCOut3 ; COut5B = {(1, 0)}; COut5
t = COut3

t ; COut5→ = COut3→ .

Proposition 7.4. Let Â be a binary relation on a convex subset A of a
Banach space. Then Â belongs to ROut(Cmpx) if and only if it belongs to
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R∃(Cmpx) and at least one of the following alternatives holds for every real-
ization µ of C0 in A for Â.

1. There exists ν ∈ N such that no configuration C1[ν, λ] (λ ∈ Λ) admits
a realization µ′ ≥ µ.

2. There exists a realization µ′ ≥ µ of the configuration COut2 in A for
Â such that there is no realization µ′′ ≥ µ′ of COut2′.

3. There exists a realization µ′ ≥ µ of the configuration COut3 in A for
Â such that there is no realization µ′′ ≥ µ′ of COut′3 and no realization
µ′′ ≥ µ′ of COut′′3 .

4. There exists a realization µ′ ≥ µ of the configuration COut4 in A for
Â.

5. There exists no realization µ′ ≥ µ of the configuration COut5 in A for
Â.

A sketch of the proof. The equality in (2) is equivalent to a set inclusion:
MÂ(X ′) ⊆ MÂ(X) whenever MÂ(X) ⊆ X ′ ⊆ X and X, X ′ ∈ Cmpx. An
interpretation of the configuration C0 goes along the same lines as in the
proof of Proposition 7.3: X is the convex closure of {µ(2k+1)}k∈N in A; X ′

is the convex closure of {µ(3k+1)}k∈N; µ(0) belongs to X ′ [and putatively
belongs to MÂ(X ′) ]. The first alternative in the list means that either X or
X ′ is not compact; the second, that X ′ is not a subset of X. If alternative 3
holds, then µ′(1) ∈ MÂ(X) \ X ′. Thus any of the first three alternatives
means a violation of the conditions in (2), hence nothing is required at all.
Alternative 4 means that µ(0) /∈ MÂ(X ′), hence nothing is required of it;
alternative 5, that µ(0) ∈ MÂ(X) as it should if none of the preceding
alternatives holds. If (2) is violated, we can pick {µ(2k+1)}k∈N generating
X, {µ(3k+1)}k∈N generating X ′, µ(0) ∈ MÂ(X ′)\MÂ(X), and see that none
of the five alternatives holds.

Similar constructions allow us to characterize the class RPI(Cmpx). We
define four new configurations, CPI2 , CPI′2 , CPI′′2 , and CPI′3 . DomCPI2 =
DomC0 ∪ (N2 · N5) ∪ (N3 · N5) ∪ {1, 5, 7}; CPI2

t = C0
t ∪ {(7, 1, 5)} ∪ {(2k+1 ·

5, 2, 4), (3k+1 ·5, 3, 9)}k∈N∪{(2k+1 ·5h+2, 2k+1 ·5h+1, 2h+3), (3k+1 ·5h+2, 3k+1 ·
5h+1, 3h+3)}k,h∈N, h+1≤k; CPI2→ = C0→ ∪ {ν1, ν5}. Dom CPI′2 = DomCPI2 ∪
(N2 ·N5 ·3); C

PI′2
t = CPI2

t ∪{(2k+1 ·15, 2, 4)}k∈N∪{(2k+1 ·5h+2 ·3, 2k+1 ·5h+1 ·
3, 2h+3)}k,h∈N, h+1≤k; C

PI′2→ = CPI2→ ∪ {ν7
2}. DomCPI′′2 = DomCPI2 ∪ (N3 ·

N5 · 2); C
PI′′2
t = CPI2

t ∪ {(3k+1 · 10, 3, 9)}k∈N ∪ {(3k+1 · 5h+2 · 2, 3k+1 · 5h+1 ·
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2, 3h+3)}k,h∈N, h+1≤k; C
PI′′2→ = CPI2→ ∪ {ν7

3}. DomCPI′3 = DomCPI3 ∪ (N2 ·
N5 · 3) ∪ {7}; C

PI′3B = CPI3B ∪ {(7, 1)}; C
PI′3
t = CPI3

t ∪ {(2k+1 · 15, 2, 4)}k∈N ∪
{(2k+1 · 5h+2 · 3, 2k+1 · 5h+1 · 3, 2h+3)}k,h∈N, h+1≤k; C

PI′3→ = CPI3→ ∪ {ν7
2}.

Proposition 7.5. Let Â be a binary relation on a convex subset A of a
Banach space. Then Â belongs to RPI(Cmpx) if and only if it belongs to
R∃(Cmpx) and at least one of the following alternatives holds for every real-
ization µ of C0 in A for Â.

1. There exists ν ∈ N such that no configuration C1[ν, λ] (λ ∈ Λ) admits
a realization µ′ ≥ µ.

2. There exists a realization µ′ ≥ µ of the configuration CPI2 in A for
Â such that there is no realization µ′′ ≥ µ′ of CPI′2 and no realization
µ′′ ≥ µ′ of CPI′′2 .

3. There exists a realization µ′ ≥ µ of the configuration COut5 in A for
Â such that there is no realization µ′′ ≥ µ′ of CPI′3.

4. There exists a realization µ′ ≥ µ of the configuration COut4 in A for
Â.

5. There exists no realization µ′ ≥ µ of the configuration COut5 in A for
Â.

A sketch of the proof. The equality in (3) is equivalent to a set inclusion:
MÂ(MÂ(X ′)∪X ′′) ⊆ MÂ(X) whenever X = X ′∪X ′′ and X,X ′, X ′′ ∈ Cmpx.
An interpretation of the configuration C0 goes along the same lines again:
X ′ is the convex closure of {µ(2k+1)}k∈N in A; X ′′ is the convex closure of
{µ(3k+1)}k∈N; µ(0) belongs to X ′′. The first alternative in the list means
that either X or X ′ is not compact; the second, that X = X ′ ∪ X ′′ is not
convex: µ′(1) ∈ X ′, µ′(5) ∈ X ′′, µ′(7) is a convex combination of µ′(1)
and µ′(5), but µ′(7) /∈ X. Thus, either alternative means a violation of
the conditions in (3), hence nothing is required at all. Alternative 3 means
that MÂ(X ′) 3 µ′(1) Â µ(0); alternative 4, that X ′′ 3 µ′(5) Â µ(0). In
either case, µ(0) /∈ MÂ(MÂ(X ′) ∪ X ′′). Finally, alternative 5 means that
µ(0) ∈ MÂ(X) as it should if none of the preceding alternatives holds.

For the characterization of RRat(Cmpx), we need one more configuration.
DomCRat′3 = DomCOut2∪(N2 ·N5)∪{1}; C

Rat′3B = {(1, 5)}; C
Rat′3
t = COut2

t ∪
{(2k+1 · 5, 2, 4)}k∈N ∪ {(2k+1 · 5h+2, 2k+1 · 5h+1, 2h+3)}k,h∈N, h+1≤k; C

Rat′3→ =
COut2→ ∪ {ν1}.
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Proposition 7.6. Let Â be a binary relation on a convex subset A of a
Banach space. Then Â belongs to RRat(Cmpx) if and only if it belongs to
RPI(Cmpx) and at least one of the following alternatives holds for every re-
alization µ of C0 in A for Â.

1. There exists ν ∈ N such that no configuration C1[ν, λ] (λ ∈ Λ) admits
a realization µ′ ≥ µ.

2. There exists a realization µ′ ≥ µ of the configuration COut2 in A for
Â such that there is no realization µ′′ ≥ µ′ of COut′2.

3. For every realization µ′ ≥ µ of the configuration COut2 in A for Â,
there is a realization µ′′ ≥ µ′ of CRat′3.

4. There exists a realization µ′ ≥ µ of the configuration COut4 in A for
Â.

5. There exists no realization µ′ ≥ µ of the configuration COut5 in A for
Â.

Remark. Taking into account alternative 3, we see that this condition be-
longs to the class ∀∀∃ @.

A sketch of the proof. The configuration C0 is interpreted in the same way
as in the proof of Proposition 7.4: X is the convex closure of {µ(2k+1)}k∈N
in A; X ′ is the convex closure of {µ(3k+1)}k∈N; µ(0) belongs to X ′. Thus
any of the first three alternatives means a violation of the conditions in (4)
(either X or X ′ is not compact; X ′ is not a subset of X; MÂ(X)∩X ′ = ∅),
hence nothing is required at all. Alternative 4 means that X ′ 3 µ′(5) Â µ(0),
hence µ(0) /∈ MÂ(X ′) and nothing is required of it. Finally, alternative 5
means that µ(0) ∈ MÂ(X) as it should if none of the preceding alternatives
holds.

The characterization of R∃!(Cmpx) is similar, but simpler. Abstract con-
figurations C∃!0 and C∃!1 [ν, λ] for all ν ∈ N2 and λ ∈ Λ are defined in this
way. DomC∃!0 = N2 ∪ (N2 · N3) ∪ (N2 · N5) ∪ {0, 1}; C∃!0

6= = {0, 1}; C∃!0
t =

{(2k+1 · 3, 2, 4), (2k+1 · 5, 2, 4)}k∈N ∪ {(2k+1 · 3h+2, 2k+1 · 3h+1, 2h+3), (2k+1 ·
5h+2, 2k+1 · 5h+1, 2h+3)}k,h∈N, h+1≤k; C∃!0→ = {ν0, ν1}. Dom C∃!1 [ν, λ] =
DomC∃!0 ∪ {5}; C∃!1 [ν, λ]6= = C∃!0

6= ; C∃!1 [ν, λ]t = C∃!0
t ; C∃!1 [ν, λ]→ = C∃!0→ ∪

{νλ}.
Then we define two more configurations, C∃!2 and C∃!3 . DomC∃!2 =

DomC∃!3 = DomC∃!0 ∪ (N2 · N5 · 3) ∪ {7}; C∃!2B = {(7, 0)}; C
∃!′2B = {(7, 1)};
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C∃!2
6= = C∃!3

6= = C∃!0
6= ; C∃!2

t = C∃!3
t = C∃!0

t ∪ {(2k+1 · 15, 2, 4)}k∈N ∪ {(2k+1 ·
5h+2 · 3, 2k+1 · 5h+1 · 3, 2h+3)}k,h∈N, h+1≤k; C∃!2→ = C∃!3→ = C∃!0→ ∪ {ν7

2}.
Proposition 7.7. Let Â be a binary relation on a convex subset A of a
Banach space. Then Â belongs to R∃!(Cmpx) if and only if it belongs to
RPI(Cmpx) and at least one of the following alternatives holds for every re-
alization µ of C∃!0 in A for Â.

1. There exists ν ∈ N2 such that no configuration C∃!1 [ν, λ] (λ ∈ Λ)
admits a realization µ′ ≥ µ.

2. There exists a realization µ′ ≥ µ of the configuration C∃!2 in A for Â.

3. There exists a realization µ′ ≥ µ of the configuration C∃!3 in A for Â.

A sketch of the proof. Again, X is the convex closure of {µ(2k+1)}k∈N in A;
besides, µ(0), µ(1) ∈ X and µ(0) 6= µ(1). Alternative 2 means that X is not
compact, hence nothing is required. Alternatives 2 and 3 mean that either
µ(0) /∈ MÂ(X) or µ(1) /∈ MÂ(X), as it should be.

Proposition 7.1 allows us to give a similar tautological characterization
of semiorders belonging to R∃(Conv). What could be done about the whole
R∃(Conv) or higher levels of rationality remains unclear.

7.3 Existence via extensions

A binary relation Â′ on A is called an extension of a relation Â if y Â x ⇒
y Â′ x for all x, y ∈ A; then MÂ′(X) ⊆ MÂ(X) for every X ∈ B. Therefore,
every sufficient condition for the existence of maximizers on all X ∈ C

immediately generates a weaker one: a relation belongs to R∃(C) if it admits
an extension satisfying the condition. The derivation of Theorem 1.7.4 from
Theorem 1.7.1 in Kiruta et al. (1980) follows this scheme; it is also worth
noting that a relation is pseudoconcave if and only if it admits a quasiconcave
and irreflexive extension. The most popular sufficient condition for a binary
relation to belong to R∃(Comp) (Bergstrom, 1975; Walker, 1977) can be
derived from Theorem E in the same way: whenever Â is acyclic and has
open lower contours, it admits an irreflexive and ω-transitive extension.

As shown in Kukushkin (2003, 2005), a relation admits an extension sat-
isfying the conditions of Theorem E if and only if it is “Ω-acyclic,” the latter
property being the prohibition of the realization of a certain (uncountable)
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set of configurations. It remains unclear whether the existence of an exten-
sion satisfying, e.g., the conditions of Theorem F could be described with
configurations.

Concerning the rationality requirements, there is no such straightforward
connection between the properties of a relation and its extensions.

7.4 Final remark

A comparison between Theorems C, D, and E, on one hand, and Theo-
rems 1–7 on the other, may justify this (deliberately provocative) conclu-
sion: the Weierstrass Theorem (on the existence of a maximum) addresses,
more or less, the root of the issue, while the Kakutani Theorem is somewhat
superficial. The existence of such a viewpoint does not preclude the possibil-
ity of other, including the opposite, views. Moreover, I have no intention to
suggest that the Kakutani Theorem should be thrown overboard: whatever
aesthetical deficiencies may be found in the tool, we have no replacement
at hand. Still, the very possibility of this interpretation is interesting and
deserves attention.
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