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Abstract

A rather general class of strategic games is described where the coalitional improvements are
acyclic and hence strong Nash equilibria exist: The players derive their utilities from the use of
certain facilities; all players using a facility extract the same amount of local utility therefrom,
which amount depends both on the set of users and on their actions, and is decreasing in the set
of users; the ultimate utility of each player is the minimum of the local utilities at all relevant
facilities. Two important subclasses are “games with structured utilities,” basic properties of which
were discovered in 1970s and 1980s, and “bottleneck congestion games,” which attracted researchers’
attention quite recently. The former games are representative in the sense that every game from
the whole class is isomorphic to one of them. The necessity of the minimum aggregation for the
existence of strong Nash equilibria, actually, just Pareto optimal Nash equilibria, in all games of
this type is established.
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1 Introduction

Both motivation for and the structure of this paper closely resemble those of Kukushkin (2007). More-
over, the models considered in either paper, when described in very general terms, sound quite similarly.

The players derive their utilities from the use of certain objects. Rosenthal (1973) called them
“factors”; following Monderer and Shapley (1996), we call them “facilities” here. The players are free
to choose facilities within certain limits. All the players using a facility extract the same amount of
“local utility” therefrom, which amount may depend both on the set of users and on their actions.
The “ultimate” utility of each player is an aggregate of the local utilities obtained from all relevant
facilities.

Four crucial differences should be listed at the start. First, in Kukushkin (2007), following Rosenthal
(1973), each player summed up relevant local utilities (strictly speaking, monotone transformations
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were allowed); here, each player takes into account only the worst local utility (again, monotone
transformations may be allowed).

Second, the main results of Kukushkin (2007) were about the acyclicity of individual improve-
ments and, accordingly, the existence of Nash equilibria. Here, it is about the acyclicity of coalitional
improvements and, accordingly, the existence of strong Nash equilibria.

Thirdly, we have to assume “negative impacts” here, i.e., whenever a new player starts to use a
facility, those already there cannot be better off. In Kukushkin (2007), as well as in Rosenthal (1973),
there was no need for such an assumption.

Finally, the games considered in Kukushkin (2007) were partitioned into two classes: “generalized
congestion games” and “games with structured utilities.” In the former class, the players choose which
facilities to use and do not choose anything else; in the latter, each player chooses how to use facilities
from a fixed list. Actually, the possibility of certain combinations was overlooked there, see Le Breton
and Weber (2011), but the range of permissible combinations is rather limited in any case. Here,
both those classes are present too, but “which” and “how” choices could be combined arbitrarily. It
should be mentioned that, both here and in Kukushkin (2007), games with structured utilities form a
representative subclass.

The idea of games with structured utilities and the minimum aggregation originated in Germeier
and Vatel’ (1974) although in a much less general form. Their approach was developed further in a
series of papers, see Kukushkin et al. (1985) and references therein.

The first, to my knowledge, result on the existence of strong Nash equilibria in congestion games,
even though without a reference to Rosenthal (1973), was in Moulin (1982, Chapter 5): pirates were
going to a treasure island; each pirate could choose between two ships, and the more pirates on board of
either ship, the slower it went. Since each player could only use a single facility (ship), the application
of the minimum aggregation may be assumed, and hence that example belongs to the class of games
considered here.

A systematic study of conditions under which a congestion game possesses strong Nash equilibria
was started by Holzman and Law-Yone (1997), and has been continued (Holzman and Law-Yone, 2003;
Rozenfeld and Tennenholtz, 2006; Epstein et al., 2009; Holzman and Monderer, 2015). As is natural in
light of the necessity part of our Theorem 6.1, all those results need specific assumptions on available
strategies.

The fact that the minimum (“bottleneck”) aggregation and negative impacts in congestion games
are conducive to coalition stability was gradually noticed quite recently (Fotakis et al., 2008; Harks et
al., 2013). The results of those papers are rather similar to our Theorem 4.1, but obtained in a much
less general models.

Here, the same fact is expressed in its most general form: As long as each player uses the minimum
aggregation and there are negative impacts at each facility, it does not matter which subsets of facilities
and what methods of using them are available to each player: all coalitional improvements are acyclic
(to be more precise, there exists a “strong ω-potential”) and hence strong Nash equilibria exist and, in
a sense, attract adaptive dynamics.

Theorem 4.4 shows that every game satisfying the assumptions of Theorem 4.1 is isomorphic to
a game with structured utilities and the minimum aggregation. In other words, the main findings of
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Kukushkin et al. (1985) remain relevant to every model of this type that has been considered since
then. That paper, however, was silent on some important issues, e.g., algorithmic and computational
aspects.

Perhaps the most interesting results of this paper are Theorems 6.1 and 6.3, which establish the
necessity of the minimum aggregation for the existence, regardless of other characteristics of the game,
of Pareto optimal Nash equilibria, to say nothing of strong Nash equilibria, and hence for the acyclicity
of coalitional improvements as well. The first result of this kind was in Kukushkin (1992); however,
it was designed for a particular class of games, so rather peculiar combinations of the minimum and
maximum were allowed, which are not good in a more general case.

The minimum operator is not at all unusual in the theory of production functions. Galbraith
(1958, Chapter XVIII) explicitly invoked Leontief’s model to justify an attitude to public and private
consumption (“social balance”) that sounds indistinguishable from the minimum aggregation. Our
Theorem 4.1 shows that agents who have internalized this attitude do not need any taxes to provide
for an efficient level of public consumption; it is difficult to say whether Galbraith himself expected
such a conclusion.

Models of public good provision where the output of the public good is the minimum or maximum of
private contributions (“weakest-link” or “best-shot”) are considered now and then (Hirshleifer, 1983;
Cornes and Hartley, 2007; Boncinelli and Pin, 2012). Such production functions have some nice
implications in that context too, but not as good as here; in particular, the existence of a strong Nash
equilibrium is not guaranteed.

Section 2 introduces principal improvement relations associated with a strategic game. Section 3
provides a formal description of our basic model as well as its main structural properties. Throughout
Section 4, the players use the minimum aggregation. The main results there are Theorems 4.1 and 4.4.

In Section 5, we consider the maximum aggregation rule, which has the same implications in
games with positive impacts (Theorem 5.1). The leximin/leximax aggregation of local utilities is also
considered there. Its properties are much closer to those of additive aggregation than minimum/
maximum ones; it ensures the acyclicity of individual improvements, but not of coalitional ones.

Section 6 contains the characterization results, Theorems 6.1 and 6.3, which establish the necessity of
the minimum aggregation for the existence of Pareto optimal Nash equilibria under broad assumptions.
In Section 7, several related questions of secondary importance are discussed.

More complicated proofs (of Theorems 2.1, 6.1 and 6.3) are deferred to the Appendix.

2 Improvement dynamics in strategic games

A strategic game Γ is defined by a finite set of players N (we denote n := #N), and strategy sets
Xi and utility functions ui on XN :=

∏
i∈N Xi for all i ∈ N . We denote N := 2N \ {∅} (the set of

potential coalitions) and XI :=
∏

i∈I Xi for each I ∈ N ; instead of XN\{i} and XN\I , we write X−i

and X−I , respectively. It is sometimes convenient to consider utility functions ui as components of a
“joint” mapping uN : XN → RN .

With every strategic game, a few improvement relations on XN are associated (I ∈ N , yN , xN ∈
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XN ):
yN ◃I xN 


[
y−I = x−I & ∀i ∈ I [ui(yN ) > ui(xN )]

]
; (1a)

yN ◃Ind xN 
 ∃i ∈ N [yN ◃{i} xN ] (1b)

(individual improvement relation);

yN ◃Coa xN 
 ∃I ∈ N [yN ◃I xN ] (1c)

(strong coalitional improvement relation).

A maximizer of an improvement relation ◃, i.e., a strategy profile xN ∈ XN such that yN ◃ xN
holds for no yN ∈ XN , is an equilibrium: a Nash equilibrium if ◃ is ◃Ind; a strong Nash equilibrium if
◃ is ◃Coa.

An individual improvement path is a (finite or infinite) sequence {xkN}k=0,1,... such that xk+1
N ◃Ind

xkN whenever xk+1
N is defined; an individual improvement cycle is an individual improvement path

such that xmN = x0N for m > 0. A strategic game has the finite individual improvement property
(FIP ; Monderer and Shapley, 1996) if there exists no infinite individual improvement path; then every
individual improvement path, if continued whenever possible, reaches a Nash equilibrium in a finite
number of steps.

Replacing ◃Ind with ◃Coa, we obtain the definitions of a coalitional improvement path, a coalitional
improvement cycle, and the finite coalitional improvement property (FCP). The latter implies that
every coalitional improvement path reaches a strong Nash equilibrium in a finite number of steps.

Remark. Under our definitions, a single strategy profile is an improvement path (both individual and
coalitional) by itself. This peculiarity causes no harm and is helpful in the formulation of Theorem 2.1
below.

For a finite game, the FIP (FCP) is equivalent to the acyclicity of the relation ◃Ind (◃Coa) and
is equivalent to the existence of a “potential” in the following sense. An order potential of Γ is an
irreflexive and transitive relation ≻ on XN satisfying

∀xN , yN ∈ XN [yN ◃Ind xN ⇒ yN ≻ xN ]. (2)

A strong order potential of Γ is an irreflexive and transitive relation ≻ on XN satisfying

∀xN , yN ∈ XN [yN ◃Coa xN ⇒ yN ≻ xN ]. (3)

In an infinite game, the absence of finite cycles does not mean very much by itself. One approach
is to employ a more demanding notion of a potential. A binary relation ≻ on a metric space XN is
ω-transitive if it is transitive and the conditions xωN = limk→∞ xkN and xk+1

N ≻ xkN for all k = 0, 1, . . .
always imply xωN ≻ x0N .

Remark. Gillies (1959) and Smith (1974) considered this condition for orderings.
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A strong ω-potential of Γ is an irreflexive and ω-transitive relation ≻ on XN satisfying (3). By
Theorem 1 of Kukushkin (2008), ≻ admits a maximizer on XN if the latter is compact; as follows
immediately from (3), every maximizer of ≻ is a strong Nash equilibrium.

There is still an asymmetry in the implications of the existence of a strong (ω-)potential (3) in a
finite game and in an infinite game. In the former case, strong Nash equilibria exist and all myopic
adaptive dynamics converge to an equilibrium in a finite number of steps. In the latter case, only the
existence of a strong Nash equilibrium was asserted. Actually, something can be said about adaptive
dynamics in compact games too.

The simplest picture emerges if we consider improvement paths parameterized with countable or-
dinals. Then the existence of a strong ω-potential in a compact game implies that every coalitional
improvement path, if continued whenever possible, reaches a strong Nash equilibrium at some stage
(Kukushkin, 2010, Theorem 3.21). In other words, the only difference between finite and infinite games
is that finite paths should be replaced with transfinite ones in the latter case.

For those who believe whatever happens after the first limit to be irrelevant, the situation is much
more complicated and some questions remain open. A clear-cut theorem about the possibility to
approximate an equilibrium with a finite improvement path in a continuous enough game with a
potential is presented in Kukushkin (2011). Although it is about individual improvements and Nash
equilibrium, virtually the same argument can be applied to coalitional improvements and strong Nash
equilibrium.

To be more precise, the acyclicity of coalitional improvements in a game with compact strategy sets
and continuous enough preferences implies the existence of a strong Nash equilibrium and, moreover, the
possibility to come arbitrarily close to an equilibrium with a finite number of coalitional improvements
starting from an arbitrary strategy profile. What exactly is required from preferences is this condition
expressed in terms of the coalitional improvement relation:

∀I ∈ N ∀yN , xN ∈ XN

[
yN ◃I xN ⇒

∃O ⊆ XN

[
xN ∈ O & [O is open] & ∀x′N ∈ O [(yI , x

′
−I) ◃I x′N ]

]]
. (4)

It is easily seen that the condition is satisfied if each function ui is continuous, or just upper semicon-
tinuous in xN and continuous in x−i given xi. The upper semicontinuity in xN alone is not enough.

Theorem 2.1. Let each Xi in a strategic game Γ be compact; let ◃Coa be acyclic and satisfy condition
(4). Then for every strategy profile x0N ∈ XN , there is a strong Nash equilibrium yN ∈ XN such that
for every open neighborhood O of yN there exists a finite coalitional improvement path x0N , x1N , . . . , xmN
with xmN ∈ O.

A straightforward modification of the proof from Kukushkin (2011) is given in the Appendix,
Section A, just for completeness.

Throughout the whole paper, we consider games with ordinal preferences, i.e., only the order defined
by the utility function matters for each player. It is easily checked that the relations ◃Ind and ◃Coa, the
sets of individual and coalitional improvement paths, and the set of (strong) Nash equilibria in a game
remain the same if a monotone transformation is applied to each utility function. We could assume that
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each ui maps XN to an arbitrary chain rather than R; we even do that in Section 5.2. Accordingly,
our players never contemplate mixed strategies, so “an equilibrium” always means “a pure-strategy
equilibrium.”

3 Common local utilities

A game with common local utilities may have an arbitrary (finite) set of players N , whereas the
strategies and utility functions satisfy certain structural requirements. There is a finite set A of
facilities; we denote B the set of all nonempty subsets of A. For each i ∈ N , there is Bi ⊆ B
describing which combinations of facilities can be chosen by player i; for every B ∈ Bi, there is a set
ΞB
i of strategies available to player i when B has been chosen. The total set of strategies of player i,

Xi, consists of all pairs xi = ⟨B, ξ⟩ such that B ∈ Bi and ξ ∈ ΞB
i . Given i ∈ N and xi ∈ Xi, we denote

bi(xi) ∈ Bi the first component of the pair.

For every α ∈ A, we denote I−α := {i ∈ N | ∀B ∈ Bi [α ∈ B]}, I+α := {i ∈ N | ∃B ∈ Bi [α ∈ B]}, and
Iα := {I ∈ N | I−α ⊆ I ⊆ I+α }. We assume I+α ̸= ∅ for every α ∈ A – if nobody can use a facility, there
is no point in including it in the description of the game – and hence Iα ̸= ∅ too. Given i ∈ N and
α ∈ A, we denote Xα

i := {⟨B, ξ⟩ ∈ Xi | α ∈ B}; clearly, Xα
i ̸= ∅ ⇐⇒ i ∈ I+α . For every α ∈ A and

I ∈ Iα, there is a function φα(I, ·) : Xα
I → R, the “local utility function” associated with the facility

α. For every i ∈ N and xi ∈ Xi, there is a mapping Uxi
i : Rbi(xi) → R, an aggregation rule.

Remark. We use the notation Rbi(xi) rather than R#bi(xi), here and later on, to make explicit the
connection between arguments of Uxi

i and facilities from bi(xi). If, e.g., α, β, γ ∈ A, α ̸= β ̸= γ ̸= α,
xi, yi ∈ Xi, bi(xi) = {α, β} and bi(yi) = {β, γ}, then it would be unnatural to believe both Uxi

i and
Uyi
i to be defined on the same R2 while their arguments are flagrantly different.

Given a strategy profile xN ∈ XN , we denote N(α, xN ) := {i ∈ N | α ∈ bi(xi)} for each α ∈ A:
the set of players using α at xN . The “ultimate” utility functions of the players are built of the local
utilities:

ui(xN ) := Uxi
i

(
⟨φα(N(α, xN ), xN(α,xN ))⟩α∈bi(xi)

)
, (5)

for all i ∈ N and xN ∈ XN .

When considering infinite strategy sets, we impose appropriate topological assumptions; the exact
conditions may differ from one theorem to another.

We say that player i has a negative impact on facility α if, whenever i /∈ I ∈ Iα, I ∪ {i} ∈ Iα,
xi ∈ Xα

i , and xαI ∈ Xα
I , there holds

φα(I, x
α
I ) ≥ φα(I ∪ {i}, ⟨xαI , xi⟩). (6)

We say that player i has a strictly negative impact on facility α if the inequality in (6) is strict. We call
Γ a game with (strictly) negative impacts if the appropriate condition holds for all i ∈ N and α ∈ A.
A definition of (strictly) positive impacts is obtained by reversing the inequality sign in (6).

The class of games with common local utilities includes both classes of games considered in
Kukushkin (2007): “generalized congestion games” and “games with structured utilities.” In a gen-
eralized congestion game, each set ΞB

i is a singleton (i.e., each player chooses just a set of facilities
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B ∈ Bi), and φα only depends on #I (so we use the notation φα(#I) rather than φα(I, x
α
I ) in this

case). Rosenthal’s (1973) proper congestion games are distinguished by additive aggregation of local
utilities.

If, conversely, each Bi is a singleton, the game is a game with structured utilities as defined in
Kukushkin (2007). Dealing with such games, we use the notation Bi =: {Υi} and N(α) := {i ∈
N | α ∈ Υi}, and identify ΞΥi

i with Xi. The local utility functions then are just φα : XN(α) → R.
Technically, each facility in a game with structured utilities exhibits both strictly negative and strictly
positive impacts since there is no situation where (6) or its reverse would be required.

Henceforth, “a game” always means “a game with common local utilities.”

4 Games with the minimum aggregation

Throughout this section, we assume that each player always uses the minimum (“weakest-link”) aggre-
gation of relevant local utilities:

ui(xN ) = min
α∈bi(xi)

φα(N(α, xN ), xN(α,xN )) (7)

for all i ∈ N and xN ∈ XN . In economics terms, (7) means that all local utilities are absolute
complements.

An important role in the study of such games is played by the leximin ordering on a (finite) Cartesian
power of R. Let us recall the standard definition.

Given a finite set M , #M = m, and vM ∈ RM , we denote π(vM ) := ⟨π1(vM ), . . . , πm(vM )⟩ the
list of the same values vh for h ∈ M in the increasing order: π1(vM ) ≤ · · · ≤ πm(vM ), and there is a
one-to-one mapping σ : {1, . . . ,m} → M such that πh(vM ) = vσ(h) for all h. Now we can define the
ordering itself:

v′M >Lmin vM 
 ∃h
[
πh(v

′
M ) > πh(vM ) & ∀h′ < h [πh′(v′M ) = πh′(vM )]

]
. (8)

Obviously, >Lmin is irreflexive and transitive. Two lists vM , v′M ∈ RM are incomparable if and only if
π(vM ) = π(v′M ); therefore, incomparability is an equivalence relation.

For future reference, we also define the leximax ordering. The only difference is that we start with
the greatest components when comparing two lists.

v′M >Lmax vM 
 ∃h
[
πh(v

′
M ) > πh(vM ) & ∀h′ > h [πh′(v′M ) = πh′(vM )]

]
. (9)

Theorem 4.1. Let Γ be a game with negative impacts where each player uses the minimum aggregation,
i.e., conditions (6) and (7) hold everywhere. Let each relevant ΞB

i be a compact metric space (hence
so is each Xi) and each relevant function φα(I, ·) be upper semicontinuous. Then Γ admits a strong
ω-potential, and hence possesses a strong Nash equilibrium.

Proof. Considering utility functions ui as components of a mapping uN : XN → RN , we define ≻ on
XN by

yN ≻ xN 
 uN (yN ) >Lmin uN (xN ),

where >Lmin is the leximin ordering on RN defined by (8). Obviously, ≻ is irreflexive and transitive.
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Lemma 4.1.1. ≻ is ω-transitive on XN .

Proof. For every xN ∈ XN , we denote ϑ(xN ) := ⟨ϑ1(xN ), . . . , ϑn(xN )⟩ the list of values ui(xN ) for
i ∈ N in the increasing order; in the above notation, ϑh(xN ) = πh(uN (xN )). Since each function ui is
upper semicontinuous in xN , so is each ϑh.

Now let xk+1
N ≻ xkN for all k = 0, 1, . . . and xkN → xωN ; we have to show xωN ≻ x0N . For each

k ∈ N, we denote h(k) the h from (8) for uN (xk+1
N ) >Lmin uN (xkN ), i.e., ϑh′(xk+1

N ) = ϑh′(xkN ) for

h′ < h(k) and ϑh(k)(x
k+1
N ) > ϑh(k)(x

k
N ). Since N is finite, we may, replacing ⟨xkN ⟩k with a subsequence

if needed, assume that h(k) = h does not depend on k. Now we have ϑh′(xωN ) ≥ ϑh′(x0N ) for h′ < h
and ϑh(x

ω
N ) > ϑh(x

0
N ) by the upper semicontinuity; therefore, uN (xωN ) >Lmin uN (x0N ).

Lemma 4.1.2. Given yN , xN ∈ XN , we denote N+ := {i ∈ N | ui(yN ) > ui(xN )} and N− := {i ∈ N |
ui(yN ) < ui(xN )}. Let mini∈N− ui(yN ) > mini∈N+ ui(xN ), assuming min ∅ := +∞. Then yN ≻ xN .

A straightforward proof is omitted.

Lemma 4.1.3. ≻ satisfies (3).

Proof. Supposing yN ◃I xN , we have to show yN ≻ xN . If yN Pareto dominates xN , then we are home
immediately. Let

uj(yN ) < uj(xN ); (10)

then j /∈ I, so yj = xj . By (7), there is α ∈ bj(yj) = bj(xj) such that uj(yN ) =
φα(N(α, yN ), yN(α,yN )). Suppose I∩N(α, yN ) = ∅; thenN(α, yN ) ⊆ N(α, xN ) and xN(α,yN ) = yN(α,yN );
hence φα(N(α, xN ), xN(α,xN )) ≤ φα(N(α, yN ), yN(α,yN )) by (6); hence uj(xN ) ≤ uj(yN ), contradicting
(10). Therefore, there must be i ∈ I∩N(α, yN ) and hence uj(yN ) = φα(N(α, yN ), yN(α,yN )) ≥ ui(yN ) >
ui(xN ). Since j satisfying (10) was arbitrary, Lemma 4.1.2 is applicable, implying yN ≻ xN .

Now Theorem 4.1 immediately follows from Lemmas 4.1.1 and 4.1.3.

Corollary. If in Theorem 4.1 all functions φα(I, ·) are continuous, then for every strategy profile
x0N ∈ XN , there is a strong Nash equilibrium yN ∈ XN such that for every open neighborhood O of yN ,
there is a finite coalitional improvement path starting at x0N and ending in O.

The statement immediately follows from Theorems 4.1 and 2.1.

Without the negative impacts assumption, the proof of Lemma 4.1.3 collapses; actually, Theorem 4.1
cannot be extended that far. Even a generalized congestion game with the minimum aggregation may
fail to possess a strong Nash equilibrium.

Example 4.2. Let us consider a two person generalized congestion game with the minimum aggregation
(7): N := {1, 2}; A := {a, b, c}; X1 := {A, {a}}, X2 := {A, {b}}; φa(1) := φb(1) := 1, φa(2) := φb(2) :=
3, φc(1) := 0 φc(2) := 2 (i.e., every facility exhibits positive impacts). The matrix of the game looks
as follows:

abc b
abc (2, 2) (0, 3)
a (3, 0) (1, 1).
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We have a prisoner’s dilemma.

Example 4.3. Let us consider a two person generalized congestion game: N := {1, 2}, A := {a, b},
X1 := X2 := {{a}, {b}}, φa(1) := 0, φa(2) := 2, φb(1) := 3, φb(2) := 1 (i.e., a exhibits positive impacts;
b, negative). The matrix of the game looks as follows:

a b
a (2, 2) (0, 3)
b (3, 0) (1, 1).

We have a prisoner’s dilemma again.

Among games with the minimum aggregation and negative impacts, games with structured utilities
form a representative subclass. We call two strategic games Γ∗ and Γ isomorphic if the set N is the same
in both games whereas there is a bijection σi : Xi → X∗

i for each i ∈ N such that u∗i (σN (xN )) = ui(xN )
for all xN ∈ XN and i ∈ N .

Theorem 4.4. For every game Γ with the minimum aggregation and negative impacts, there exists a
game Γ∗ with structured utilities and also with the minimum aggregation, which is isomorphic to Γ.

Proof. We define A∗ := A × N , and, for each i ∈ N , Υi := {(α, I) ∈ A∗ | i ∈ I}. Then we define
Γ∗ as follows: the set of players is the same, N∗ := N ; the set of facilities is A∗; each player has a
singleton set B∗

i := {Υi} (hence Γ∗ is a game with structured utilities indeed and N((α, I)) = I for
every (α, I) ∈ A∗) and strategies ΞΥi

i := Xi. As was agreed at the end of Section 3, we identify X∗
i

with ΞΥi
i = Xi. For every (α, I) ∈ A∗ and xI ∈ X∗

I = XI , we define

φ∗
(α,I)(xI) :=

{
φα(I, xI), if ∀i ∈ I [α ∈ bi(xi)],

+∞, otherwise.

The description of Γ∗ is accomplished by the assumption that every player always employs the minimum
aggregation of local utility functions: u∗i (xN ) := min(α,I)∈Υi

φ∗
(α,I)(xI).

Remark. The +∞ in the definition of φ∗ need not be understood literally: anything large enough
would do.

Now we define a bijection σi : Xi → X∗
i for each i ∈ N by σi(xi) := xi. Let us show that

ui(xN ) = u∗i (σN (xN )) for every i ∈ N and xN ∈ XN .

Let ui(xN ) = φᾱ(N(ᾱ, xN ), xN(ᾱ,xN )) with i ∈ N(ᾱ, xN ) = M . We have (ᾱ,M) ∈ Υi and
φ∗
(ᾱ,M)(xM ) = φᾱ(M,xM ) = ui(xN ); therefore, u∗i (σN (xN )) ≤ ui(xN ).

Now let (α, I) ∈ Υi and φ∗
(α,I)(xI) < +∞; then i ∈ I ⊆ N(α, xN ). If I ⊂ N(α, xN ), then

φ∗
(α,I)(xI) = φα(I, xI) ≥ φα(N(α, xN ), xN(α,xN )) by (6). If I = N(α, xN ), then φ∗

(α,I)(xI) =

φα(N(α, xN ), xN(α,xN )). In either case, φ∗
(α,I)(xI) ≥ ui(xN ) by (7). Since (α, I) ∈ Υi was arbitrary,

u∗i (σN (xN )) ≥ ui(xN ).
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5 Related aggregation rules

5.1 Maximum aggregation

The maximum (“best-shot”) aggregation is defined “dually” to (7):

ui(xN ) = max
α∈bi(xi)

φα(N(α, xN ), xN(α,xN )) (11)

for all i ∈ N and xN ∈ XN .

From the economists’ viewpoint, an unpleasant feature of the aggregation rule (11) is that ui need
not be concave even if all φα’s are.

Theorem 5.1. Let Γ be a game with positive impacts where each player uses the maximum aggregation,
i.e., conditions (11) and (6) with the reversed inequality sign hold everywhere. Let each relevant ΞB

i be a
compact metric space (hence so is each Xi) and each relevant function φα(I, ·) be upper semicontinuous.
Then Γ admits a strong ω-potential, and hence possesses a strong Nash equilibrium.

Proof. Similarly to Theorem 4.1, we define a strong ω-potential by the leximax ordering (9) rather
than leximin (8): yN ≻ xN 
 uN (yN ) >Lmax uN (xN ). Then condition (3) is proven just dually.

Corollary. If in Theorem 5.1 all functions φα(I, ·) are continuous, then for every strategy profile
x0N ∈ XN , there is a strong Nash equilibrium yN ∈ XN such that for every open neighborhood O of yN ,
there is a finite coalitional improvement path starting at x0N and ending in O.

Immediately follows from Theorems 5.1 and 2.1.

Theorem 5.2. For every game Γ with the maximum aggregation and positive impacts, there exists a
game Γ∗ with structured utilities and also with the maximum aggregation, which is isomorphic to Γ.

The proof, dual to that of Theorem 4.4, is omitted.

The duality between the minimum and maximum aggregation rules obtains the simplest expression
when it comes to finite games, with the help of this trivial identity:

max
s

vs = −min
s

(−vs)

for every list of ⟨vs⟩s∈Σ ∈ RΣ. If every local utility function φα in a game Γ with the maximum
aggregation of local utilities is replaced with −φα, and each player’s aggregation rule switches to the
minimum, then all total utilities will just change their signs. Therefore, every finite (individual or
coalitional) improvement cycle in the original game will remain an improvement cycle, one only has to
reverse the direction. It should be mentioned also that positive impacts will become negative and vice
versa. Naturally, the same trick works in the opposite direction.

Thus, Examples 4.2 and 4.3, transformed in this way, carry the same messages for games with the
maximum aggregation.
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5.2 Lexicographic aggregation

As was mentioned at the end of Section 2, we may consider preferences described by orderings without
numeric representations. Then we may consider games where the players use the leximin (or leximax)
ordering to aggregate local utilities. Despite the presence of “min” or “max” in their names, these
types of aggregation are much closer to the additive one. This similarity is based on the well-known
separability of the leximin (leximax) ordering.

We start the introduction of necessary technicalities with the notion of extended real line: R̄ := R∪
{−∞,+∞}. Given a finite setM , we consider the leximin ordering (8) on R̄M ; identifying incomparable
vectors, we obtain a chain LM .

Now let there be a game with common local utilities Γ; we say that each player uses the leximin
aggregation in Γ if the total “utility” functions ui : XN → R̄A are:

ui(xN )α :=

{
φα(N(α, xN ), xN(α,xN )), if i ∈ N(α, xN ),

+∞, otherwise.
(12)

Remark. Strictly speaking, (12) should be supplemented with the identification mapping R̄A → LA.
However, we disregard such technicalities.

Proposition 5.3. Let Γ be a game with structured utilities where each player uses the leximin aggre-
gation (12), each relevant ΞB

i is a compact metric space, and each relevant function φα(I, ·) is upper
semicontinuous. Then Γ admits an ω-potential and hence possesses a Nash equilibrium.

Proof. We define a mapping P : XN → R̄A by:

P (xN )α := φα(N(α, xN ), xN(α,xN )). (13)

Then we define a binary relation ≻ on XN by:

yN ≻ xN 
 P (yN ) >Lmin P (xN ),

where >Lmin is the leximin ordering on R̄A defined by (8). ≻ is irreflexive and ω-transitive for the same
reasons as in the proof of Theorem 4.1.

Let yN ◃Ind xN . This implies that ui(yN ) >Lmin ui(xN ) with ui defined by (12). Since Γ is a game
with structured utilities, N(α, yN ) = N(α, xN ) = N(α) for all α ∈ A. Therefore, P (xN )α = ui(xN )α
and P (yN )α = ui(yN )α for α ∈ Υi, whereas P (xN )α = P (yN )α and ui(xN )α = ui(yN )α for α ∈ A \Υi.
Now the separability of the the leximin ordering implies that P (yN ) >Lmin P (xN ) and hence yN ≻
xN .

Corollary. Let Γ satisfy all conditions of Proposition 5.3, and each each relevant function φα(I, ·) be
continuous. Then for every strategy profile x0N ∈ XN , there is a Nash equilibrium yN ∈ XN such that
for every open neighborhood O of yN , there is a finite individual improvement path starting at x0N and
ending in O.

Immediately follows from Proposition 5.3 and Theorem 2.1.
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Proposition 5.4. Every generalized congestion game where each player uses the leximin aggregation
(12) admits an order potential, and hence has the FIP and possesses a Nash equilibrium.

The statement is proven with essentially the same potential as in Rosenthal (1973), see Kukushkin
(2004).

Corollary. Every generalized congestion game where each player uses the minimum aggregation (7)
admits an order potential, and hence has the FIP and possesses a Nash equilibrium.

Remark. The statement of the corollary is much weaker than that of Theorem 4.1, but the negative
impacts assumption is not needed here. There are quite a few statements similar to Proposition 5.4
and its corollary in the literature; I cannot say who was the first to say what.

To stress the difference between the leximin and minimum aggregation, let us show that the state-
ment of Theorem 4.1 cannot be derived from the assumptions of Propositions 5.3 or 5.4.

Example 5.5. Let us consider a game with structured utilities: N := {1, 2}; A := {a, b, c}; Υ1 :=
{a, c}; Υ2 := {b, c}; X1 := X2 := {1, 2}; φa(1) := φb(1) := 0; φa(2) := φb(2) := 2; φc(1, 1) := 3;
φc(2, 1) := φc(1, 2) := 1; φc(2, 2) := 0. Assuming that both players use the leximin aggregation, we
obtain the 2× 2 matrix of the game:

(⟨0, 3⟩, ⟨0, 3⟩) (⟨0, 1⟩, ⟨1, 2⟩)
(⟨1, 2⟩, ⟨0, 1⟩) (⟨0, 2⟩, ⟨0, 2⟩).

We have a prisoner’s dilemma: the southeastern corner is a unique Nash equilibrium, which is Pareto
dominated by the northwestern corner.

Example 5.6. Let us consider a generalized congestion game with negative impacts: N := {1, 2};
A := {a, b, c, d, e, f, g}; X1 :=

{
{a, b, c}, {d, e, f}

}
; X2 :=

{
{a, f, g}, {b, c, d}

}
; φa(2) := φb(2) :=

φd(2) := φe(1) := φg(1) := 0; φc(2) := 1; φa(1) := φd(1) := φf (2) := 2; φb(1) := φc(1) := φf (1) := 3.
Assuming that both players use the leximin aggregation, we obtain the 2× 2 matrix of the game:

afg bcd
abc (⟨0, 3, 3⟩, ⟨0, 0, 3⟩) (⟨0, 1, 2⟩, ⟨0, 1, 2⟩)
def (⟨0, 2, 2⟩, ⟨0, 2, 2⟩) (⟨0, 0, 3⟩, ⟨0, 3, 3⟩).

We have a prisoner’s dilemma again: the northeastern corner is a unique Nash equilibrium, which is
Pareto dominated by the southwestern corner.

Dual versions of Propositions 5.3 and 5.4 as well as Examples 5.5 and 5.6, where the leximin
aggregation is replaced with the leximax one, are easy to write down.

6 Characterization results

A mapping U : RΣ(U) → R, where Σ(U) is a finite set, is an admissible aggregation function if it is
continuous and increasing in the sense of[

∀s ∈ Σ(U)[v′s > vs]
]
⇒ U(v′Σ(U)) > U(vΣ(U)). (14)
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The continuity of U and (14) imply[
∀s ∈ Σ(U)[v′s ≥ vs]

]
⇒ U(v′Σ(U)) ≥ U(vΣ(U)). (15)

Remark. Exactly as in Kukushkin (2007), all results of this section remain valid if each U is assumed
to be defined on a Cartesian power of an open interval in R, e.g., R++, and the attention is restricted
to games where all values of local utilities belong to that interval. When the attention is restricted to,
say, integer-valued local utilities, nothing is known about the necessity parts of the following theorems;
most likely, they are wrong.

To formalize the idea that the players can apply the same aggregation function U to local utilities
obtained from various sets of facilities, we need some very technical notations. Let there be a bijection
µ : Σ → B between two finite sets. Even though #Σ = #B, we distinguish between RB and RΣ (cf.
the remark at the beginning of Section 3) because the coordinates (may) have different names: RB

consists of lists vB = ⟨vb⟩b∈B, whereas RΣ consists of lists vΣ = ⟨vs⟩s∈Σ. We define a mapping (actually,
a bijection) µ∗ : RB → RΣ by µ∗(vB)s = vµ(s) for all vB ∈ RB and s ∈ Σ. Given a function U : RΣ → R,
we define a function µ ∗ U : RB → R by µ ∗ U(vB) = U(µ∗(vB)).

Let U be a set of admissible aggregation functions. We say that a game with common local utilities
Γ is consistent with the set U if for every i ∈ N and xi ∈ Xi, there are U ∈ U and a bijection
µxi
i : Σ(U) → bi(xi) such that

Uxi
i (vbi(xi)) = µxi

i ∗ U(vbi(xi)).

Theorem 6.1. Let U be a set of admissible aggregation functions such that #Σ(U) = 1 for, at most,
one U ∈ U. Then the following conditions are equivalent.

1. Every generalized congestion game with negative impacts which is consistent with U has the FCP
and hence possesses a strong Nash equilibrium.

2. Every generalized congestion game with strictly negative impacts which is consistent with U pos-
sesses a weakly Pareto optimal Nash equilibrium.

3. For every U ∈ U, there is a continuous and strictly increasing mapping λU : R → R such that:

∀U ∈ U ∀vΣ(U) ∈ RΣ(U)
[
U(vΣ(U)) = λU (min{vs}s∈Σ(U))

]
; (16)

∀U ′, U ∈ U
[
λU ′

= λU or λU ′
(R) ∩ λU (R) = ∅

]
. (17)

The implication [1 ⇒ 2] is trivial. The proofs of [3 ⇒ 1] and [2 ⇒ 3] are deferred to Sections B.1
and B.2, respectively.

As is easily seen from the proof, the uniqueness of U ∈ U with #Σ(U) = 1 is not needed for
the implication [3 ⇒ 1] in Theorem 6.1 to hold. It is, however, essential for the equivalence between
Statements 1 and 2. For instance, if #Σ(U) = 1 for all U ∈ U, then no restriction on λU is needed
to ensure the existence of even a strong Nash equilibrium (Konishi et al., 1997), but there may be no
FIP (Milchtaich, 1996). Without that uniqueness, only a necessity result, without characterization,
has been obtained.
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Proposition 6.2. Let U be a set of admissible aggregation functions such that every generalized con-
gestion game with negative impacts which is consistent with U possesses a weakly Pareto optimal Nash
equilibrium. Then there is a continuous and strictly increasing mapping λU : R → R, for every U ∈ U,
such that:

∀U ∈ U ∀vΣ(U) ∈ RΣ(U)
[
U(vΣ(U)) = λU (min{vs}s∈Σ(U))

]
; (18)

∀U ′, U ∈ U
[
λU ′

= λU or λU ′
(R) ∩ λU (R) = ∅ or #Σ(U) = #Σ(U ′) = 1

]
. (19)

The proof, very similar to that of the implication [2 ⇒ 3] in Theorem 6.1, is deferred to Section B.3.

Theorem 6.3. For every set U of admissible aggregation functions, the following conditions are equiv-
alent.

1. Every game with structured utilities which is consistent with U and where the strategy sets are
compact and local utility functions are upper semicontinuous admits a strong ω-potential and
hence possesses a strong Nash equilibrium.

2. Every finite game with structured utilities which is consistent with U possesses a weakly Pareto
optimal Nash equilibrium.

3. For every U ∈ U, there is a continuous and strictly increasing mapping λU : R → R such that
either

∀U ∈ U ∀vΣ(U) ∈ RΣ(U)
[
U(vΣ(U)) = λU (min{vs}s∈Σ(U))

]
, (20)

or
∀U ∈ U ∀vΣ(U) ∈ RΣ(U)

[
U(vΣ(U)) = λU (max{vs}s∈Σ(U))

]
; (21)

besides,
∀U ′, U ∈ U

[
λU ′

= λU or #Σ(U) ̸= #Σ(U ′) or λU ′
(R) ∩ λU (R) = ∅

]
. (22)

The implication [1 ⇒ 2] is trivial. The proofs of [3 ⇒ 1] and [2 ⇒ 3] are deferred to Sections C.1
and C.2, respectively.

7 Concluding remarks

7.1. It is worth repeating that this paper is about games with ordinal preferences. Theorems 4.1
and 4.4, as well as Theorems 5.1 and 5.2, would remain valid if we assumed that every φα(I, ·) maps
Xα

I to an arbitrary chain rather than R, cf. Proposition 5.4. On the other hand, the chain must be the
same for all I and α; thus, the preferences are actually “co-ordinal” here.

7.2. Our assumption that all users obtain the same local utility from a facility should not be viewed as a
simplifying technical condition. Making it, we concentrate on relationships between “fellow travelers,”
which can be considered as basic as, e.g., those between competitors for a scarce resource. At the
moment, there is no evidence to suggest that similar results could hold in a broader context.

There are models in the literature where local utilities are not common. For instance, congestion
games with player-specific payoff functions possess, under certain assumptions, strong Nash equilibria

14



(Milchtaich, 1996; Konishi et al., 1997). Harks and Klimm (2015) obtained the existence of Nash equi-
libria in games where the players choose both facilities and local strategies. However, there is, typically,
no acyclicity of improvements in such models, and hence no ground to expect a close connection with
this paper.

7.3. We could define the weak coalitional improvement relation similarly to (1):

yN ◃wCo
I xN 


[
y−I = x−I & ∀i ∈ I [ui(yN ) ≥ ui(xN )] & ∃i ∈ I [ui(yN ) > ui(xN )]

]
; (23a)

yN ◃wCo xN 
 ∃I ∈ N [yN ◃wCo
I xN ]. (23b)

A maximizer of ◃wCo can be called a “very” strong Nash equilibrium. The existence of such equilibria
could not be asserted in Theorem 4.1 or Theorem 5.1; however, Kukushkin et al. (1985) showed that
they, in a sense, exist “more often than not.” Feldman and Tennenholtz (2010) obtained a more
straightforward existence theorem at the price of restricting the quantifier in (23b) to a subset of N .

7.4. Theorems 4.1 and 5.1 imply the acyclicity of strong coalitional improvements, and hence the
existence of strong Nash equilibria, in congestion games with singleton strategies under negative, re-
spectively positive, impacts. Both facts were noticed in Holzman and Law-Yone (1997), and Rozenfeld
and Tennenholtz (2006), respectively. However, our theorems are equally applicable to group formation
games where the wellbeing of each group depends on the set of members rather than on their number
only, provided either all impacts are negative or all positive. Without this uniformity of impacts, even
the existence of a Nash equilibrium in such games is not guaranteed.

Example 7.1. Let us consider a two person game where each player chooses a single facility, but
there is no anonymity: N := {1, 2}, A := {a, b}, X1 := X2 := {{a}, {b}}, φa({2}) := 0, φa({1}) := 2,
φa(N) := 4, φb(N) := 1, φb({2}) := 3, φb({1}) := 5 (i.e., a exhibits positive impacts; b, negative). The
matrix of the game looks as follows:

a b
a (4, 4) (2, 3)
b (5, 0) (1, 1).

There is no Nash equilibrium.

7.5. Just as in the case of Kukushkin (2007), some forms of the main results of this paper can be
found in Kukushkin (2004). The biggest advances over that paper are in Theorems 6.1 and 6.3 here: a
much broader notion of a family of aggregation rules is employed. Under this notion, the special role of
“aggregation rules” for the case of a single local utility in generalized congestion games was discerned.
It should be stressed that the possibility to reverse the implication in Proposition 6.2 remains unclear.

7.6. Comparing the formulations of Theorems 6.1 and 6.3 with those of Theorems 1 and 3 from
Kukushkin (2007), three essential differences can be noticed (apart from the difference between Nash
and strong Nash equilibria): The monotonicity conditions in the latter case are stronger; instead of
a set of admissible aggregation functions available to any player who may show up, the set of players
was fixed beforehand in Kukushkin (2007), and each player had his own family of available aggregation
functions; finally, there was a unique aggregation function for every number of arguments in each such
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family, whereas here we only assume uniqueness in the case of a single argument. Let us discuss each
item separately.

First, under the monotonicity assumption (14), the necessity parts of Theorems 1 and 3 from
Kukushkin (2007) would be just wrong, the maximum/minimum aggregation functions being coun-
terexamples. It remains unclear whether a similar characterization result under weaker monotonicity
assumptions is at all possible. Consider, e.g., this aggregation rule:

U(v1, v2, v3, . . . , vm) :=

{
v1 · v2 · v3 · · · vm, if ∀s [vs > 0],

min{v1, v2, v3, . . . , vm}, otherwise.

It is easy to see that the use of such aggregation by all players ensures the acyclicity of individual
improvements in any generalized congestion game or game with structured utilities.

Second, it is of crucial importance in the proofs of Lemmas B.2.3, B.2.2, C.2.2, and C.2.3 of this
paper that the same aggregation function may be used by different players. I cannot prove the lemmas
assuming that each player may have an idiosyncratic family of aggregation functions; but have no
counterexample either.

Thirdly, the proofs of Theorems 1 and 3 from Kukushkin (2007) should survive dropping that
uniqueness assumption (although I have not checked everything carefully) with a single exception: the
uniqueness for single-argument “aggregation” is essential in Theorem 1 for the same reasons as in
Theorem 6.1 here.

7.7. In Kukushkin (2007), a similarity was noted between the necessity proofs there and the famous
Debreu–Gorman Theorem (Debreu, 1960; Gorman, 1968), see also Wakker (1989), on additive repre-
sentation of separable orderings. There seems to be no general theorem on abstract preference orderings
that could display parallel similarities with Theorems 6.1 and 6.3 here. In particular, no connection
has been established so far with the axiomatic characterizations of the leximin and leximax orderings
in the social choice theory (d’Aspremont and Gevers, 1977; Deschamps and Gevers, 1978).

Appendix: Proofs

A Proof of Theorem 2.1

Given x0N ∈ XN , we denote Y ⊆ XN the set of strategy profiles that can be reached from x0N with
finite coalitional improvement paths. Then we define Z := clY ; clearly, Z is compact. We have to
prove that Z contains a strong Nash equilibrium, i.e., a maximizer of ◃Coa on XN .

Lemma A.1. If zN ∈ Z, I ∈ N , and yN ◃I zN , then yN ∈ Z too.

Proof. By (4), we have (yI , x−I) ◃I xN whenever xN belongs to an appropriate neighborhood O of zN .
Let V be an arbitrary open neighborhood of yN ; we pick an open neighborhood V−I of y−I such that
{yI}×V−I ⊆ V . By the definition of Z, there is a finite coalitional improvement path ⟨x0N , x1N , . . . , xmN ⟩
such that xmN ∈ O ∩ (XI × V−I). We define xm+1

N := (yI , x
m
−I). Since ⟨x0N , x1N , . . . , xmN , xm+1

N ⟩ remains
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a finite coalitional improvement path, xm+1
N ∈ Y . Since xm+1

N ∈ V and V was arbitrary, we have
yN ∈ Z.

Lemma A.2. There exists a maximizer of ◃Coa on Z.

Proof. Supposing the contrary, we have yN (xN ) ∈ Z and I(xN ) ∈ N , for every xN ∈ Z, such that
yN (xN ) ◃I(xN ) xN ; therefore, there holds (yI(xN ), x

′
−I(xN )) ◃I(xN ) x′N for every x′N from an appro-

priate neighborhood of xN by (4). Since Z is compact, there are open subsets O1, . . . , Om ⊆ XN ,
strategy profiles y1N , . . . , ymN ∈ Z, and I(h) ∈ N for each h ∈ {1, . . . ,m} such that Z ⊆

∪m
h=1O

h and
(yhI(h), x−I(h)) ◃I(h) xN whenever xN ∈ Oh (h ∈ {1, . . . ,m}).

Now we recursively construct an infinite sequence ⟨xkN ⟩k∈N in Z, starting with x0N already given.
Having xkN ∈ Z defined, we pick h such that xkN ∈ Oh and define xk+1

N := (yhI(h), x
k
−I(h)). By (4),

we have xk+1
N ◃I(h) x

k
N , hence xk+1

N ∈ Z by Lemma A.1. Therefore, ⟨xkN ⟩k∈N is an infinite coalitional

improvement path in Z. The way our path is constructed ensures that, for every i ∈ N and k ∈ N, xki
is either x0i or one of yhi (h ∈ {1, . . . ,m}), i.e., there is a finite number of possible values. Therefore,
we must have xk

′
N = xk

′′
N with k′ ̸= k′′, which contradicts the supposed acyclicity of ◃Coa.

To finish with the proof of the theorem, we pick a maximizer zN of ◃Coa on Z, existing by
Lemma A.2. By Lemma A.1, it is a maximizer of ◃Coa on XN , i.e., a strong Nash equilibrium.

B Proof of Theorem 6.1

B.1 Sufficiency

Let U be a set of admissible aggregation functions satisfying both conditions (16) and (17) from The-
orem 6.1. The condition (17) obviously implies that U is partitioned into a (finite or infinite) num-
ber of subsets W t (t ∈ T ) such that λU = λU ′

whenever U and U ′ belong to the same W t, and
λU (R) ∩ λU ′

(R) = ∅ whenever they do not. The latter condition, in turn, means that the set T is lin-
early ordered by the relation t > t′ 


[
λU (u) > λU ′

(u′) whenever U ∈ W t, U ′ ∈ W t′ , and u, u′ ∈ R
]
.

Let Γ be a generalized congestion game with negative impacts which is consistent with U. For each
player i ∈ N , the order on T generates an ordering on Xi: xi ≽ yi 


[
Uxi
i ∈ W t & Uyi

i ∈ W t′ & [t =
t′ or t > t′]

]
. Obviously, ui(xi, z−i) > ui(yi, z

′
−i) for all z−i, z

′
−i ∈ X−i whenever xi ≻ yi. Assuming

the possibility of a coalitional improvement cycle in Γ, we immediately see that all strategies of each
player involved in the cycle must be equivalent in that ordering. Denoting Γ∗ the game with the same
players, facilities, and strategies, but with the minimum aggregation (7), we see that the same cycle is
a coalitional improvement cycle in Γ∗ as well; however, this contradicts Theorem 4.1.

B.2 Necessity

As a first step, we show that every function U ∈ U is symmetric.

Lemma B.2.1. Let U ∈ U, s′, s′′ ∈ Σ(U), v−, v+ ∈ R, and v′Σ(U), v
′′
Σ(U) ∈ RΣ(U) be such that v+ > v−,

v′′s′′ = v′s′ = v+, v′′s′ = v′s′′ = v−, and v′′s = v′s for all s ∈ Σ(U) \ {s′, s′′}. Then U(v′′Σ(U)) = U(v′Σ(U)).
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Proof. Supposing the contrary, we may, without restricting generality, assume u+ := U(v′′Σ(U)) >

U(v′Σ(U)) =: u−. Now let us consider a generalized congestion game with strictly negative impacts which

is consistent with U: N := {1, 2}; the facilities are A := {a, b, c, d} ∪ E, where E := {es}s∈Σ(U)\{s′,s′′};
X1 :=

{
{a, c} ∪ E, {b, d} ∪ E

}
; X2 :=

{
{d, a} ∪ E, {c, b} ∪ E

}
; φz(1) := v+ and φz(2) := v− for

each z ∈ {a, b, c, d}, while φes(2) := v′s for all s ∈ Σ(U) \ {s′, s′′}; Uxi
i is U for both i ∈ N and all

xi ∈ Xi; µ
{a,c}∪E
1 (s′) := c, µ

{a,c}∪E
1 (s′′) := a, µ

{b,d}∪E
1 (s′) := d, µ

{b,d}∪E
1 (s′′) := b, µ

{d,a}∪E
2 (s′) := a,

µ
{d,a}∪E
2 (s′′) := d, µ

{c,b}∪E
2 (s′) := b, µ

{c,b}∪E
2 (s′′) := c, and µxi

i (s) := es for both i ∈ N and all xi ∈ Xi

and s ∈ Σ(U) \ {s′, s′′}. The 2× 2 matrix of the game looks as follows:

daE cbE
acE (u−, u+) (u+, u−)
bdE (u+, u−) (u−, u+).

There is no Nash equilibrium in the game.

Remark. Neither continuity, nor monotonicity of U were needed in the proof. On the other hand, in
Lemmas B.1 and B.2 of Kukushkin (2007), where the continuity and monotonicity were used, there
was no need to assume that the same aggregation function is available to all players, cf. Section 7.6.

Lemma B.2.1 shows that the mappings µxi
i do not matter and hence may be dropped in the following.

Moreover, we will assume that Σ(U) = {1, . . . ,m} (withm depending on U , naturally; when considering
two functions simultaneously, we will assume that Σ(U ′) = {1, . . . ,m′}). As a next step, we show that
the impossibility of a prisoner’s dilemma implies that each indifference curve in each two-dimensional
section must exhibit a similarity with either minimum or maximum.

Lemma B.2.2. Let U ∈ U, v1 > v2, and

U(v1, v2, v3, . . . , vm) > U(v2, v2, v3, . . . , vm); (24)

then U(v1, v̄2, v3, . . . , vm) = U(v1, v2, v3, . . . , vm) for all v̄2 ≤ v2.

Proof. A non-strict inequality immediately follows from the monotonicity of U . Let us suppose that
U(v1, v̄2, . . . , vm) =: u′ < u := U(v1, v2, . . . , vm) for some v̄2 < v2. Taking into account (24) and the
continuity of U , we may, increasing v̄2 if needed, assume U(v2, v2, v3, . . . , vm) < u′. By the continuity
of U , there is δ > 0 such that v2+ δ < v1 and U(v2+ δ, v2+ δ, v3+ δ, . . . , vm+ δ) =: u′′ < u′; we denote
U(v1 + δ, v2 + δ, v3 + δ, . . . , vm + δ) =: u+ > u. Thus,

u′′ < u′ < u < u+. (25)

Now let us consider a generalized congestion game with strictly negative impacts which is consistent
with U: N := {1, 2}; the facilities are A := {a, b, c, d} ∪ E ∪ F , where E := {es}3≤s≤m and F :=
{fs}3≤s≤m; X1 :=

{
{a, c} ∪E, {b, d} ∪F

}
; X2 :=

{
{a, d} ∪E, {b, c} ∪F

}
; φa(1) := v1 + δ, φa(2) := v̄2,

φb(1) := v2 + δ, φb(2) := v2, φc(1) := φd(1) := v1, φc(2) := φd(2) := v2 + δ, φes(1) := φfs(1) := vs + δ
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and φes(2) := φfs(2) := vs (s = 3, . . . ,m); Uxi
i := U for both i ∈ N and all xi ∈ Xi. The 2× 2 matrix

of the game looks as follows:
adE bcF

acE (u′, u′) (u+, u′′)
bdF (u′′, u+) (u, u).

Taking into account (25), we see that the northwestern corner is a unique Nash equilibrium, which is
strongly Pareto dominated by the southeastern corner.

Lemma B.2.3. Let U ∈ U, v1 > v2, and

U(v1, v1, v3, . . . , vm) > U(v1, v2, v3, . . . , vm); (26)

then U(v̄1, v2, v3, . . . , vm) = U(v1, v2, v3, . . . , vm) for all v̄1 ≥ v1.

Proof. A non-strict inequality immediately follows from the monotonicity of U . Let us suppose

U(v̄1, v2, . . . , vm) =: u+ > u := U(v1, v2, . . . , vm) (27)

for some v̄1 > v1. By the continuity of U , (26) and (27) imply the existence of v′1 ∈]v2, v1[ such that
u < U(v′1, v1, v3, . . . , vm) < u+. By the same continuity, we may pick δ > 0 such that v′1 + δ < v1,
U(v2+δ, v1+δ, v3+δ, . . . , vm+δ) =: u′ < U(v′1, v1, v3, . . . , vm) and U(v′1+δ, v1+δ, v3+δ, . . . , vm+δ) =:
u′′ < u+; by monotonicity,

u < u′ < u′′ < u+. (28)

Now let us consider a generalized congestion game with strictly negative impacts which is consistent
with U: N := {1, 2}; the facilities are A := {a, b, c, d} ∪ E ∪ F , where E := {es}3≤s≤m and F :=
{fs}3≤s≤m; X1 :=

{
{a, c} ∪E, {b, d} ∪F

}
; X2 :=

{
{a, d} ∪F, {b, c} ∪E

}
; φa(1) := v̄1, φa(2) := v2 + δ,

φb(1) := v1, φb(2) := v′1 + δ, φc(1) := φd(1) := v1 + δ, φc(2) := φd(2) := v2, φes(1) := φfs(1) := vs + δ
and φes(2) := φfs(2) := vs (s = 3, . . . ,m); Uxi

i := U for both i ∈ N and all xi ∈ Xi. The 2× 2 matrix
of the game looks as follows:

adF bcE
acE (u′, u′) (u+, u)
bdF (u, u+) (u′′, u′′).

Taking into account (28), we see that the northwestern corner is a unique Nash equilibrium, which is
strongly Pareto dominated by the southeastern corner.

As a next step, we establish a restriction on mutual location of combinations of arguments where
condition (29), respectively, (30) holds.

Lemma B.2.4. Let U,U ′ ∈ U, v1 > v2,

U(v1, v1, v3, . . . , vm) > U(v1, v2, v3, . . . , vm), (29)

v′1 > v′2, and
U ′(v′1, v

′
2, v

′
3, . . . , v

′
m′) > U ′(v′2, v

′
2, v

′
3, . . . , v

′
m′). (30)

Then v1 > v′2.

19



Proof. Supposing the contrary, v′2 ≥ v1, we denote u
−
1 := U(v′1, v2, v3, . . . , vm), u+1 := U(v1, v1, v3, . . . , vm),

u−2 := U ′(v1, v1, v
′
3, . . . , v

′
m′), and u+2 := U ′(v′1, v2, v

′
3, . . . , v

′
m′). We have u+1 > u−1 by Lemma B.2.3 since

v′1 > v′2 ≥ v1, and u+2 > u−2 by Lemma B.2.2 since v′2 ≥ v1 > v2.

Now we consider a generalized congestion game with strictly negative impacts which is consistent
with U: N := {1, 2}; the facilities are A := {a, b, c, d} ∪ E ∪ F , where E := {es}s∈{3,...,m} and F :=
{fs}s∈{3,...,m′}; X1 :=

{
{a, b} ∪ E, {c, d} ∪ E

}
; X2 :=

{
{a, c} ∪ F, {b, d} ∪ F

}
; φa(2) := φd(2) := v2,

φa(1) := φd(1) := φb(2) := φc(2) := v1, φb(1) := φc(1) := v′1, φes(1) := vs for each s ∈ {3, . . . ,m}, and
φfs(1) := v′s for each s ∈ {3, . . . ,m′}; Ux1

1 is U for each x1 ∈ X1 and Ux2
2 is U ′ for each x2 ∈ X2. The

2× 2 matrix of the game looks as follows:

acF bdF
abE (u−1 , u

+
2 ) (u+1 , u

−
2 )

cdE (u+1 , u
−
2 ) (u−1 , u

+
2 ).

There is no Nash equilibrium in the game.

Given U ∈ U, we denote:

V min
U := {v1 ∈ R | ∃v2, . . . , vm ∈ R [v1 > v2 & U(v1, v1, v3, . . . , vm) > U(v1, v2, v3, . . . , vm)]};

V max
U := {v2 ∈ R | ∃v1, v3, . . . , vm ∈ R [v1 > v2 & U(v1, v2, v3, . . . , vm) > U(v2, v2, v3, . . . , vm)]};

vmin
U := inf V min

U ; vmax
U := supV max

U .

(If V min
U = ∅, then we assume vmin

U = +∞; if V max
U = ∅, then vmax

U = −∞.) By Lemma B.2.4,
vmin
U ≥ vmax

U . For v ∈ R, we define
λU (v) := U(v, v, . . . , v).

Clearly, λU is continuous and strictly increasing.

Lemma B.2.5. For every U ∈ U and v1, v2, v3, . . . , vm ∈ R, there hold

U(v1, v2, v3, . . . , vm) = λU (min
s

vs) (31)

whenever mins vs ≥ vmax
U , and

U(v1, v2, v3, . . . , vm) = λU (max
s

vs) (32)

whenever maxs vs ≤ vmin
U .

Proof. Let mins vs > vmax
U . Without restricting generality, we may assume v1 ≥ v2 ≥ · · · ≥ vm. By the

definition of vmax
U and symmetry of U , we have U(v1, v2, . . . , vm−1, vm) = U(v1, v2, . . . , vm−2, vm, vm) =

· · · = U(v1, vm, . . . , vm, vm) = U(vm, . . . , vm) = λU (min{v1, v2, . . . , vm}).
If mins vs = vmax

U , we obtain the same equality by continuity. If maxs vs ≤ vmin
U , we argue dually.

Lemma B.2.6. For every U ∈ U, either vmin
U = vmax

U = +∞ or vmin
U = vmax

U = −∞.
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Proof. Supposing that vmax
U < v′ < v′′ < vmin

U , we would have U(v′, v′′, . . . , v′′) = λU (v′) by (31) and
U(v′, v′′, . . . , v′′) = λU (v′′) by (32), which is impossible since λU is strictly increasing.

Supposing that v′ < vmax
U = vmin

U < v′′, we would have U(vmax
U , v′′, . . . , v′′) = λU (vmax

U ) by (31) and
U(v′, . . . , v′, vmax

U ) = λU (vmax
U ) by (32), which contradicts monotonicity (14).

Lemma B.2.7. Either U(v1, v2, v3, . . . , vm) = λU (mins vs) for every U ∈ U and all v1, v2, v3, . . . , vm ∈
R, or U(v1, v2, v3, . . . , vm) = λU (maxs vs) for every U ∈ U and all v1, v2, v3, . . . , vm ∈ R.

Immediately follows from Lemmas B.2.5, B.2.6, and B.2.4.

Lemma B.2.8. For every U ∈ U and all v1, v2, v3, . . . , vm ∈ R, there holds U(v1, v2, v3, . . . , vm) =
λU (mins vs).

Proof. In light of Lemma B.2.7, it is enough to show that the maximum aggregation is not “good” in
the case of negative impacts. If U contains functions of m ≥ 3 arguments, the dual to Example 4.2 will
do. Otherwise, we need an example more.

Let us consider a generalized congestion game with strictly negative impacts and the maximum
aggregation: N := {1, 2, 3}; the facilities are A := {a, b, c, d, e}; X1 :=

{
{a, e}, {b, d}

}
; X2 :={

{a, c}, {d, e}
}
; X3 :=

{
{a, b}, {c, e}

}
; φa(3) := φe(3) := 0, φc(2) := φe(2) := 1, φa(2) := φd(2) :=

φe(1) := 2, φb(2) := 3, φc(1) := 4, φd(1) := 5, φa(1) := 6, and φb(1) := 7; every Uxi
i is the same U

defined by (32). Denoting uk := λU (k) for each k ∈ {1, 2, . . . , 7}, we obtain the following 2 × 2 × 2
matrix of the game (player 1 chooses rows, player 2 columns, and player 3 matrices):

ab ce
ac de ac de

ae
bd

[
(u2, u4, u7) (u2, u5, u7)
(u5, u4, u3) (u3, u2, u6)

] [
(u2, u2, u1) (u6, u5, u4)
(u7, u6, u2) (u7, u2, u4)

]
.

The individual improvement relation is acyclic (as it should be according to the dual version of corollary
to Proposition 5.4) and the southwestern corner of the left matrix is a unique Nash equilibrium.
However, this equilibrium is strongly Pareto dominated by the northeastern corner of the right matrix.

Remark. I have been unable to prove the lemma with a two-person game where no player ever uses
more than two facilities. Probably, there is a “positive” result here, but it has not yet been distilled.

Thus, (16) is proven. Let us turn to (17).

Lemma B.2.9. Let U,U ′ ∈ U and λU ̸= λU ′
. Then λU (R) ∩ λU ′

(R) = ∅.

Proof. Let us suppose the contrary, λU (R)∩λU ′
(R) ̸= ∅. Since both λU and λU ′

are homeomorphisms,
λU (R) ∩ λU ′

(R) is open and {v ∈ R | λU ′
(v) = λU (v)} is closed in R, there must be v′ ̸= v such that

λU ′
(v′) = λU (v). Let #Σ(U ′) =: m′ > 1.

1. Supposing first that v > v′, we denote u1 := λU ′
(v′). Then we pick v ∈]v′, v[, denote u0 := λU (v)

and u3 := λU ′
(v) (so u0 < λU (v) = u1 = λU ′

(v′) < u3), and pick v̄ > v so that u2 := λU (v̄) < u3;
u2 > u1 is satisfied automatically.
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Let us consider a generalized congestion game with strictly negative impacts, which is consistent
with U: N := {1, 2}; the facilities are A := {a, b, c} ∪ D ∪ E, where D := {ds}2≤s≤m and E :=
{es}3≤s≤m′ ; X1 :=

{
{a} ∪D, {b, c} ∪ E

}
; X2 :=

{
{a, b} ∪ E, {c} ∪D

}
; φa(2) := φb(1) := φc(2) := v,

φa(1) := φc(1) := v̄, φb(2) := v′, φds(2) := φes′ (2) := v̄ and φds(1) := φes′ (1) > v̄ for all appropriate s
and s′; Uxi

i is U ′ if xi includes two facilities from {a, b, c} and U otherwise. The 2 × 2 matrix of the
game looks as follows:

abE cD
aD (u0, u3) (u2, u2)
bcE (u1, u1) (u3, u0).

We have a prisoner’s dilemma: strategies with the “U ′ aggregation” are dominant, but the northeastern
corner strongly Pareto dominates the southwestern one.

2. Supposing v′ > v, we denote u0 := λU ′
(v) and u4 := λU (v) > u0; then we pick v ∈]v, v′[ and

v+ > v̄ > v′, and denote u3 := λU ′
(v) < u4 < λU ′

(v̄) =: u6 < λU ′
(v+) =: u7. Then we pick v′′ ∈]v, v[

so that u5 := λU (v′′) < u6; u5 > u4 is satisfied automatically. Finally, we pick v′′′ ∈]v, v′′[, and denote
u1 := λU ′

(v′′′) and u2 := λU ′
(v′′); we have u0 < u1 < · · · < u7.

Let us consider a generalized congestion game with strictly negative impacts, which is consistent
with U: N := {1, 2, 3}; the facilities are A := {a, b, c, d} ∪ E ∪ F , where E := {es}2≤s≤m and F :=
{fs}2≤s≤m′ ; X1 :=

{
{a} ∪ E, {d} ∪ F

}
; X2 :=

{
{a, b} ∪ F \ {f2}, {c} ∪ F

}
; X3 :=

{
{d} ∪ F, {b} ∪ F

}
;

φa(2) := v, φa(1) := φb(2) := v′′, φb(1) := v+, φc(1) := v′′′, φd(2) := v, φd(1) := φes′ (1) := φfs(3) := v̄,
φfs(2) := v+ and φfs(1) > v+ for all appropriate s and s′; Uxi

i is U if i = 1 and xi includes a, and U ′

otherwise. The 2 × 2 × 2 matrix of the game looks as follows (again, player 1 chooses rows, player 2
columns, and player 3 matrices):

dF bF
abF cF abF cF

aE
dF

[
(u4, u0, u6) (u5, u1, u6)
(u3, u2, u3) (u3, u1, u3)

] [
(u4, u0, u2) (u5, u1, u7)
(u6, u2, u2) (u6, u1, u6)

]
.

There is no Nash equilibrium in the game.

B.3 Proof of Proposition 6.2

The condition here is the same as Statement 2 of Theorem 6.1. Therefore, we can argue exactly as
in Section B.2 until we reach Lemma B.2.9, where the uniqueness of U ∈ U for which #Σ(U) = 1
was relied upon indeed. However, if #Σ(U ′) = #Σ(U) = 1, then (19), unlike (17), does not require
anything of such U ′ and U , so the lemma is not needed.

C Proof of Theorem 6.3

C.1 Sufficiency

Let U be a set of admissible aggregation functions satisfying Condition 3 from Theorem 6.3. Denoting
Um := {U ∈ U | #Σ(U) = m} for every m ∈ N, we may argue in the same way as in Section B.1
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and obtain the partitioning of each (nonempty) Um into subsets W t (t ∈ T (m)) such that λU = λU ′

whenever U and U ′ belong to the same W t and the set T (m) is linearly ordered by the relation
t > t′ 


[
λU (u) > λU ′

(u′) whenever U ∈ W t, U ′ ∈ W t′ , and u, u′ ∈ R
]
.

Let Γ be a game with structured utilities which is consistent with U and where the strategy sets are
compact and utility functions upper semicontinuous. We have to prove that Γ admits an ω-potential.

For each i ∈ N , we have #Σ(Uxi
i ) = #Υi for all xi ∈ Xi. Therefore, the order on T (#Υi) generates

an ordering on Xi (exactly as in Section B.1): yi ≽i xi 

[
Uyi
i ∈ W t & Uxi

i ∈ W t′ & t ≥ t′
]
. Obviously,

ui(yi, z−i) > ui(xi, z
′
−i) for all z−i, z

′
−i ∈ X−i whenever yi ≻i xi. It follows immediately that yi ≽i xi

whenever yN ◃I xN and i ∈ I.

Now we define a preorder on XN by

yN ≽N xN 
 ∀i ∈ N [yi ≽i xi],

and denote ≻N and ∼N its asymmetric and symmetric components. The upper semicontinuity of ui
implies that each ≽i is ω-transitive and hence ≽N is ω-transitive as well.

Apart from “genuine” utilities ui, we introduce, for each i ∈ N , “neutral” utility functions u0i by
(7), i.e., “without λ’s.”

Let (20) hold. We denote >Lmin the leximin ordering on XN defined by utility functions u0i as in
the proof of Theorem 4.1. Now we define our potential as a lexicography:

yN ≻≻ xN 

[
yN ≻N xN or [yN ∼N xN & yN >Lmin xN ]

]
. (33)

Obviously, ≻≻ is irreflexive and transitive. To show its ω-transitivity, we assume that xkN → xωN and
xk+1
N ≻≻ xkN for all k ∈ N. Then, by definition, xk+1

N ≽N xkN for all k, and hence xωN ≽N x0N since that
relation is ω-transitive. If xωN ≻N x0N , we are home by the first component in (33). Otherwise, we have
xk+1
N ∼N xkN for all k, and hence are home by the second component in (33) since >Lmin is ω-transitive.

Finally, let yN ◃Coa xN ; we have to show that yN ≻≻ xN . First, yN ≽N xN . If yN ≻N xN ,
then we are home immediately. Otherwise, the same λ’s are applied to each u0i in both cases; hence
yN >Lmin xN exactly as in the proof of Theorem 4.1.

If (21) holds, we argue dually, replacing >Lmin with >Lmax.

C.2 Necessity

More than one half of the proof goes along exactly the same lines as in Section B.2. We show that
every function U ∈ U is symmetric (Lemma C.2.1); hence we ignore the mappings µxi

i and assume that
Σ(U) = {1, . . . ,m}; every indifference curve in every two-dimensional section is either a “minimum-
like” angle or a “maximum-like” one (Lemmas C.2.2 and C.2.3); every “minimum-like” angle must be
on the right of every “maximum-like” one (Lemma C.2.4). The only difference with the relevant part
of the proof of Theorem 6.1 is that each time we produce a game with structured utilities rather than
a generalized congestion game. Unlike Theorem 6.1, both minimum and maximum are equally good
here.

Lemma C.2.1. Let U ∈ U, s′, s′′ ∈ Σ(U), v−, v+ ∈ R, and v′Σ(U), v
′′
Σ(U) ∈ RΣ(U) be such that v+ > v−,

v′′s′′ = v′s′ = v+, v′′s′ = v′s′′ = v−, and v′′s = v′s for all s ∈ Σ(U) \ {s′, s′′}. Then U(v′′Σ(U)) = U(v′Σ(U)).
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Proof. Supposing the contrary, we may, without restricting generality, assume u+ := U(v′′Σ(U)) >

U(v′Σ(U)) =: u−. Now let us consider a finite game with structured utilities which is consistent with

U: N := {1, 2}; the facilities are A := {a, b} ∪ C, where C := {cs}s∈Σ(U)\{s′,s′′}; Υ1 := Υ2 := A;
X1 := X2 := {1, 2}; φa(x1, x2) := v− if x1 = x2 and φa(x1, x2) := v+ otherwise; φb(x1, x2) := v− if
x1 ̸= x2 and φa(x1, x2) := v+ otherwise; φcs(x1, x2) := vs for all s ∈ Σ(U) \ {s′, s′′} and (x1, x2) ∈ XN ;
Uxi
i is U for both i ∈ N and all xi ∈ Xi; µ

x1
1 (s′) := b, µx1

1 (s′′) := a, µx2
2 (s′) := a, µx2

2 (s′′) := b, and
µxi
i (s) := cs for both i ∈ N and all xi ∈ Xi and s ∈ Σ(U) \ {s′, s′′}. The 2× 2 matrix of the game (as

usual, player 1 chooses rows, numbered from top to bottom, while player 2 chooses columns, numbered
from left to right) looks as follows:

(u−, u+) (u+, u−)
(u+, u−) (u−, u+).

There is no Nash equilibrium in the game.

Lemma C.2.2. Let U ∈ U, v1 > v2, and

U(v1, v2, v3, . . . , vm) > U(v2, v2, v3, . . . , vm);

then U(v1, v̄2, v3, . . . , vm) = U(v1, v2, v3, . . . , vm) for all v̄2 ≤ v2.

Proof. A non-strict inequality immediately follows from the monotonicity of U . Let us suppose that
U(v1, v̄2, . . . , vm) =: u′ < u := U(v1, v2, . . . , vm) for some v̄2 < v2. As in Lemma B.2.2, we may
assume that u− := U(v2, v2, v3, . . . , vm) < u′. By the continuity of U , there is v̄1 ∈]v2, v1[ such that
u′ < U(v̄1, v2, v3, . . . , vm) =: u′′ < u. Thus,

u− < u′ < u′′ < u. (34)

Now let us consider a finite game with structured utilities which is consistent with U: N := {1, 2};
the facilities are A := {a1, a2, b} ∪ C, where C := {cs}s∈{3,...,m}; Υi := {ai, b} ∪ C for both i; X1 :=
X2 := {1, 2}; Uxi

i is U for both i ∈ N and all xi ∈ Xi; φai(1) := v2, φai(2) := v1; φb(1, 1) := v̄1,
φb(1, 2) := φb(2, 1) := v2, φb(2, 2) := v̄2; φcs(x1, x2) := vs (s = 3, . . . ,m). The 2×2 matrix of the game
looks as follows:

(u′′, u′′) (u−, u)
(u, u−) (u′, u′).

Taking into account (34), we see that the southeastern corner (x1 = x2 = 2) is a unique Nash equilib-
rium, which is strongly Pareto dominated by the northwestern corner (x1 = x2 = 1).

Lemma C.2.3. Let U ∈ U, v1 > v2, and

U(v1, v1, v3, . . . , vm) > U(v1, v2, v3, . . . , vm); (35)

then U(v̄1, v2, v3, . . . , vm) = U(v1, v2, v3, . . . , vm) for all v̄1 ≥ v1.
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Proof. A non-strict inequality immediately follows from the monotonicity of U . Let us suppose that
U(v̄1, v2, . . . , vm) =: u′′ > u := U(v1, v2, . . . , vm) for some v̄1 > v1; we may assume, without restricting
generality, that u′′ < u+ := U(v1, v1, v3, . . . , vm).

By the continuity of U , (35) implies the existence of v′1 ∈]v2, v1[ such that u < u′ :=
U(v′1, v1, v3, . . . , vm) < u′′. Thus,

u < u′ < u′′ < u+. (36)

Now let us consider a finite game with structured utilities which is consistent with U: N := {1, 2};
the facilities are A := {a1, a2, b} ∪ C, where C := {cs}s∈{3,...,m}; Υi := {ai, b} ∪ C for both i; X1 :=
X2 := {1, 2}; Uxi

i is U for both i ∈ N and all xi ∈ Xi; φai(1) := v2, φai(2) := v1; φb(1, 1) := v̄1,
φb(1, 2) := φb(2, 1) := v1, φb(2, 2) := v′1; φcs(x1, x2) := vs (s = 3, . . . ,m). The 2×2 matrix of the game
looks as follows:

(u′′, u′′) (u, u+)
(u+, u) (u′, u′).

Taking into account (36), we see that the southeastern corner (x1 = x2 = 2) is a unique Nash equilib-
rium, which is strongly Pareto dominated by the northwestern corner (x1 = x2 = 1).

Lemma C.2.4. Let U,U ′ ∈ U, v1 > v2,

U(v1, v1, v3, . . . , vm) > U(v1, v2, v3, . . . , vm), (37)

v′1 > v′2, and
U ′(v′1, v

′
2, v

′
3, . . . , v

′
m′) > U ′(v′2, v

′
2, v

′
3, . . . , v

′
m′). (38)

Then v1 > v′2.

Proof. Supposing the contrary, v′2 ≥ v1, we denote u
−
1 := U(v′1, v2, v3, . . . , vm), u+1 := U(v1, v1, v3, . . . , vm),

u−2 := U ′(v1, v1, v
′
3, . . . , v

′
m′), and u+2 := U ′(v′1, v2, v

′
3, . . . , v

′
m′). We have u+1 > u−1 by Lemma C.2.3 since

v′1 > v′2 ≥ v1, and u+2 > u−2 by Lemma C.2.2 since v′2 ≥ v1 > v2.

Now we consider a finite game with structured utilities which is consistent with U: N := {1, 2}; the
facilities are A := {a, b} ∪ C ∪D, where C := {cs}s∈{3,...,m} and D := {ds}s∈{3,...,m′}; Υ1 := {a, b} ∪ C,
Υ2 := {a, b} ∪ D; X1 := X2 := {1, 2}; Ux1

1 is U for both x1 ∈ X1 and Ux2
2 is U ′ for both x2 ∈ X2;

φa(x1, x2) := v1 if x1 = x2, φa(x1, x2) := v′1 otherwise; φb(x1, x2) := v1 if x1 = x2, φb(x1, x2) := v2
otherwise; φcs(x1) := vs for both x1 ∈ X1 and all s = 3, . . . ,m; φds(x2) := v′s for both x2 ∈ X2 and all
s = 3, . . . ,m′. The 2× 2 matrix of the game looks as follows:

(u+1 , u
−
2 ) (u−1 , u

+
2 )

(u−1 , u
+
2 ) (u+1 , u

−
2 ).

There is no Nash equilibrium in the game.

Lemma C.2.5. Either U(v1, v2, v3, . . . , vm) = λU (mins vs) for every U ∈ U and all v1, v2, v3, . . . , vm ∈
R, or U(v1, v2, v3, . . . , vm) = λU (maxs vs) for every U ∈ U and all v1, v2, v3, . . . , vm ∈ R.
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The statement follows from Lemma C.2.4 in the same way as Lemma B.2.7 followed from
Lemma B.2.4.

Finally, let us turn to (22).

Lemma C.2.6. Let U,U ′ ∈ U, #Σ(U) = #Σ(U ′), and λU ̸= λU ′
. Then λU (R) ∩ λU ′

(R) = ∅.

Proof. Supposing the contrary, we, exactly as in the proof of Lemma B.2.9, obtain the existence of
v′ > v such that λU ′

(v′) = λU (v). We denote u+ := λU (v) and u− := λU ′
(v); obviously, u− < u+. Then

we pick v′′ < v such that λU (v′′) =: u ∈]u−, u+[, and pick v0 < v′ such that λU ′
(v0) =: u0 ∈]u, u+[.

Thus, u− < u < u0 < u+.

Now we consider a finite game with structured utilities which is consistent with U: N := {1, 2};
the facilities are A := {as}s∈{1,...,m}, where m := #Σ(U) := #Σ(U ′); Υi := A for both i; X1 := X2 :=
{1, 2}; U1

i is U and U2
i is U ′ for both i; for each s ∈ {1, . . . ,m}, φas(1, 1) := v′′, φas(2, 1) := φas(1, 2) :=

v, and φas(2, 2) := v0. Since φas(xN ) does not depend on s, the 2× 2 matrix of the game is the same
whether (20) or (21) holds:

(u, u) (u+, u−)
(u−, u+) (u0, u0).

We have a prisoner’s dilemma: strategies with the “U aggregation” (xi = 1) are dominant, but the
southeastern corner strongly Pareto dominates the northwestern one.

Remark. Unlike Lemma B.2.9, there is nothing special about the case of #Σ(U) = 1 here.
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