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Abstract

Strategic games are considered where the players participate in certain “activ-
ities”; each activity generates a “level of satisfaction,” shared by all participating
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is paid to conditions conducive to the acyclicity of individual or coalition improve-
ments, hence the existence of appropriate (Nash or strong) equilibria. There are
two types of such conditions: those concerning how a new participant can affect an
activity, and those concerning the aggregation functions. Special rôles of additive
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1 Introduction

This paper has originated from a comparison between two approaches started in the 1970s:
Rosenthal (1973) and Germeier and Vatel’ (1974), respectively; the latter approach was
developed further in a series of papers, see Kukushkin et al. (1985) and references therein.
When described in very general terms, both approaches sound identical: the players derive
their utilities from participation in the functioning of certain “objects”; the state of each
object depends on the participating players; the utility of each player is a function of the
states of relevant objects; an equilibrium always exists, actually, there is the acyclicity of
improvements.

When one looks closer, plenty of differences can be discerned: players in congestion
games choose themselves what objects should be relevant to them (actually, they do
not choose anything else) whereas the correspondence between players and objects in a
game with structured payoffs is fixed forever; in the former games, the players sum up
their intermediate utilities whereas in the latter they take the minimum of them; in the
former class, the existence of a Nash equilibrium is ensured, while in the latter it is strong
equilibrium.

In Moulin (1982, Chapter 5), pirates were going to a treasure island; each pirate could
choose between two ships, and the more pirates on board of either ship, the slower it
went. The game was a particular case of Rosenthal’s model, but the existence of a strong
equilibrium, as in Germeier–Vatel’s model, was established. It is remarkable that, since
each player could only be associated with a single object (ship), we may assume that the
minimum aggregation was applied and, therefore, the existence of a strong equilibrium
(and even the acyclicity of coalition improvements) was to be expected.

Here we define a rather general class of games including all the above models: the
players participate in certain “activities,” which they are free to choose within certain
limits; each activity generates a “level of satisfaction,” shared by all participating players,
and which depends on the list of participants as well as on their actions; the utility of
each player is an aggregate of the relevant levels.

An arbitrary game from the class need not have any nice properties; however, it is
possible to formulate a number of conditions conducive to the acyclicity of individual or
coalition improvements. There are two types of such conditions: those concerning how
the players aggregate relevant intermediate objectives into their ultimate utility functions,
and those concerning how an activity is influenced when a new player joins the list of par-
ticipants. Each sufficient condition for the acyclicity of an improvement relation consists
of two “elementary” conditions, one of each type.

The acyclicity of coalition improvements is ensured by the minimum aggregation and
negative impacts (Theorem 1 below), or, dually, by the maximum aggregation and positive
impacts (Theorem 2). Theorem 1 strengthens both Theorem 1 of Kukushkin et al. (1985)
— acyclicity is added to mere existence — and Moulin’s result about the pirates and ships:
acyclicity is added to the statement whereas anonymity is dropped from the assumptions.

Holzman and Law-Yone (1997) found restrictions on strategy sets in a congestion
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game ensuring the existence of a strong equilibrium under negative impacts. They even
described a class of coalition improvements that cannot cycle in this situation. However,
it remains unclear whether arbitrary coalition improvements can form a cycle; nothing is
also known about the possibility to drop or modify the negative impacts assumption. So
far, there is no clear relation to Theorem 1 of this paper.

Acyclicity of individual improvements is ensured by additive aggregation of intermedi-
ate objectives plus either anonymity or structured utilities (the latter term was borrowed
from Kukushkin et al., 1985, but is used in a much more general sense, formally equivalent
to strictly negative and strictly positive impacts combined). Both results are already in
the literature, in Rosenthal (1973) and Kukushkin (1994), respectively. A new connection
between them is established by our Proposition 6.3.

Monderer and Shapley (1996) showed that every finite game admitting an exact poten-
tial — the counterpart of the acyclicity of individual improvements in the context of games
with cardinal utilities — can be represented as a congestion game. Our Proposition 6.2
shows that every compact-continuous game admitting a continuous exact potential can
be represented as a game with structured utilities and additive aggregation; the latter
class contains, e.g., the Stag Hunt game of Rousseau considered in Section 5 of Monderer
and Shapley (1996).

Perhaps the most important results of this paper are those establishing the necessity
of additive or minimum (maximum) aggregation for the “persistent” existence of (Pareto
optimal) Nash equilibria, hence for the acyclicity of improvements as well: Theorems 3–7.

The same aggregation rules — sum, min, and max — emerge when separability is of
main interest (Segal and Sobel, 2002). The famous Debreu–Gorman Theorem (Debreu,
1960; Gorman, 1968) on additive representation of separable orderings plays an impor-
tant rôle in the proofs of Theorems 5 and 7 below. Propositions 4.1 and 5.1 show that
the separability of aggregation is sufficient for the acyclicity of individual improvements
although there is no general necessity result as yet.

The sum, leximin and leximax are often met in the social choice theory, see, e.g.,
Moulin (1988). Economists naturally dislike the latter rule, but usually find it difficult to
get rid of in their axiomatic characterizations (d’Aspremont and Gevers, 1977; Deschamps
and Gevers, 1978). However, our Theorem 2 makes sense even for those who would never
accept the maximum aggregation: it shows the acyclicity of strong coalition improvements,
hence the existence of strong equilibria, in a natural class of group formation games with
positive externalities, viz., where all members of a group receive the same utility depending
on the list of participants rather than on their number only.

The minimum operator is not at all unusual in the theory of production functions.
Galbraith (1958, Chapter XVIII) explicitly invokes Leontief’s model to justify an attitude
to public and private consumption (“social balance”) that sounds indistinguishable from
the minimum aggregation. Our Theorem 1 shows that players who have accepted this
attitude do not need any taxes to provide for an efficient level of public consumption; it
is difficult to say whether Galbraith himself expected such a conclusion.
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Our assumption that all participants receive the same intermediate utility from an
activity should not be viewed as a simplifying technical condition. Making it, we concen-
trate on relationships between “fellow travellers,” which can be considered as basic as,
e.g., those between competitors for a scarce resource. At the moment, there is no evidence
to suggest that similar results could hold in a broader context.

There is some literature on group formation games where each utility function only
depends on the strategy chosen by the player and on the number of players who have
chosen the same strategy, but different players may have different functions. Typically,
there is just the existence of equilibria in such models, without acyclicity of improvements
(Milchtaich, 1996; Konishi et al., 1997a), so there is no ground to expect a close connection
with this paper. When acyclicity happens, the departure of the model from Rosenthal’s
scheme is either illusory from the start as in Hollard (2000) or gradually assumed away
as in Konishi et al. (1997b).

It is funny to notice an analogy between the results of this paper and of Kukushkin
(2004): in both cases, each condition for the acyclicity of an improvement relation in
strategic games consists of two elementary ones — one on aggregation and one on the
“character of impacts” (in most cases, a monotonicity condition). It seems impossible at
the moment to put both groups of theorems into the same formal framework. Actually,
there is a remarkable difference: all positive results of this paper assume separable (or
“quasiseparable”) aggregation whereas Dubey et al. (2004) showed that some nonsepara-
ble aggregation rules also ensure the acyclicity of best response improvements in games
with strategic complements or substitutes.

Section 2 introduces principal improvement relations associated with a strategic game,
and provides a formal description of our basic model as well as its main structural proper-
ties. In Section 3, sufficient conditions for the acyclicity of strong coalition improvements
are presented.

Sections 4 and 5 follow the same plan: first, we prove the sufficiency of separable
aggregation for the acyclicity of individual improvements; then, the necessity of the mini-
mum or maximum aggregation for the acyclicity of strong coalition improvements; finally,
the necessity of additive aggregation (among those strictly increasing) for the acyclicity of
individual improvements. The two sections differ in the context: in Section 4 it is anony-
mous participation (“generalized congestion”) games; in Section 5, games with structured
utilities.

Section 6 contains representation results showing that every game where the acyclicity
of an improvement relation is ensured by a theorem from this paper can be represented
as a game with structured utilities. The last section deals with some subclasses of the
latter games, where our general necessity results need modifications.
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2 Basic Notions

2.1 Strategic Games

A strategic game Γ is defined by a finite set of players N (we denote n = #N), and
strategy sets Xi and utility functions ui on X =

∏
i∈N Xi for all i ∈ N . We introduce a

number of binary relations on X (y, x ∈ X, i ∈ N , ∅ 6= I ⊆ N):

y .Ind
i x ⇐⇒ [y−i = x−i & ui(y) > ui(x)]; (2.1a)

y .Ind x ⇐⇒ ∃i ∈ N [y .Ind
i x] (2.1b)

(individual improvement relation);

y .sCo
I x ⇐⇒ [

y−I = x−I & ∀i ∈ I [ui(y) > ui(x)]
]
; (2.2a)

y .sCo x ⇐⇒ ∃I ⊆ N [y .sCo
I x] (2.2b)

(strong coalition improvement);

y .wCo
I x ⇐⇒ [

y−I = x−I & ∀i ∈ I [ui(y) ≥ ui(x)] & ∃i ∈ I [ui(y) > ui(x)]
]
; (2.3a)

y .wCo x ⇐⇒ ∃I ⊆ N [y .wCo
I x] (2.3b)

(weak coalition improvement).

It is often convenient to speak of just “an improvement relation” without specifying
which of the relations defined by (2.1), (2.2), or (2.3) is meant. A maximizer for an
improvement relation ., i.e., a strategy profile x ∈ X such that y . x is impossible for any
y ∈ X, is an equilibrium: a Nash equilibrium if . is .Ind; a (“very”) strong equilibrium if
. is .sCo (.wCo). A strategy profile x ∈ X is a strong (weak) Pareto optimum if and only
if it is a maximizer for .wCo

N (.sCo
N).

In a finite game, the acyclicity of an improvement relation ensures the existence of an
appropriate equilibrium; moreover, all myopic adaptive dynamics converge to an equilib-
rium in a finite number of steps. When considering infinite games, we have to consider im-
provement paths parameterized with countable ordinals; the definitions and exact results
concerning such paths are to be found in Kukushkin (2000, 2003). The next subsection
contains a sketch of the theory.

We always assume that the players have ordinal preferences (the only exception is
Proposition 6.2), so each ui is defined up to a strictly increasing transformation; clearly,
our improvement relations are invariant to such transformations. If ν : R→ R is contin-
uous and strictly increasing (i.e., ν(v′) > ν(v) whenever v′ > v), we denote ν(+∞) and
ν(−∞) its supremum and infimum, respectively. Sometimes we even consider auxiliary
functions with infinite values; necessary explanations are given at appropriate moments.
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2.2 Acyclicity

Let . be a binary relation on a set X. An improvement path (for .) is a sequence
{xk}k=0,1,... such that xk+1 . xk whenever xk+1 is defined; an improvement cycle is an
improvement path such that xm = x0 for m > 0. The relation . has the finite improvement
path (FIP) property if there exists no infinite improvement path; then every improvement
path, if continued whenever possible, reaches a maximizer in a finite number of steps.
A relation is acyclic if it admits no improvement cycle; on a finite set X, acyclicity is
equivalent to the FIP property of the relation.

Generally, the absence of finite cycles does not mean very much and we have to consider
transfinite improvement paths. The definition and basic properties of the, well ordered,
set of all countable ordinal numbers, denoted K, are to be found, e.g., in Natanson (1974,
Chapter XIV).

Let . be a binary relation on a compact metric space X. A generalized improvement
path for . is a mapping π : Dom(π) → X, where Dom(π) is an initial interval of K
(possibly the whole K), satisfying these two conditions:

1. π(α + 1) . π(α) whenever α + 1 ∈ Dom(π);

2. if α ∈ Dom(π) and α is a limit ordinal, there exists a sequence {βk}k for which
βk+1 > βk for all k = 0, 1, . . . , α = supk βk, and π(α) = limk→∞ π(βk).

A generalized improvement cycle for . is a generalized improvement path π such that
π(α) = π(0) for α > 0; . is called Ω-acyclic if it admits no generalized improvement
cycle. By Theorem 2 of Kukushkin (2003), Ω-acyclicity is equivalent to the countable
improvement path (CIP) property, i.e., to the impossibility of a generalized improvement
path π for . with Dom(π) = K (K itself is uncountable). On a compact space, where the
only obstacle to extending an improvement path further is the fact that it has already
reached a maximizer, CIP means that every improvement path, if continued whenever
possible, ends at a maximizer. The same theorem provides a useful criterion for the
property: a relation is Ω-acyclic if and only if it admits a “potential” in the following
sense.

A binary relationÂ on X is called ω-transitive if it is transitive and the conditions xω =
limk→∞ xk and xk+1 Â xk for all k = 0, 1, . . . always imply xω Â x0. It is worth noting
that xω Â xk is valid for all k = 0, 1, . . . in the above situation, once Â is ω-transitive. A
potential for . is an irreflexive and ω-transitive relation Â satisfying y . x ⇒ y Â x for all
y, x ∈ X.

For technical reasons, it is useful to develop a theory of “deterioration paths” as well.
With every binary relation ., a dual relation / can be associated: x / y ⇐⇒ y . x. A
(generalized) deterioration path for . is a (generalized) improvement path for /. Clearly,
a finite deterioration path is exactly an improvement path read from the end to the
beginning, so we obtain no new acyclicity concept; however, there is no straightforward
connection between transfinite improvement and deterioration paths.
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A binary relation is called Ω∗-acyclic if its dual is Ω-acyclic, i.e., if the relation itself
admits no generalized deterioration cycle. A binary relation is called ω∗-transitive if its
dual is ω-transitive (then the relation itself is transitive at least). A double potential for
. is an irreflexive, ω-transitive, and ω∗-transitive relation Â satisfying y . x ⇒ y Â x for
all y, x ∈ X. A relation admitting a double potential is both Ω-acyclic and Ω∗-acyclic.

2.3 Games with Common Intermediate Objectives

A game with common intermediate objectives may have an arbitrary (finite) set of players
N and arbitrary sets of strategies Xi whereas the utility functions satisfy certain struc-
tural requirements. There is a finite set A of “activities.” Rosenthal (1973) called them
“factors”; Monderer and Shapley (1996), “facilities.” For every i ∈ N , there is a mapping
Bi : Xi → 2A \ {∅}; we interpret Bi(xi) as the set of activities chosen by player i under
the strategy xi. We denote Xi(α) = {xi ∈ Xi| α ∈ Bi(xi)}, N(α) = {i ∈ N | Xi(α) 6= ∅},
and N−(α) = {i ∈ N | Xi(α) = Xi}; we may assume N(α) 6= ∅ for all α (otherwise,
the α would be irrelevant). With every α ∈ A, an intermediate objective is associated:
a function ϕα(I, xα

I ) ∈ R, defined for all I 6= ∅ such that N−(α) ⊆ I ⊆ N(α) and
xα

I ∈ XI(α) =
∏

i∈I Xi(α).

Let a strategy profile x ∈ X =
∏

i∈N Xi be given; for each α ∈ A, we denote N(α, x) =
{i ∈ N | α ∈ Bi(xi)}: the set of players having chosen α at x. The “ultimate” utility
functions of the players are built of the intermediate objectives:

ui(x) = Uxi
i

(〈ϕα(N(α, x), xN(α,x))〉α∈Bi(xi)

)
, (2.4)

where i ∈ N , x ∈ X, and Uxi
i is a numeric function defined on the appropriate subset of

RBi(xi).

We assume that each Xi is a compact metric space and all functions Bi, Uxi
i , and

ϕα(I, ·) are continuous (i.e., Bi is a constant on each connected component of Xi); there-
fore, each utility function ui is continuous too. Each Uxi

i is also increasing in a sense to
be specified below.

Throughout the rest of the paper, we only consider games with common intermediate
objectives (the only exception is again Proposition 6.2). There is a potential source of
ambiguity since the same game (in the sense of Subsection 2.1) may be generated by
different constructions (activities, intermediate objectives, etc.). Actually, equivalence
results play an important rôle in our theory. We do not try to produce a formal resolution
of the ambiguity; the reader should not find it difficult to recognize what is meant by “a
game” in each case.

The concept of a universal aggregator will be used; it is perceived as an infinite se-
quence of functions U (m) : Rm → R, m = 1, 2, . . . , each of which is assumed continuous,
symmetric (w.r.t. any permutation of the arguments), and increasing in the sense of

∀s[v′s > vs] ⇒ U (m)(v′) > U (m)(v); (2.5)

the continuity of U (m) implies ∀s[v′s ≥ vs] ⇒ U (m)(v′) ≥ U (m)(v). In some results a
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stronger monotonicity condition is assumed; an aggregation function strictly increases if

[∀s[v′s ≥ vs] & ∃s[v′s > vs]
] ⇒ U (m)(v′) > U (m)(v). (2.6)

We say that a player i ∈ N in a game Γ uses a universal aggregator U if the appropriate
U (m) is substituted into (2.4):

ui(x) = U (#Bi(xi))
(〈ϕα(N(α, x), xN(α,x))〉α∈Bi(xi)

)
(2.7)

for every x ∈ X. The assumed symmetry of U (m) ensures an unambiguous meaning
of (2.7), which is difficult to achieve without the symmetry. We often omit the superscript
(m) when the number of arguments is clear. Our general assumption of ordinal preferences
implies that the application of a monotonic transformation to every U (m) cannot turn a
“good” universal aggregator into a “bad” one.

Two subclasses play an important rôle in the following.

In a participation game, Xi ⊆ 2A \∅, Bi(xi) = xi, and ϕα only depends on I. A partic-
ipation game is anonymous if each ϕα only depends on the cardinality of its argument, in
which case we use the notation ϕα(k) rather then ϕα(I). In this terminology, Rosenthal’s
(1973) congestion games are described as “anonymous participation games with additive
aggregation (of intermediate objectives).” A partition game is a participation game where
#xi = 1 for each i ∈ N and each xi ∈ Xi; dealing with such games, we assume Xi ⊆ A.
A partition game may be anonymous or not. Aggregation plays no part in such games,
so, technically, each player may be regarded as using any aggregator whatsoever.

If, conversely, each Bi is a constant on the whole Xi, the game is called a game with
structured utilities; in such games, each Υi = Bi(xi) is treated as a parameter of the
model. For each α ∈ A, we have N−(α) = N(α) = {i ∈ N | α ∈ Υi}; we assume that
ϕα : XN(α) → R.

2.4 Negative and Positive Impacts

We say that player i has a negative impact on activity α if for each I 6= ∅ such that
N−(α) ⊆ I ⊂ I ∪ {i} ⊆ N(α), each xα

i ∈ Xi(α), and each xα
I ∈ XI(α),

ϕα(I, xα
I ) ≥ ϕα(I ∪ {i}, 〈xα

I , xα
i 〉). (2.8)

We say that player i has a strictly negative impact on activity α if the inequality in (2.8)
is strict. We call Γ a game with (strictly) negative impacts if the appropriate condition
holds for all i ∈ N and α ∈ A. A definition of (strictly) positive impacts is obtained by
reversing the inequality in (2.8) (or in its strict version).

There is kind of duality between negative and positive impacts. With every game Γ,
we can associate its opposite game Γ̄: the sets N , A, and Xi (i ∈ N) are the same;
ϕ̄α(I, xI) = −ϕα(I, xI); Ūxi(v1, . . . , vm) = −Uxi(−v1, . . . ,−vm). It is easy to see that
ūi(x) = −ui(x) for all i ∈ N and x ∈ X. If Γ exhibits negative impacts, then Γ̄ exhibits
positive impacts, and vice versa.
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Proposition 2.1. If an improvement relation in a game Γ is acyclic, then the same
relation in the opposite game Γ̄ is acyclic too.

Proposition 2.2. If an improvement relation in a game Γ admits a double potential
(hence is Ω-acyclic), then the same relation in Γ̄ also admits a double potential (hence is
Ω-acyclic too).

Proof of both propositions. Obviously, y . x in Γ implies x . y in Γ̄, hence a (generalized)
improvement path in Γ is a (generalized) deterioration path in Γ̄. Now Proposition 2.1 is
obvious whereas Proposition 2.2 follows from the observation that a double potential for
. is simultaneously a double potential for /.

It is important to note that both propositions would fail if we replaced the acyclicity
of improvements with just the existence of equilibria.

Example 2.1. Let us consider an anonymous participation game with strictly negative
impacts where two players use the aggregator Uxi

i (〈vα〉α∈xi
) = 1

#xi

∑
α∈xi

vα: N = {1, 2};
A = {a, b, c, d, e}; X1 =

{{a}, {b, c}}; X2 =
{{b, d}, {c}, {e}}; ϕa(1) = 6, ϕb(1) = 12,

ϕb(2) = 0, ϕc(1) = 10, ϕc(2) = 2, ϕd(1) = 6, ϕe(1) = 11. The 2 × 3 matrix of the game
looks as follows:

bd c e
a (6, 9) (6, 10) (6, 11)
bc (5, 3) (7, 2) (11, 11).

The southeastern corner is even a strong equilibrium. In the opposite game (where the
utilities just change their signs), there is no Nash equilibrium.

Proposition 2.3. Γ is a game with both strictly negative and strictly positive impacts if
and only if Γ is a game with structured utilities.

Proof. If Γ is a game with structured utilities, we have N−(α) = N(α) for each α ∈ A.
Therefore, the strict negative impacts condition (2.8) holds by default: no i and I can
satisfy the preceding conditions. Similarly, Γ is a game with strictly positive impacts.

Conversely, no inequality can be strict in both directions, so a game with both strictly
negative and strictly positive impacts must satisfy condition (2.8) by default. Hence,
N−(α) = N(α) for each α, which implies that Γ is a game with structured utilities.

It is funny to note that “strictly” cannot be dropped from the formulation, see Exam-
ple 5.2 below.

Remark. Proposition 2.3 gives no answer to a subtler question: If Γ can be generated by
a construction with strictly negative impacts and by another construction with strictly
positive impacts, must it be possible to generate Γ by a construction with structured
utilities?
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3 Games with the Minimum (Maximum) Aggrega-

tion

Let us consider games where each player uses the minimum aggregation:

ui(x) = min
α∈Bi(xi)

ϕα(N(α, x), xN(α,x)) (3.1)

for all i ∈ N and x ∈ X.

In economic terms, (3.1) means that all intermediate objectives are perfect comple-
ments.

Theorem 1. Let Γ be a game with negative impacts where each player uses the minimum
aggregation, i.e., conditions (3.1) and (2.8) hold for all i ∈ N and x ∈ X. Then the strong
coalition improvement relation .sCo in Γ, defined by (2.2), admits a double potential, hence
is Ω-acyclic.

Proof. Having n = #N utility functions ui on the space X, we denote Â the leximin or-
dering defined in the standard way. For every x ∈ X, we denote ϑ(x) = 〈ϑ1(x), . . . , ϑn(x)〉
the vector of values ui(x) for i ∈ N in the increasing order: ϑ1(x) ≤ · · · ≤ ϑn(x), and
there is a one-to-one mapping σ : {1, . . . , n} → N such that ϑk(x) = uσ(k)(x) for all k.
Now y Â x if there is k such that ϑk(y) > ϑk(x) whereas ϑh(y) ≥ ϑh(x) for all h < k.
Since each function ui is continuous in x, so is each ϑk; it is easy to check that both Â
and its dual ≺ are ω-transitive — a reference to Proposition 3.9 from Kukushkin (2003)
is sufficient anyway. An alternative definition is available: it is easily verified that

y Â x ⇐⇒ ∃w ∈ R[
#{i ∈ N | ui(x) ≤ w} > #{i ∈ N | ui(y) ≤ w} &

∀v < w[#{i ∈ N | ui(x) ≤ v} ≥ #{i ∈ N | ui(y) ≤ v}]] (3.2)

for all y, x ∈ X.

Now let y .sCo x; we have to show y Â x. Supposing y .sCo
I x, we denote w =

mini∈I ui(x). Let
uj(y) < uj(x); (3.3)

then j /∈ I, so yj = xj. By (3.1), there is α ∈ Bj(yj) such that uj(y) = ϕα(N(α, y), yN(α,y)).
Suppose I∩N(α, y) = ∅; then N(α, y) ⊆ N(α, x) and xN(α,y) = yN(α,y), hence ϕα(N(α, x),
xN(α,x)) ≤ ϕα(N(α, y), yN(α,y)) by (2.8), hence uj(x) ≤ uj(y), contradicting (3.3). There-
fore, there must be i ∈ I ∩ N(α, y); by (3.1), ϕα(N(α, y), yN(α,y)) ≥ ui(y) > ui(x) ≥ w,
hence uj(y) > w. It follows immediately that the right-hand side of (3.2) holds (with the
w already defined), hence y Â x.

The maximum aggregation is defined “dually”:

ui(x) = max
α∈Bi(xi)

ϕα(N(α, x), xN(α,x)) (3.4)

for all i ∈ N and x ∈ X.
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From the economic viewpoint, there is a big difference between (3.1) and (3.4): the
former satisfies the “decreasing marginal utility” condition, while the latter does not.

Proposition 3.1. Let Γ be a game with positive impacts where each player uses the
maximum aggregation (3.4). Then the strong coalition improvement relation .sCo in Γ,
defined by (2.2), admits a double potential, hence is Ω-acyclic.

Proof. Γ̄ satisfies the conditions of Theorem 1, hence admits a double potential. Now
Proposition 2.2 applies (to ¯̄Γ = Γ).

Theorem 1 and Proposition 3.1 obviously cover all partition games with negative or
positive impacts. The acyclicity of strong coalition improvements in anonymous partition
games with negative impacts was noticed in Holzman and Law-Yone (1997); they do not
mention positive impacts.

If both negative and positive impacts are possible in a game, coalition (or even indi-
vidual) improvement cycles may emerge.

Example 3.1. Consider a two person anonymous partition game: N = {1, 2}, A =
{a, b} = X1 = X2, ϕa(1) = 0, ϕa(2) = 2, ϕb(1) = 3, ϕb(2) = 1 (i.e., a exhibits positive
impacts; b, negative). The matrix of the game looks as follows:

a b
a (2, 2) (0, 3)
b (3, 0) (1, 1).

We have a prisoner’s dilemma.

Remark. The existence of a Nash equilibrium in the example was inevitable because it
is a congestion game. Without anonymity, there may be no equilibrium at all.

Example 3.2. Consider a two person (non-anonymous) partition game: N = {1, 2},
A = {a, b} = X1 = X2, ϕa({2}) = 0, ϕa({1}) = 2, ϕa(N) = 4, ϕb(N) = 1, ϕb({2}) = 3,
ϕb({1}) = 5. The matrix of the game looks as follows:

a b
a (4, 4) (2, 3)
b (5, 0) (1, 1).

There is no Nash equilibrium.

Let us consider games with infinite sets of activities. We assume that A is a separable
metric space, each Bi(xi) is compact, each Bi : Xi → 2A is continuous in the Hausdorff
metric in its image, and each ϕ(·)(I, ·) (for I ⊆ N) is continuous on the (closed) subset of
A×XI where it is defined.

Theorem 2. Let Γ be a game with a space of activities A where each player uses the
maximum aggregation (3.4) and all impacts are positive. Then the strong coalition im-
provement relation .sCo in Γ, defined by (2.2), is Ω-acyclic.

12



Proof.

Lemma 3.1. Let i ∈ N , xk → x and αk ∈ Bi(x
k
i ) for all k = 0, 1, . . . Then there is

α ∈ Bi(xi) such that

ϕα(N(α, x), xN(α,x)) ≥ limk→∞ ϕαk(N(αk, xk), xN(αk,xk)). (3.5)

Proof. First, replacing {αk}k with a subsequence if needed, we may assume that the upper
limit in the right-hand side of (3.5) is just the limit. Since N is finite, we may (again
replacing {αk}k with a subsequence if needed) assume that N(αk, xk) = I is the same
for all k. The condition xk → x implies Bi(x

k
i ) → Bi(xi) in the Hausdorff metric. Let

rk → 0 (e.g., rk = 1/k); for each k = 0, 1, . . . , there is βk ∈ Bi(xi) and h(k) for which
ρ(βk, αh(k)) < rk. Since Bi(xi) is compact, we may assume βk → α ∈ Bi(xi), hence
αh(k) → α; therefore, we may assume αk → α too.

Let j ∈ I; if α /∈ Bj(xj), then ρ({α}, Bj(xj)) > 0, hence ρ({αk}, Bj(x
k
j )) > 0 for all k

large enough, hence αk /∈ Bj(x
k
j ), which contradicts j ∈ N(αk, xk). Thus, I ⊆ N(α, x),

hence ϕα(N(α, x), xN(α,x)) ≥ ϕα(I, xI) = limk→∞ ϕαk(I, xI), the inequality following from
the positive impacts assumption, the equality from the continuity assumption. Taking
into account the first step of the proof and the definition of I, we have (3.5).

To prove that the maximum in (3.4) is attained for any i ∈ N and x ∈ X, we define
xk = x for all k and pick a maximizing sequence for ψ(α) = ϕα(N(α, x), xN(α,x)) as {αk}k;
then the α from Lemma 3.1 obviously maximizes ψ(α).

Given i ∈ N and xk → x, we pick αk ∈ Bi(x
k
i ) such that ui(x

k) = ϕαk(N(αk, xk),
xN(αk,xk)); then Lemma 3.1 means that ui is upper semicontinuous at x. It is easy to check
that each function ϑh defined in the proof of Theorem 1 is upper semicontinuous too.
Therefore, the leximax ordering Â is ω-transitive by Proposition 3.7 of Kukushkin (2003).
The condition y .sCo x ⇒ y Â x is proven exactly as in (or rather dually to) Theorem 1.
Therefore, .sCo is Ω-acyclic.

For games with negative impacts and the minimum aggregation, the dual of Lemma 3.1
is valid, but it implies the lower semicontinuity of ui, which is not a useful property of
the utility function.

Example 3.3. Let us consider an anonymous partition game with negative impacts:
N = {1, 2}, A = [0, 1] = X1 = X2, ϕα(1) = α + 1, ϕα(2) = α for all α ∈ [0, 1]. Suppose
(x1, x2) to be a Nash equilibrium. If 1 /∈ {x1, x2}, then player 1 can switch to y1 = 1
increasing his utility level. Let, say, x1 = 1; then player 2 does not have a best response
(the supremum is limα→1 ϕα(1) = 2, but it is not attained).
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4 Anonymous Participation Games

4.1 Sufficiency of Quasiseparable Aggregation

A universal separable order is a sequence of strict orders Âm on Rm (m = 1, 2, . . . ) such
that

1. Â1 is the standard order > on R;

2. for every two one-to-one mappings σ, σ′ of {1, . . . , m} to itself,

〈v1, . . . , vm〉 Âm 〈v′1, . . . , v′m〉 ⇐⇒ 〈vσ(1), . . . , vσ(m)〉 Âm 〈v′σ′(1), . . . , v
′
σ′(m)〉

(invariance to permutations);

3. for every m′ > m ≥ 1, every 〈v1, . . . , vm′〉 ∈ Rm′
, and every 〈v′1, . . . , v′m〉 ∈ Rm,

〈v1, . . . , vm, vm+1, . . . , vm′〉 Âm′ 〈v′1, . . . , v′m, vm+1, . . . , vm′〉 ⇐⇒
〈v1, . . . , vm〉 Âm 〈v′1, . . . , v′m〉

(separability).

A universal aggregator is consistent with a universal separable order if there is a
sequence {v̄m ∈ R}m=2,3,... such that for every m′ ≥ m, every 〈v1, . . . , vm〉 ∈ Rm, and
every 〈v′1, . . . , v′m′〉 ∈ Rm′

,

U (m)(v1, . . . , vm) > U (m′)(v′1, . . . , v
′
m′) ⇒ 〈v1, . . . , vm, v̄m+1, . . . , v̄m′〉 Âm′ 〈v′1, . . . , v′m′〉

(4.1a)
and

U (m)(v1, . . . , vm) < U (m′)(v′1, . . . , v
′
m′) ⇒ 〈v′1, . . . , v′m′〉 Âm′ 〈v1, . . . , vm, v̄m+1, . . . , v̄m′〉.

(4.1b)

A universal aggregator is quasiseparable if it is consistent with a universal separable
order. A family of quasiseparable universal aggregators is called consistent if they are all
consistent with the same universal separable order.

Proposition 4.1. Let U be a consistent family of quasiseparable universal aggregators
and let Γ be an anonymous participation game where each player i uses an aggregator
Ui ∈ U. Then the individual improvement relation .Ind in Γ, defined by (2.1), is acyclic.

Proof. Let v̄i
s be constants associated with the aggregator used by player i; we denote

Ki = maxxi∈Xi
#xi, K =

∑
i∈N Ki. Each relation Âm can be perceived as defined on the

set of unordered corteges of the length m (a reader interested in an exhaustive formalism
can easily provide all the details him(her)self). With every x ∈ X, we associate an
unordered cortege:

κ(x) =
〈
〈ϕα(k)〉α∈A,k=#N−(α),...,#N(α,x), 〈v̄i

s〉i∈N,s=#xi+1,...,Ki

〉
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(assuming the convention that activities α ∈ A with #N(α, x) = 0 are not repre-
sented in κ(x) at all). It is easy to check that

∑
i #xi =

∑
α #N(α, x); denoting

D =
∑

α∈A

(
#N−(α)−1

)
+
, we see that the length of κ(x) is K−D for every x ∈ X. If we

show that y .Ind x implies κ(y) ÂK−D κ(x), the acyclicity of .Ind will follow immediately.

Let y .Ind
i x, i.e., ui(y) > ui(x) and y−i = x−i. A is partitioned into four disjoint

subsets: A0 = xi ∩ yi, A+ = yi \ xi, A− = xi \ yi, A′ = A \ (xi ∪ yi). We denote

κ−i =
〈
〈ϕα(k)〉α∈A0,k=#N−(α),...,#N(α,x)−1=#N(α,y)−1, 〈ϕα(k)〉α∈A+,k=#N−(α),...,#N(α,x)=#N(α,y)−1,

〈ϕα(k)〉α∈A−,k=#N−(α),...,#N(α,y)=#N(α,x)−1, 〈ϕα(k)〉α∈A′,k=#N−(α),...,#N(α,x)=#N(α,y),

〈v̄j
s〉j∈N,j 6=i,s=#xj+1,...,Kj

, 〈v̄i
s〉s=max{#xi,#yi}+1,...,Ki

〉

(under a similar convention). If #yi ≥ #xi (then #A+ ≥ #A−), we denote

κi(x) =
〈
〈ϕα(N(α, x))〉α∈A0∪A− , 〈v̄i

s〉s=#xi+1,...,#yi

〉

and
κi(y) =

〈
ϕα(N(α, y))

〉
α∈A0∪A+

.

If #yi ≤ #xi (then #A+ ≤ #A−), we denote

κi(x) =
〈
ϕα(N(α, x))

〉
α∈A0∪A−

and
κi(y) =

〈
〈ϕα(N(α, y))〉α∈A0∪A+ , 〈v̄i

s〉s=#yi+1,...,#xi

〉
.

In either case, κ(x) = 〈κ−i,κi(x)〉 and κ(y) = 〈κ−i,κi(y)〉; by separability, κ(y) ÂK−D

κ(x) if and only if κi(y) Â κi(x). On the other hand, ui(x) = U (#xi)(〈ϕα(N(α, x))〉α∈A0∪A−)
and ui(y) = U (#yi)(〈ϕα(N(α, y))〉α∈A0∪A+). By condition (4.1a) or (4.1b), from ui(y) >
ui(x) we obtain κi(y) Â κi(x), hence κ(y) Â κ(x).

The simplest and most important example of a universal separable order is given by
the additive aggregation rule:

v′ Âm v ⇐⇒
m∑

s=1

ν(v′s) >

m∑
s=1

ν(vs), (4.2)

where ν : R → R is strictly increasing. Thus, Rosenthal’s (1973) congestion games are
covered by Proposition 4.1 with this order, ν(v) = v, and v̄m = 0 for all m.

At a first glance, different ν(·) and v̄m 6= 0 provide a more general result, but this is
just an illusion; it may be worthwhile to consider the situation in more detail. Let each
player i in an anonymous participation game Γ use a universal aggregator Ui consistent
with the additive order (4.2); the conditions (4.1) imply that player i’s utility function is
(up to a monotonic transformation)

ui(x) =
∑
α∈xi

ν(ϕα(#N(α, x))) +

Ki∑

s=#xi+1

v̄i
s.
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Obviously, we can represent Γ as a congestion game, redefining ϕ∗α(k) = ν(ϕα(k)), adding
to A new activities (i,m), i ∈ N , 1 ≤ m ≤ Ki, defining ϕ∗(i,m)(1) = v̄i

m, and replacing

each xi ∈ Xi with xi ∪ {(i, #xi + 1), . . . , (i,Ki)}.
Similarly, the group formation games considered by Hollard (2000) are congestion

games. Each player there chooses an “action” ai ∈ A and the utility is

ui(a1, . . . , an) = vi(ai) + Iai
(n(ai)) +

∑

z∈A\{ai}
Ez(n(z)), (4.3)

where n(a) is the number of players having chosen a at the given strategy profile, and
vi(·), Ia(·), and Ea(·) are given functions. Let us define an extended set of activities as
the union of A × N and two copies of A: A = (A × N) ∪ {aInt}a∈A ∪ {aExt}a∈A with
ϕ(a,i)(k) = vi(a), ϕaInt(k) = Ia(k), and ϕaExt(k) = Ea(n− k); the revised strategy sets will
be Xi =

{{(a, i)} ∪ {aInt} ∪ {bExt}b∈A\{a}
}

a∈A
. Obviously, we have (4.3) for the utilities

in the congestion game; in other words, Theorem 1 of Hollard (2000) is a particular case
of Rosenthal’s (1973) theorem, so there was no need to prove it again.

The additive utilities in Section 5 of Konishi et al. (1997b) are a particular case
of (4.3), so a reference to Rosenthal (1973) would have been also sufficient to prove their
implication Lemma 4.2 ⇒ Proposition 4.1 (Lemma 4.2 itself belongs to a quite different
set of ideas).

Another natural example of a universal separable order is provided by the leximin (or,
dually, leximax) ordering; then Proposition 4.1 implies the acyclicity of the individual
improvement relation .Ind, defined by (2.1), in every anonymous participation game with
the minimum (maximum) aggregation. It should be noted, however, that Proposition 4.1
as such is not necessary to reach the conclusion: Rosenthal’s theorem on congestion
games is sufficient again. Having an anonymous participation game with the minimum
aggregation, we denote Φ the finite set of all feasible ϕα(k). Now let ν : R → R satisfy
the condition:

v′′, v′ ∈ Φ & v′′ > v′ ⇒ ν(v′′)− ν(v′) > max
i∈N

Ki · [ν(max Φ)− ν(v′′)]; (4.4)

clearly, the minimum aggregation is consistent (for feasible values) with the order defined
by (4.2) with (4.4). To satisfy (4.4), we can define a piecemeal linear, concave function
ν : R→ R, going inductively from max Φ downwards.

Generalizing our basic notions, we may consider games where the players use the
leximin (leximax) ordering to aggregate intermediate objectives. Proposition 4.1, applied
to the ordering itself, ensures the acyclicity of individual improvements. Again, the fact
follows from Rosenthal’s theorem if we consider aggregation (4.2) satisfying (4.4). Leximin
aggregation and minimum aggregation may seem very similar, but there is no analogue
of Theorem 1 for the former case.

Example 4.1. Let us consider an anonymous participation game with negative impacts:
N = {1, 2}, A = {a, b, c, d, e, f, g}; X1 =

{{a, b, c}, {d, e, f}}; X2 =
{{a, f, g}, {b, c, d}};

ϕa(2) = ϕb(2) = ϕd(2) = ϕe(1) = ϕg(1) = 0; ϕc(2) = 1; ϕa(1) = ϕd(1) = ϕf (2) = 2;
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ϕb(1) = ϕc(1) = ϕf (1) = 3. Assuming that both players use the leximin aggregation, we
obtain the 2× 2 matrix of the game:

afg bcd
abc (〈0, 3, 3〉, 〈0, 0, 3〉) (〈0, 1, 2〉, 〈0, 1, 2〉)
def (〈0, 2, 2〉, 〈0, 2, 2〉) (〈0, 0, 3〉, 〈0, 3, 3〉).

We have a prisoner’s dilemma: the northeastern corner is a unique Nash equilibrium,
which is Pareto dominated by the southwestern corner.

To summarize, Proposition 4.1 shows that Rosenthal’s (1973) theorem hinges on the
separability of additive aggregation; however, it does not add much to the latter’s content.
It is unclear whether anything at all is added: although separable orderings admitting
no additive representation, even on finite sets, are well known, usually they are not sym-
metric. Finally, let us show that Proposition 4.1 cannot be extended beyond anonymous
games.

Example 4.2. Consider a two person (non-anonymous) participation game with additive
aggregation: N = {1, 2}, A = {a, b, c, d}, X1 =

{{a, b}, {c, d}}, X2 =
{{a, c}, {b, d}},

ϕa({2}) = ϕd({2}) = ϕb({1}) = ϕc({1}) = 1, ϕa({1}) = ϕd({1}) = ϕb({2}) = ϕc({2}) =
2, ϕα(N) = 0 for all α ∈ A. The matrix of the game looks as follows:

ac bd
ab (1, 2) (2, 1)
cd (2, 1) (1, 2).

There is no Nash equilibrium.

Remark. Unlike Example 3.2, this game exhibits strictly negative impacts, which do not
help.

4.2 Necessity of the Minimum (Maximum) Aggregation

Theorem 3. Let U be a set of universal aggregators such that every anonymous partic-
ipation game with strictly negative impacts where each player uses an aggregator from U

possesses a weakly Pareto optimal Nash equilibrium. Then for every U ∈ U,

1. for every m ≥ 1, there is a continuous and strictly increasing mapping λU
m : R→ R

such that
U (m)(v1, . . . , vm) = λU

m(min{v1, . . . , vm})
for all v1, . . . , vm ∈ R;

2. for every m,m′ ≥ 1, either λU
m′ = λU

m or λU
m(R) ∩ λU

m′(R) = ∅.
Remark. The proof below remains valid, virtually without any modification, if each
U (m) is assumed defined on Rm, where R is an open interval (bounded or not) in R; e.g.,
R = R++. If R is not open (e.g., if only integer-valued ϕα are considered), the proof
collapses; I have no idea whether the theorem itself remains valid in this case.
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Proof. Since the statement of the theorem does not include any connection between dif-
ferent aggregators from U, we fix U ∈ U and later drop the superscript U at λ. As a first
step we show that the impossibility of a prisoner’s dilemma implies that each indifference
curve in each two-dimensional section must exhibit a similarity with either minimum or
maximum.

Lemma 4.2.1. Let m ≥ 2, v1 > v2, and

U (m)(v2, v2, v3, . . . , vm) < U (m)(v1, v2, v3, . . . , vm); (4.5)

then U (m)(v1, v̄2, v3, . . . , vm) = U (m)(v1, v2, v3, . . . , vm) for all v̄2 ≤ v2.

Proof. A nonstrict inequality immediately follows from the monotonicity of U (m). Let
us suppose U(v1, v̄2, . . . , vm) = u′ < u = U(v1, v2, . . . , vm) for some v̄2 < v2. Taking
into account (4.5) and the continuity of U , we may, increasing v̄2 if needed, assume
U(v2, v2, v3, . . . , vm) < u′. By the continuity of U , there are δs > 0 (s = 1, . . . , m) such
that v2 + δ2 < v1 and U(v2 + δ1, v2 + δ2, v3 + δ3, . . . , vm + δm) = u′′ < u′; we denote
U(v1 + δ1, v2 + δ2, v3 + δ3, . . . , vm + δm) = u+ > u. Thus,

u′′ < u′ < u < u+. (4.6)

Now let us consider an anonymous participation game with strictly negative im-
pacts where both players use the aggregator U : N = {1, 2}; there are 2m activities,
A = {a, b, c, d, e3, . . . , em, f3, . . . , fm}; X1 =

{{a, c, e3, . . . , em}, {b, d, f3, . . . , fm}
}
; X2 ={{a, d, e3, . . . , em}, {b, c, f3, . . . , fm}

}
; ϕa(1) = v1 + δ1, ϕa(2) = v̄2, ϕb(1) = v2 + δ1,

ϕb(2) = v2, ϕc(1) = ϕd(1) = v1, ϕc(2) = ϕd(2) = v2 + δ2, ϕes(1) = ϕfs(1) = vs + δs

(s = 3, . . . , m), ϕes(2) = ϕfs(2) = vs (s = 3, . . . , m). The 2× 2 matrix of the game looks
as follows:

ade bcf
ace (u′, u′) (u+, u′′)
bdf (u′′, u+) (u, u).

Taking into account (4.6), we see that the northwestern corner is a unique Nash equilib-
rium, which is strongly Pareto dominated by the southeastern corner.

Lemma 4.2.2. Let m ≥ 2, v1 > v2, and

U (m)(v1, v2, v3, . . . , vm) < U (m)(v1, v1, v3, . . . , vm); (4.7)

then U (m)(v̄1, v2, v3, . . . , vm) = U (m)(v1, v2, v3, . . . , vm) for all v̄1 ≥ v1.

Proof. A nonstrict inequality immediately follows from the monotonicity of U (m). Let us
suppose

U(v̄1, v2, . . . , vm) = u+ > u = U(v1, v2, . . . , vm) (4.8)

for some v̄1 > v1. Since U(v2, v1, v3, . . . , vm) = u by symmetry, (4.7) and the continuity
of U imply the existence of v′1 ∈]v2, v1[ such that u < U(v′1, v1, v3, . . . , vm) < u+. By the
continuity of U , we may pick δs > 0 (s = 1, . . . ,m) such that v′1 + δ1 < v1, U(v2 + δ1, v1 +
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δ2, v3 +δ3, . . . , vm +δm) = u′ < U(v′1, v1, v3, . . . , vm) and U(v′1 +δ1, v1 +δ2, v3 +δ3, . . . , vm +
δm) = u′′ < u+; by monotonicity,

u < u′ < u′′ < u+. (4.9)

Now let us consider an anonymous participation game with strictly negative impacts
where both players use the aggregator U : N = {1, 2}; there are 2m activities, A =
{a, b, c2, . . . , cm, d2, . . . , dm}; X1 =

{{a, c2, . . . , cm}, {b, d2, . . . , dm}
}
; X2 =

{{a, d2, . . . , dm},
{b, c2, . . . , cm}

}
; ϕa(1) = v̄1, ϕa(2) = v2+δ1, ϕb(1) = v1, ϕb(2) = v′1+δ1, ϕc2(1) = ϕd2(1) =

v1 + δ2, ϕcs(1) = ϕds(1) = vs + δs (s = 3, . . . , m), ϕcs(2) = ϕds(2) = vs (s = 2, . . . ,m).
The 2× 2 matrix of the game looks as follows:

ad bc
ac (u′, u′) (u+, u)
bd (u, u+) (u′′, u′′).

Taking into account (4.9), we see that the northwestern corner is a unique Nash equilib-
rium, which is strongly Pareto dominated by the southeastern corner.

As a second step, we fix a two-dimensional section and show that the whole indifference
map is “minimum-like.” Let us fix m ≥ 2 and v3, . . . , vm ∈ R. We will study possible
indifference maps of the function U(·, ·, v3, . . . , vm). The symmetry and continuity allow
us to restrict attention to R2

> = {(v1, v2) ∈ R2| v1 > v2}.
Lemma 4.2.3. If (v1, v2) ∈ R2

>, u = U(v1, v2, v3, . . . , vm) > U(v2, v2, v3, . . . , vm), (v′1, v
′
2) ∈

R2
>, and u′ = U(v′1, v

′
2, v3, . . . , vm) < u, then U(v′1, v

′
1, v3, . . . , vm) = u′.

Proof. By Lemma 4.2.1, U(v1, v̄2, v3, . . . , vm) = u for all v̄2 ≤ v2, hence

U(v̄1, v̄2, v3, . . . , vm) ≥ u for all v̄1 ≥ v1 and v̄2 ≤ v̄1. (4.10)

Since u′ < u, v′1 < v1. Supposing U(v′1, v
′
1, v3, . . . , vm) > u′, we, by Lemma 4.2.2, obtain

U(v̄1, v
′
2, v3, . . . , vm) = u′ for all v̄1 ≥ v′1, in particular, U(v1, v

′
2, v3, . . . , vm) = u′ < u,

contradicting (4.10).

Lemma 4.2.4. For every (v1, v2) ∈ R2
>, U(v1, v2, v3, . . . , vm) = U(v2, v2, v3, . . . , vm).

Proof. Suppose the contrary: U(v1, v2, v3, . . . , vm) > U(v2, v2, v3, . . . , vm). By the con-
tinuity of U , we can choose v0 < v1 < · · · < v7 such that v2 < v0, v1 > v7, and
U(vs, v2, v3, . . . , vm) < U(vs+1, v2, v3, . . . , vm) for s = 0, . . . , 6, and U(v7, v2, v3, . . . , vm) <
U(v1, v2, v3, . . . , vm). Denoting us = U(vs, v2, v3, . . . , vm) (s = 0, . . . , 7), we obtain u0 <
u1 < · · · < u7. By Lemma 4.2.3, U(vs, vs, v3, . . . , vm) = us for s = 0, . . . , 7, hence
U(vs, vs′ , v3, . . . , vm) = us whenever s > s′.

Now let us consider an anonymous participation game with strictly negative im-
pacts where all players use the aggregator U : N = {1, 2, 3}; there are m + 3 activ-
ities, A = {a, b, c, d, e, f3, . . . , fm}; X1 =

{{a, e, f3, . . . , fm}, {b, d, f3, . . . , fm}
}
; X2 ={{a, c, f3, . . . , fm}, {d, e, f3, . . . , fm}

}
; X3 =

{{a, b, f3, . . . , fm}, {c, e, f3, . . . , fm}
}
; ϕa(3) =
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ϕe(3) = v0, ϕc(2) = ϕe(2) = v1, ϕa(2) = ϕd(2) = ϕe(1) = v2, ϕb(2) = v3, ϕc(1) = v4,
ϕd(1) = v5, ϕa(1) = v6, ϕb(1) = v7, and ϕfs(3) = vs (s = 3, . . . , m). The 2× 2× 2 matrix
of the game looks as follows:

ab ce
ac de ac de

ae
bd

[
(u2, u4, u7) (u2, u5, u7)
(u5, u4, u3) (u3, u2, u6)

] [
(u2, u2, u1) (u6, u5, u4)
(u7, u6, u2) (u7, u2, u4)

]
.

The individual improvement relation is acyclic (as it should be according to Propo-
sition 4.1) and the southwestern corner of the left matrix is a unique Nash equilibrium.
However, this equilibrium is strongly Pareto dominated by the northeastern corner of the
right matrix.

Let us address the first statement of the theorem. For each m ≥ 1 and u ∈ R,
we define λm(u) = U (m)(u, . . . , u); for m = 1, there is nothing to prove. Without
restricting generality, we may assume v1 ≥ v2 ≥ · · · ≥ vm. Applying Lemma 4.2.4
consequently to pairs (vm−1, vm), (vm−2, vm), . . . , (v1, vm), we obtain U(v1, v2, . . . , vm) =
U(v1, v2, . . . , vm−2, vm, vm) = · · · = U(v1, vm, . . . , vm, vm) = U(vm, . . . , vm) = λm(min{v1,
v2, . . . , vm}).

Turning to the second statement, let m′ > m and λm(R)∩λm′(R) 6= ∅. Since λm(R)∩
λm′(R) is open and {v ∈ R| λm′(v) = λm(v)} is closed in R, either λm′ = λm or there is
v′ 6= v such that λm′(v′) = λm(v); let us show the impossibility of the second alternative.

Supposing v > v′, we denote u1 = λm′(v′). Then we pick v ∈]v′, v[, denote u0 = λm(v)
and u3 = λm′(v) (so u0 < λm(v) = u1 = λm′(v′) < u3), and pick v̄ > v so that u2 =
λm(v̄) < u3; u2 > u1 is satisfied automatically.

Let us consider an anonymous participation game with strictly negative impacts
where both players use the aggregator U : N = {1, 2}; there are m′ + 2 activities, A =
{a, b, c, d2, . . . , dm′}; X1 =

{{a, d2, . . . , dm}, {b, c, d3, . . . , dm′}}; X2 =
{{a, b, d3, . . . , dm′},

{c, d2, . . . , dm}
}
; ϕa(1) = v̄ = ϕc(1), ϕa(2) = v = ϕc(2), ϕb(2) = v′ < ϕb(1) = ϕds(2) <

ϕds(1) (s = 2, . . . ,m′). The 2× 2 matrix of the game looks as follows:

abd cd
ad (u0, u3) (u2, u2)
bcd (u1, u1) (u3, u0).

We have a prisoner’s dilemma: “longer” strategies are dominant, but the northeastern
corner strongly Pareto dominates the southwestern one.

Supposing v′ > v, we denote u0 = λm′(v) and u4 = λm(v) > u0; then we pick v ∈]v, v′[
and v+ > v̄ > v′, and denote u3 = λm′(v) < u4 < λm′(v̄) = u6 < λm′(v+) = u7. Then we
pick v′′ ∈]v, v[ so that u5 = λm(v′′) < u6; u5 > u4 is satisfied automatically. Finally, we
pick v′′′ ∈]v, v′′[, and denote u1 = λm′(v′′′) and u2 = λm′(v′′); we have u0 < u1 < · · · < u7.

Now we consider an anonymous participation game with strictly negative impacts
where all players use the aggregator U : N = {1, 2, 3}; there are m′ + 3 activities, A =
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{a, b, c, d, e2, . . . , em′}; X1 =
{{a, e2, . . . , em}, {d, e2, . . . , em′}}; X2 =

{{a, b, e3, . . . , em′},
{c, e2, . . . , em′}}; X3 =

{{d, e2, . . . , em′}, {b, e2, . . . , em′}}; ϕa(2) = v, ϕa(1) = ϕb(2) = v′′,
ϕb(1) = v+, ϕd(2) = v, ϕd(1) = v̄, ϕc(1) = v′′′, v+ < ϕes(3) < ϕes(2) (s = 2, . . . , m′). The
2× 2× 2 matrix of the game looks as follows:

de(m′) be(m′)
abe(m′) ce(m′) abe(m′) ce(m′)

ae(m)

de(m′)

[
(u4, u0, u6) (u5, u1, u6)
(u3, u2, u3) (u3, u1, u3)

] [
(u4, u0, u2) (u5, u1, u7)
(u6, u2, u2) (u6, u1, u7)

]
.

There is no Nash equilibrium in the game.

Proposition 4.2. Let U be a set of universal aggregators satisfying the conditions 1 and 2
from Theorem 3. Then in every anonymous participation game Γ with negative impacts
where each player uses an aggregator from U, the strong coalition improvement relation,
defined by (2.2), is acyclic.

Proof. Let x0, . . . , xm̄ = x0 be a coalition improvement cycle in Γ. Let i be a player
involved in the cycle and using an aggregator U ∈ U. The condition 2 obviously implies
that N = {1, 2, . . . } is partitioned into a (finite or infinite) number of subsets Mk such that
λU

m′ = λU
m whenever m and m′ belong to the same Mk, and λU

m(R)∩λU
m′(R) = ∅ whenever

they do not. The latter condition, in turn, means that the subsets Mk are ordered in
the sense that Mk > Mk′ ⇐⇒ [

λU
m(u) > λU

m′(u′) whenever m ∈ Mk, m′ ∈ Mk′ , and
u, u′ ∈ R ]

; it follows immediately that, whenever #xi ∈ Mk > Mk′ 3 #yi, ui(xi, z−i) >
ui(yi, z

′
−i) for all z−i, z

′
−i ∈ X−i. Therefore, for each i ∈ N , only strategies from the same

element of the partition can be involved in the cycle. Denoting Γ∗ the game with the
same players, activities, and strategies, but with the minimum aggregation, we see that
x0, . . . , xm̄ = x0 is a coalition improvement cycle in Γ∗ as well; however, this contradicts
Theorem 1.

Theorem 4. Let U be a set of universal aggregators such that every anonymous partic-
ipation game with strictly positive impacts where each player uses an aggregator from U

possesses a weakly Pareto optimal Nash equilibrium. Then for every U ∈ U,

1. for every m ≥ 1, there is a continuous and strictly increasing mapping λU
m : R→ R

such that
U (m)(v1, . . . , vm) = λU

m(max{v1, . . . , vm})
for all v1, . . . , vm ∈ R;

2. for every m,m′ ≥ 1, either λU
m′ = λU

m or λU
m(R) ∩ λU

m′(R) = ∅.
Remark. The comment to the formulation of Theorem 3 is appropriate here as well.

Proof. The scheme of the proof is the same as in Theorem 3; all auxiliary games must
be replaced with their opposites. (We cannot simply refer to Proposition 2.1 because the
condition is just the existence of equilibria.)
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Proposition 4.3. Let U be a set of universal aggregators satisfying the conditions 1 and 2
from Theorem 4. Then in every anonymous participation game with positive impacts where
each player uses an aggregator from U, the strong coalition improvement relation, defined
by (2.2), is acyclic.

The fact follows from Proposition 3.1 in exactly the same way as Proposition 4.2 from
Theorem 1.

4.3 Necessity of Additive Aggregation

Theorem 5. Let N be a finite set with n = #N ≥ 2; let 〈Ui〉i∈N be a list of universal

aggregators such that every function U
(m)
i is symmetric, continuous, and strictly increasing

in the sense of (2.6). If every anonymous participation game with strictly negative impacts
where N is the set of players and each player i uses the aggregator Ui possesses a Nash
equilibrium, then

1. there is a continuous and strictly increasing mapping ν : R → R and a continuous
and strictly increasing mapping λm

i : m · ν(R) → R for every i ∈ N and m ≥ 1 such
that

U
(m)
i (v1, . . . , vm) = λm

i

( m∑
s=1

ν(vs)
)

(4.11a)

for all v1, . . . , vm ∈ R;

2. for every i ∈ N and m,m′ ≥ 1, there is a constant ūmm′
i ∈ R ∪ {−∞, +∞} such

that
sign

(
λm′

i (u′)− λm
i (u)

)
= sign(u′ − u− ūmm′

i ) (4.11b)

for all u′ ∈ m′ · ν(R) and u ∈ m · ν(R).

Remark. The comment to the formulation of Theorem 3 is appropriate here as well.

Proof.

Lemma 4.3.1. Let i, j ∈ N , m,m′ ≥ 2, vs ∈ R for s = 1, . . . ,m, and v′s ∈ R for
s = 1, . . . , m′; let

U
(m)
i (v1, v

′
2, v3, . . . , vm) = U

(m)
i (v′1, v2, v3, . . . , vm). (4.12a)

Then
U

(m′)
j (v1, v

′
2, v

′
3, . . . , v

′
m′) = U

(m′)
j (v′1, v2, v

′
3, . . . , v

′
m′). (4.12b)

Proof. Suppose first that i 6= j; without restricting generality, v′s > vs for s = 1, 2. The

negation of (4.12b) can be written as U
(m′)
j (v1, v

′
2, v

′
3, . . . , v

′
m′) > U

(m′)
j (v′1, v2, v

′
3, . . . , v

′
m′).

Pick δ > 0 such that u2
j = U

(m′)
j (v1, v

′
2, v

′
3, . . . , v

′
m′) > U

(m′)
j (v′1 + δ, v2, v

′
3, . . . , v

′
m′) = u1

j ; by

monotonicity from (4.12a), u1
i = U

(m)
i (v1, v

′
2, v3, . . . , vm) < U

(m)
i (v′1 + δ, v2, v3, . . . , vm) =

u2
i .
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Let us consider an anonymous participation game with strictly negative impacts where
each player k ∈ N uses the aggregator Uk: A = {a, b, c, d, e3, . . . , em, f3, . . . , fm′ , g};
Xi =

{{a, b, e3, . . . , em}, {c, d, e3, . . . , em}
}
; Xj =

{{a, c, f3, . . . , fm′}, {b, d, f3, . . . , fm′}};
Xk =

{{g}} for k ∈ N \ {i, j}; ϕa(1) = ϕd(1) = v′1 + δ, ϕa(2) = ϕd(2) = v1;
ϕb(1) = ϕc(1) = v′2, ϕb(2) = ϕc(2) = v2; ϕes(1) = vs (s = 3, . . . , m), ϕfs(1) = v′s
(s = 3, . . . , m′). The 2× 2 matrix of the essential part of the game looks as follows:

ac bd
ab (u1

i , u
2
j) (u2

i , u
1
j)

cd (u2
i , u

1
j) (u1

i , u
2
j).

Since u2
k > u1

k (k = i, j), the game possesses no Nash equilibrium.

If i = j, we pick k 6= i (we have assumed n ≥ 2 !) and obtain

U
(m)
k (v1, v

′
2, v3, . . . , vm) = U

(m)
k (v′1, v2, v3, . . . , vm)

first, and then (4.12b).

Clearly, the exact analogues of Lemma 4.3.1 with inequalities (of the same sign) instead

of equalities are valid as well, i.e., all two-dimensional sections of all functions U
(m)
i (i ∈ N ,

m = 1, 2, . . . ) have the same indifference map. In other words, the ordering defined

by each function U
(m)
i (i ∈ N , m > 2) on Rm admits a separable projection to every

two-dimensional subspace; by the main result of Gorman (1968), it admits a separable
projection to every subspace and also an additive representation on the whole Rm. For
m = 2, some extra work is needed.

Lemma 4.3.2. Let i ∈ N and v′s, v
′′
s , v

′′′
s ∈ R for s = 1, 2; let

U
(2)
i (v′1, v

′′
2) = U

(2)
i (v′′1 , v

′
2) (4.13a)

and
U

(2)
i (v′1, v

′′′
2 ) = U

(2)
i (v′′1 , v

′′
2) = U

(2)
i (v′′′1 , v′2). (4.13b)

Then
U

(2)
i (v′′1 , v

′′′
2 ) = U

(2)
i (v′′′1 , v′′2). (4.14)

Proof. Supposing the contrary, we may, without restricting generality, assume Ui(v
′′′
1 , v′′2) >

Ui(v
′′
1 , v

′′′
2 ). By continuity, there exists δ1 > 0 such that

Ui(v
′′′
1 − δ1, v

′′
2) > Ui(v

′′
1 , v

′′′
2 ). (4.15a)

Pick j 6= i; by Lemma 4.3.1, the equalities (4.13) are valid for U
(2)
j as well. By mono-

tonicity from (4.13b) for j, Uj(v
′′
1 , v

′′
2) > Uj(v

′′′
1 − δ1, v

′
2); therefore, there is δ2 > 0 such

that Uj(v
′′
1 , v

′′
2) > Uj(v

′′′
1 − δ1, v

′
2 + δ2); by continuity, there is δ′1 > 0 such that

Uj(v
′′
1 − δ′1, v

′′
2) > Uj(v

′′′
1 − δ1, v

′
2 + δ2). (4.15b)
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By monotonicity from (4.15a), Ui(v
′′′
1 − δ1, v

′′
2) > Ui(v

′′
1 − δ′1, v

′′′
2 ), hence, by continuity,

there is δ′2 > 0 such that

Ui(v
′′′
1 − δ1, v

′′
2 − δ′2) > Ui(v

′′
1 − δ′1, v

′′′
2 ). (4.15c)

By monotonicity from (4.13a),

Ui(v
′′
1 , v

′
2 + δ2) > Ui(v

′
1, v

′′
2); (4.15d)

by monotonicity from (4.13b) for j,

Uj(v
′
1, v

′′′
2 ) > Uj(v

′′
1 , v

′′
2 − δ′2). (4.15e)

Now we denote u1
i = Ui(v

′
1, v

′′
2), u2

i = Ui(v
′′
1 , v

′
2 + δ2), u1

j = Uj(v
′′′
1 − δ1, v

′
2 + δ2),

u2
j = Uj(v

′′
1 − δ′1, v

′′
2), u3

j = Uj(v
′′
1 , v

′′
2 − δ′2), u4

j = Uj(v
′
1, v

′′′
2 ), u3

i = Ui(v
′′
1 − δ′1, v

′′′
2 ), and

u4
i = Ui(v

′′′
1 − δ1, v

′′
2 − δ′2). We have u2

i > u1
i by (4.15d), u2

j > u1
j by (4.15b), u4

i > u3
i

by (4.15c), and u4
j > u3

j by (4.15e).

Let us consider an anonymous participation game with strictly negative impacts where
N is the set of players and each player k uses the aggregator Uk: A = {a, b, c, d, e};
Xi =

{{a, c}, {b, d}}; Xj =
{{b, c}, {a, d}}; Xk =

{{e}} for k ∈ N \ {i, j}; ϕa(2) = v′1,
ϕa(1) = v′′′1 − δ1; ϕb(2) = v′′1 − δ′1, ϕb(1) = v′′1 ; ϕc(2) = v′′2 − δ′2, ϕc(1) = v′′2 ; ϕd(2) = v′2 + δ2,
ϕd(1) = v′′′2 . The 2× 2 matrix of the essential part of the game looks as follows:

bc ad
ac (u4

i , u
3
j) (u1

i , u
4
j)

bd (u3
i , u

2
j) (u2

i , u
1
j).

There is no Nash equilibrium in the game.

The lemma implies that the condition depicted in Figure 1(a) of Debreu (1960) holds;
therefore, by the Blaschke–Thomsen results cited by Debreu, we have the additive repre-
sentation for m = 2 as well. Fishburn (1970; Chapter 5) provides closed proofs for both
Theorem 3 of Debreu (1960), which assumes separable projections to all subspaces, and
this two-dimensional result. It is easily seen from the proofs that the same function ν(·)
can be used for all i ∈ N and all m ≥ 1 because of Lemma 4.3.1; ν(·) is the same for all
coordinates because of the assumed symmetry. Thus, we have (4.11a).

Now let us turn to the second statement of the theorem. If m′ = m, then ūmm = 0
obviously satisfies (4.11b). If λm

i (m·ν(R))∩λm′
i (m′·ν(R)) = ∅, then either λm′

i (u′) > λm
i (u)

for all u′ ∈ m′·ν(R) and u ∈ m·ν(R), or vice versa. In the first case, we define ūmm′
= −∞;

in the second, ūmm′
= +∞. The condition (4.11b) obviously holds.

Let us fix i ∈ N and m′ > m ≥ 1 such that V = λm
i (m · ν(R)) ∩ λm′

i (m′ · ν(R)) 6= ∅.
Obviously, V is an open interval (bounded or not), hence W ′ = (λm′

i )−1(V ) and W =
(λm

i )−1(V ) are open intervals too.

Let u1 > u2 and ut ∈ V for t = 1, 2, i.e.,

ut = λm
i (σt) = λm′

i (σ′t) & σt ∈ m · ν(R) & σ′t ∈ m′ · ν(R) for t = 1, 2. (4.16a)
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There exist vt ∈ R such that σt = m · ν(vt) (t = 1, 2). If u1 and u2 are close enough to
each other, then

σ′1 − σ′2 < (m′ −m) · [ν(+∞)− ν(−∞)] (4.16b)

(if ν(R) = R, the inequality holds for all u1, u2). It can be rewritten as σ′2 − (m′ −m) ·
ν(−∞) > σ′1 − (m′ − m) · ν(+∞). Since the left-hand side is greater than m · ν(−∞)
whereas the right-hand side is less than m · ν(+∞), there is σ0 ∈ m · ν(R) such that
σ′t ∈ σ0 + (m′ − m) · ν(R) for both t. Therefore, there are v0, v̄1, v̄2 ∈ R such that
σ′t = m · ν(v0) + (m′ −m) · ν(v̄t) for both t.

Lemma 4.3.3. If both conditions (4.16) hold, then σ1 − σ2 = σ′1 − σ′2.

Proof. Let us suppose first that σ1 − σ2 > σ′1 − σ′2. We pick δ > 0 such that

σ′1 − σ′2 < (m′ −m) · [ν(v̄1 + δ)− ν(v̄2 − δ)] < σ1 − σ2

(the first inequality holds automatically). Denoting σ2
j = σ2 + (m′ −m) · ν(v̄1 + δ) and

σ1
j = σ1 + (m′ −m) · ν(v̄2 − δ), we see that σ1

j > σ2
j ; since both belong to m′ · ν(R), there

is σ0
j ∈ m′ · ν(R) such that

σ1
j > σ0

j > σ2
j ; (4.17a)

clearly, σ0
j = m′ · ν(v̂) for v̂ ∈ R. We denote u′′ = λm′

i (m · ν(v0) + (m′ −m) · ν(v̄2 − δ))

and u′ = λm′
i (m · ν(v0) + (m′ −m) · ν(v̄1 + δ)); clearly,

u′′ < u2 < u1 < u′. (4.17b)

Let us pick j ∈ N , j 6= i, and consider an anonymous participation game with strictly
negative impacts where N is the set of players and each player k uses the aggregator
Uk: A = {a1, . . . , am, bm+1, . . . , bm′ , c1, . . . , cm, d1, . . . , dm′ , e}; Xi =

{{a1, . . . , am},
{c1, . . . , cm, bm+1, . . . , bm′}}; Xj =

{{a1, . . . , am, bm+1, . . . , bm′}, {d1, . . . , dm′}}; Xk ={{e}} for k ∈ N\{i, j}; ϕas(t) = vt (t = 1, 2; s = 1, . . . , m); ϕbs(2) = v̄2−δ, ϕbs(1) = v̄1+δ
(s = m + 1, . . . , m′); ϕcs(1) = v0 (s = 1, . . . , m); ϕds(1) = v̂ (s = 1, . . . ,m′). The 2 × 2
matrix of the essential part of the game looks as follows:

ab d
a

(
u2, λm′

j (σ2
j )

) (
u1, λm′

j (σ0
j )

)
bc

(
u′′, λm′

j (σ1
j )

) (
u′, λm′

j (σ0
j )

)
.

The inequalities (4.17) imply that there is no Nash equilibrium in the game.

Now let σ1 − σ2 < σ′1 − σ′2. We pick δ > 0 such that

σ1 − σ2 < (m′ −m) · [ν(v̄1 − δ)− ν(v̄2 + δ)] < σ′1 − σ′2

(the second inequality holds automatically). Denoting σ1
j = σ2 + (m′−m) · ν(v̄1− δ) and

σ2
j = σ1 + (m′ −m) · ν(v̄2 + δ), we see that σ1

j > σ2
j ; since both belong to m′ · ν(R), there

is σ0
j ∈ m′ · ν(R) such that

σ1
j > σ0

j > σ2
j ; (4.18a)
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clearly, σ0
j = m′ · ν(v̂) for v̂ ∈ R. We denote u′′ = λm′

i (m · ν(v0) + (m′ −m) · ν(v̄2 + δ))

and u′ = λm′
i (m · ν(v0) + (m′ −m) · ν(v̄1 − δ)); clearly,

u2 < u′′ < u′ < u1. (4.18b)

Now we pick j ∈ N , j 6= i, and consider an anonymous participation game with strictly
negative impacts where N is the set of players and each player k uses the aggregator
Uk: A = {a1, . . . , am, bm+1, . . . , bm′ , c1, . . . , cm, d1, . . . , dm′ , e}; Xi =

{{a1, . . . , am},
{c1, . . . , cm, bm+1, . . . , bm′}}; Xj =

{{a1, . . . , am, bm+1, . . . , bm′}, {d1, . . . , dm′}}; Xk ={{e}} for k ∈ N\{i, j}; ϕas(t) = vt (t = 1, 2; s = 1, . . . , m); ϕbs(2) = v̄2+δ, ϕbs(1) = v̄1−δ
(s = m + 1, . . . , m′); ϕcs(1) = v0 (s = 1, . . . , m); ϕds(1) = v̂ (s = 1, . . . ,m′). The 2 × 2
matrix of the essential part of the game looks as follows:

ab d
a

(
u2, λm′

j (σ1
j )

) (
u1, λm′

j (σ0
j )

)
bc

(
u′′, λm′

j (σ2
j )

) (
u′, λm′

j (σ0
j )

)
.

The inequalities (4.18) imply that there is no Nash equilibrium in the game.

Lemma 4.3.3 implies that the function Λ(u) = (λm′
i )−1(u)− (λm

i )−1(u) is locally con-
stant on V ; therefore, it is a constant on V . Let us denote it ūmm′

and show that (4.11b)
holds for all u′ ∈ m′ · ν(R) and u ∈ m · ν(R). Note that W ′ = W + ūmm′

by the same
Lemma 4.3.3.

Let u ∈ W , i.e., λm
i (u) = λm′

i (u + ūmm′
); then, for every u′ ∈ m′ · ν(R), we have

sign
(
λm′

i (u′)− λm
i (u)

)
= sign

(
λm′

i (u′)− λm′
i (u + ūmm′

)
)

= sign(u′− u− ūmm′
) since λm′

i is
strictly increasing.

Let u /∈ W , say, u ≥ sup W , hence λm
i (u) > λm′

i (u′) for all u′ ∈ m′ ·ν(R), hence the left
hand side of (4.11b) equals −1. Suppose there is u′ ∈ m′ · ν(R) such that u′ ≥ u + ūmm′

,
hence u′ ≥ sup W ′. We see that (sup W ) ∈ m · ν(R) and (sup W ′) ∈ m′ · ν(R); therefore,
λm

i (sup W ) = λm′
i (sup W ′) by continuity, hence (sup W ) ∈ W , which is impossible for an

open interval.

The case of u ≤ inf W is treated dually.

Proposition 4.4. Let 〈Ui〉i∈N be a list of universal aggregators satisfying both conditions
(4.11) from Theorem 5. Let Γ be an anonymous participation game where each player
i ∈ N uses the aggregator Ui. Then the individual improvement relation .Ind in Γ, defined
by (2.1), is acyclic.

Proof. Let x0, . . . , xm̄ = x0 be an improvement cycle in Γ. We define N∗ = {i ∈ N | ∃k ∈
{0, . . . , m̄ − 1}[xk+1 .Ind

i xk]} and Mi = {#xk
i }k∈{0,...,m̄} for each i ∈ N∗. Let us fix an

i ∈ N∗.

We say that m and m′ overlap if λm
i (m · ν(R)) ∩ λm′

i (m′ · ν(R)) 6= ∅. In this case
ūmm′

i satisfying (4.11b) is unique; in particular, ūmm
i = 0. An overlap path is a sequence

m0,m1, . . . , mk such that mh ∈ Mi and mh and mh+1 overlap for each h ∈ {0, . . . , k− 1}.
We call m and m′ contiguous if there is an overlap path m = m0,m1, . . . , mk = m′.
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Let m and m′ not overlap, say, λm′
i (u′) > λm

i (u) for all u′ ∈ m′ ·ν(R) and u ∈ m ·ν(R);
let them even not be contiguous. It is easy to see that λm′

i (u′) > λm′′
i (u′′) for every m′′

contiguous with m, and all u′ ∈ m′ · ν(R) and u′′ ∈ m′′ · ν(R). Therefore, all m ∈ Mi are
contiguous.

Lemma 4.3.4. Let m0,m1, . . . , mk be an overlap path and ūm0mk
i =

∑k−1
h=0 ū

mhmh+1

i . Then
ūm0mk

i satisfies (4.11b) (with m = m0 and m′ = mk).

Proof. We argue by induction. For k = 1, the statement is tautological. Let it hold for
overlap paths of the “length” k ≥ 1 or less; we have to prove it for any path of the length
k + 1. For each s = 0, 1, . . . , k + 1, we denote W s = λms

i (ms · ν(R)) ⊆ R.

Supposing first that W k+1 ∩W 0 = ∅, we may assume that w′′ > w for all w′′ ∈ W k+1

and w ∈ W 0 (the case of opposite inequalities is treated dually). Since
⋃k

s=1 W s is an
open interval which intersects with both W k+1 and W 0, there are s and w′ ∈ W s such
that 1 ≤ s ≤ k and w′′ > w′ > w for all w′′ ∈ W k+1 and w ∈ W 0. Let w′ = λms

i (u′).
By the induction hypothesis, we have u′ > u +

∑s−1
h=0 ūmhmh+1 for all u ∈ m0 · ν(R), and

u′′ > u′ +
∑k

h=s ūmhmh+1 for all u′′ ∈ mk+1 · ν(R); therefore, u′′ > u +
∑k

h=0 ūmhmh+1 , i.e.,
(4.11b) holds.

Now let W = W k+1∩W 0 6= ∅; then ūm0mk+1 satisfying (4.11b) is unique. Since
⋃k

s=1 W s

is an open interval which intersects with both W k+1 and W 0, there is s (1 ≤ s ≤ k) such
that W s∩W 6= ∅; therefore, there are u ∈ m0 · ν(R), u′ ∈ ms · ν(R), and u′′ ∈ mk+1 · ν(R)
such that λm0

i (u) = λms
i (u′) = λ

mk+1

i (u′′). By the induction hypothesis, we have u′ =
u +

∑s−1
h=0 ūmhmh+1 and u′′ = u′ +

∑k
h=s ūmhmh+1 , hence u′′ = u +

∑k
h=0 ūmhmh+1 , hence

ūm0mk+1 =
∑k

h=0 ūmhmh+1 .

Thus, the induction step is completed, hence the lemma is proven.

Lemma 4.3.4 immediately implies that, whenever m0,m1, . . . ,mk = m0 is an overlap
cycle, we have

∑k−1
h=0 ū

mhmh+1

i = 0. Now, for each i ∈ N∗ and each m,m′ ∈ Mi, we define

ūmm′
i =

∑k−1
h=0 ū

mhmh+1

i for an overlap path m = m0,m1, . . . , mk = m′; the value does
not depend on the choice of a particular path. Moreover, ūmm′′

i = ūmm′
i + ūm′m′′

i for all
m,m′,m′′ ∈ Mi.

We define v̄i
m = 0 for i /∈ N∗ and all m. When i ∈ N∗, we define v̄i

m = 0 for m /∈ Mi and
for the minimal m ∈ Mi; for other m ∈ Mi, we define v̄i

m = ūm′m
i , where m′ is the preceding

element of Mi. Let m̄i = max{#xi| xi ∈ Xi}. Denoting Γ∗ the game with the same

players, activities, and strategies, but with the aggregation functions U
(m)
i (v1, . . . , vm) =∑m

s=1 ν(vs) +
∑m̄i

s=m+1 v̄i
s, we see that x0, . . . , xm̄ = x0 is an improvement cycle in Γ∗ as

well; but this contradicts Proposition 4.1, actually, even Rosenthal’s (1973) theorem.
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5 Games with Structured Utilities

5.1 Sufficiency of Quasiseparable Aggregation

We use a modification of the concepts introduced at the start of Subsection 4.1. For the
reader’s convenience, complete definitions are given.

A universal separable order is a sequence of strict orders Âm on Rm (m = 1, 2, . . . )
such that

1. Â1 is the standard order > on R;

2. every Âm is ω-transitive on Rm;

3. for every two one-to-one mappings σ, σ′ of {1, . . . , m} to itself,

〈v1, . . . , vm〉 Âm 〈v′1, . . . , v′m〉 ⇐⇒ 〈vσ(1), . . . , vσ(m)〉 Âm 〈v′σ′(1), . . . , v
′
σ′(m)〉

(invariance to permutations);

4. for every m′ > m ≥ 1, every 〈v1, . . . , vm′〉 ∈ Rm′
, and every 〈v′1, . . . , v′m〉 ∈ Rm,

〈v1, . . . , vm, vm+1, . . . , vm′〉 Âm′ 〈v′1, . . . , v′m, vm+1, . . . , vm′〉 ⇐⇒
〈v1, . . . , vm〉 Âm 〈v′1, . . . , v′m〉

(separability).

A universal aggregator is consistent with a universal separable order if for every m =
1, 2, . . . , every 〈v1, . . . , vm〉 ∈ Rm, and every 〈v′1, . . . , v′m〉 ∈ Rm,

U (m)(v1, . . . , vm) > U (m)(v′1, . . . , v
′
m) ⇒ 〈v1, . . . , vm〉 Âm 〈v′1, . . . , v′m〉. (5.1)

A universal aggregator is quasiseparable if it is consistent with a universal separable
order. A family of quasiseparable universal aggregators is called consistent if they are all
consistent with the same universal separable order.

Proposition 5.1. Let U be a consistent family of quasiseparable universal aggregators and
let Γ be a game with structured utilities where each player i uses an aggregator Ui ∈ U.
Then the individual improvement relation .Ind in Γ, defined by (2.1), is Ω-acyclic.

Proof. Each relationÂm can be perceived as defined on the set of unordered corteges of the
length m. With every x ∈ X, we associate an unordered cortege κ(x) = 〈ϕα(xN(α))〉α∈A.
If we show that y .Ind x implies κ(y) Â#A κ(x), the Ω-acyclicity of .Ind will follow
immediately.

Let y .Ind
i x, i.e., ui(y) > ui(x) and y−i = x−i. We denote κ−i = 〈ϕα(xN(α))〉α/∈Υi

,
κi(x) = 〈ϕα(xN(α))〉α∈Υi

, and κi(y) = 〈ϕα(yN(α))〉α∈Υi
. Clearly, κ(x) = 〈κ−i,κi(x)〉 and

κ(y) = 〈κ−i,κi(y)〉 whereas ui(x) = U (#Υi)(κi(x)) and ui(y) = U (#Υi)(κi(y)). Therefore,
(5.1) implies κi(y) Â#Υi κi(x), hence κ(y) Â#A κ(x) by separability.
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As in Subsection 4.1, the simplest and most important example of a universal separable
order is given by additive aggregation (4.2). Now infinite games are allowed, so the leximin
(leximax) ordering admits no additive representation; still, every game with structured
utilities and the minimum (maximum) aggregation satisfies the conditions of Theorem 1
(Proposition 3.1).

Nonetheless, the scope of Proposition 5.1 is not exhausted by its additive version: let
us consider, e.g., the aggregation rule U(v1, . . . , vm) = v1 × · · · × vm if v1, . . . , vm ≥ 0
and U(v1, . . . , vm) = min{v1, . . . , vm} otherwise [cf. Proposition 3 of Kukushkin, 1994;
the same aggregation rule was considered in Segal and Sobel, 2002, Eq. (19) ]. The rule
is consistent with the universal separable order which is multiplicative (i.e., additive in
logarithms) for all positive values and the leximin otherwise.

As in Subsection 4.1, we may consider games where the players use the leximin (lex-
imax) ordering to aggregate intermediate objectives. Again, Proposition 5.1, applied to
the ordering itself, ensures the Ω-acyclicity of individual improvements. And again, there
is no analogue of Theorem 1 for this aggregation.

Example 5.1. Let us consider a game with structured utilities and the leximin aggrega-
tion: N = {1, 2}, A = {a1, a2, b}; X1 = X2 = {0, 1}; Υi = {ai, b}, ϕai

(0) = 0, ϕai
(1) = 2

(i ∈ N); ϕb(0, 0) = 3, ϕb(0, 1) = ϕb(1, 0) = 1, ϕb(1, 1) = 0. The 2× 2 matrix of the game
looks as follows:

(〈0, 3〉, 〈0, 3〉) (〈0, 1〉, 〈1, 2〉)
(〈1, 2〉, 〈0, 1〉) (〈0, 2〉, 〈0, 2〉).

We have a prisoner’s dilemma: the southeastern corner is a unique Nash equilibrium,
which is Pareto dominated by the northwestern corner.

In accordance with Proposition 2.3, we could replace the assumption in Proposition 5.1
that Γ is a game with structured utilities with that of both strictly negative and strictly
positive impacts. “Strictly” cannot be dropped.

Example 5.2. Let N = {1, 2}, A = {a, b}, X1 = X2 = {1, 2}, B1(1) = {a}, B1(2) = A,
B2(1) = B2(2) = A, ϕa(N, 1, 1) = 3, ϕa(N, 1, 2) = 0, ϕa(N, 2, 1) = 4, ϕa(N, 2, 2) = −1,
ϕb(N, 2, 1) = ϕb({2}, 1) = −2, ϕb(N, 2, 2) = ϕb({2}, 2) = 2, and both players use additive
aggregation.

The inequality (2.8) need only be checked for α = b, I = {2}, i = 1, xα
i = 2, and

xα
I ∈ X2. In both cases, it holds as an equality, so the game exhibits both negative and

positive impacts. The 2× 2 matrix of the game looks as follows:

(3, 1) (0, 2)
(2, 2) (1, 1).

There is no Nash equilibrium in the game.

5.2 Necessity of the Minimum (Maximum) Aggregation

Theorem 6. Let U be a set of universal aggregators such that every game with structured
utilities where each player uses an aggregator from U possesses a weakly Pareto optimal
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Nash equilibrium. Then either for every U ∈ U and m ≥ 1, there is a continuous and
strictly increasing mapping λU

m : R→ R such that

U (m)(v1, . . . , vm) = λU
m(min{v1, . . . , vm})

for all v1, . . . , vm ∈ R, or for every U ∈ U and m ≥ 1, there is a continuous and strictly
increasing mapping λU

m : R→ R such that

U (m)(v1, . . . , vm) = λU
m(max{v1, . . . , vm})

for all v1, . . . , vm ∈ R.

Remark. The comment to the formulation of Theorem 3 is appropriate here as well.

Proof. There is a considerable similarity with the proof of Theorem 3. First, we consider
two-dimensional sections and show that each indifference curve must exhibit a similarity
with either minimum or maximum. Then we show that every two-dimensional aggrega-
tion function must be either minimum or maximum (Lemma 5.2.5). Finally, if one such
function is minimum, then all two-dimensional sections of all functions must be minimum
too; and similarly for the maximum.

Lemma 5.2.1. Let m ≥ 2, v1 > v2, and

U (m)(v2, v2, v3, . . . , vm) < U (m)(v1, v2, v3, . . . , vm); (5.2)

then U (m)(v1, v̄2, v3, . . . , vm) = U (m)(v1, v2, v3, . . . , vm) for all v̄2 ≤ v2.

Proof. A nonstrict inequality immediately follows from the monotonicity of U (m). Let
us suppose U(v1, v̄2, . . . , vm) = u′ < u = U(v1, v2, . . . , vm) for some v̄2 < v2; since (5.2)
holds, we may assume, as in Lemma 4.2.1, that u− = U(v2, v2, v3, . . . , vm) < u′. By the
continuity of U , there is v̄1 ∈]v2, v1[ such that u′ < U(v̄1, v2, v3, . . . , vm) = u′′ < u. Thus,

u− < u′ < u′′ < u. (5.3)

Now let us consider a game with structured utilities where both players use the
aggregator U : N = {1, 2}; there are m + 1 activities, A = {a1, a2, b, c3, . . . , cm};
Υi = {ai, b, c3, . . . , cm} (i = 1, 2); X1 = X2 = {1, 2}; ϕai

(1) = v2, ϕai
(2) = v1;

ϕb(1, 1) = v̄1, ϕb(1, 2) = ϕb(2, 1) = v2, ϕb(2, 2) = v̄2; ϕcs(x1, x2) = vs (s = 3, . . . ,m).
The 2× 2 matrix of the game looks as follows:

(u′′, u′′) (u−, u)
(u, u−) (u′, u′).

Taking into account (5.3), we see that the southeastern corner (x1 = x2 = 2) is a unique
Nash equilibrium, which is strongly Pareto dominated by the northwestern corner (x1 =
x2 = 1).
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Lemma 5.2.2. Let m ≥ 2, v1 > v2, and

U (m)(v1, v2, v3, . . . , vm) < U (m)(v1, v1, v3, . . . , vm); (5.4)

then U (m)(v̄1, v2, v3, . . . , vm) = U (m)(v1, v2, v3, . . . , vm) for all v̄1 ≥ v1.

Proof. A nonstrict inequality immediately follows from the monotonicity of U (m). Let
us suppose U(v̄1, v2, . . . , vm) = u′′ > u = U(v1, v2, . . . , vm) for some v̄1 > v1; we may
assume, without restricting generality, that u′′ < u+ = U(v1, v1, v3, . . . , vm). Since
U(v2, v1, v3, . . . , vm) = u by symmetry, (5.4) and the continuity of U imply the existence
of v′1 ∈]v2, v1[ such that u < u′ = U(v′1, v1, v3, . . . , vm) < u′′. Thus,

u < u′ < u′′ < u+. (5.5)

Now let us consider a game with structured utilities where both players use the
aggregator U : N = {1, 2}; there are m + 1 activities, A = {a1, a2, b, c3, . . . , cm};
Υi = {ai, b, c3, . . . , cm} (i = 1, 2); X1 = X2 = {1, 2}; ϕai

(1) = v2, ϕai
(2) = v1;

ϕb(1, 1) = v̄1, ϕb(1, 2) = ϕb(2, 1) = v1, ϕb(2, 2) = v′1; ϕcs(x1, x2) = vs (s = 3, . . . ,m).
The 2× 2 matrix of the game looks as follows:

(u′′, u′′) (u, u+)
(u+, u) (u′, u′).

Taking into account (5.5), we see that the southeastern corner (x1 = x2 = 2) is a unique
Nash equilibrium, which is strongly Pareto dominated by the northwestern corner (x1 =
x2 = 1).

Lemma 5.2.3. If (v1, v2) ∈ R2
>, u = U(v1, v2, v3, . . . , vm) > U(v2, v2, v3, . . . , vm), (v′1, v

′
2) ∈

R2
>, and u′ = U(v′1, v

′
2, v3, . . . , vm) < u, then U(v′1, v

′
1, v3, . . . , vm) = u′.

Proof. By Lemma 5.2.1, U(v1, v̄2, v3, . . . , vm) = u for all v̄2 ≤ v2, hence

U(v̄1, v̄2, v3, . . . , vm) ≥ u for all v̄1 ≥ v1 and v̄2 ∈ R. (5.6)

Since u′ < u, v′1 < v1. Supposing U(v′1, v
′
1, v3, . . . , vm) > u′, we, by Lemma 5.2.2, obtain

U(v̄1, v
′
2, v3, . . . , vm) = u′ for all v̄1 ≥ v′1, in particular, U(v1, v

′
2, v3, . . . , vm) = u′ < u,

contradicting (5.6).

Lemma 5.2.4. If (v1, v2) ∈ R2
>, u = U(v1, v2, v3, . . . , vm) < U(v1, v1, v3, . . . , vm), (v′1, v

′
2) ∈

R2
>, and u′ = U(v′1, v

′
2, v3, . . . , vm) > u, then U(v′2, v

′
2, v3, . . . , vm) = u′.

Proof. By Lemma 5.2.2, U(v̄1, v2, v3, . . . , vm) = u for all v̄1 ≥ v1, hence

U(v̄1, v̄2, v3, . . . , vm) ≤ u for all v̄2 ≤ v2 and v̄1 ∈ R. (5.7)

Since u′ > u, v′2 > v2. Supposing U(v′2, v
′
2, v3, . . . , vm) < u′, we, by Lemma 5.2.1, obtain

U(v′1, v̄2, v3, . . . , vm) = u′ for all v̄2 ≤ v′2, in particular, U(v′1, v2, v3, . . . , vm) = u′ > u,
contradicting (5.7).
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Lemma 5.2.5. For every U ∈ U, there is λU
2 : R → R such that either U(v1, v2) =

λU
2 (min{v1, v2}) for all v1, v2 ∈ R or U(v1, v2) = λU

2 (max{v1, v2}) for all v1, v2 ∈ R.

Proof. We define λU
2 (u) = U (2)(u, u). It follows immediately from (2.5) that λU

2 (·) is
strictly increasing. Let (v1, v2) ∈ R2

>; if U(v2, v2) < U(v1, v2) < U(v1, v1), then, by
Lemmas 5.2.1 and 5.2.2, U(v1, v̄2) = U(v1, v2) = U(v̄1, v2) for all v̄1 > v1 and v̄2 < v2,
but this contradicts (2.5). Therefore, either U(v1, v2) = U(v1, v1) = λU

2 (max{v1, v2}) or
U(v1, v2) = U(v2, v2) = λU

2 (min{v1, v2}). Since either condition obviously defines a closed
subset of R2

>, one of them must be empty.

Lemma 5.2.6. If there is Ū ∈ U such that Ū(v1, v2) = λŪ
2 (min{v1, v2}) for all v1, v2 ∈ R

, then U(v1, v2, v3, . . . , vm) = U(v2, v2, v3, . . . , vm) for all U ∈ U, m ≥ 2, v1 ≥ v2, and
v3, . . . , vm ∈ R.

Proof. Suppose the contrary: v1 > v2 and U(v1, v2, v3, . . . , vm) > U(v2, v2, v3, . . . , vm). By
the continuity of U , we can choose v0 < v1 < · · · < v4 such that v2 < v0, v1 > v4, and
U(vs, v2, v3, . . . , vm) < U(vs+1, v2, v3, . . . , vm) for s = 0, . . . , 3, and U(v4, v2, v3, . . . , vm) <
U(v1, v2, v3, . . . , vm). Denoting us = U(vs, v2, v3, . . . , vm) (s = 0, . . . , 4), we obtain u0 <
u1 < · · · < u4. By Lemma 5.2.3, U(vs, vs′ , v3, . . . , vm) = us whenever s > s′ (s′ = 0, . . . , 3).

Now let us consider a two person game with structured utilities where player 1 uses the
aggregator Ū and player 2 uses U : N = {1, 2}; there are m + 1 activities, A = {a1, a2, b,
c3, . . . , cm}; Υ1 = {a1, b}; Υ2 = {a2, b, c3, . . . , cm}; X1 = X2 = {1, 2}; ϕa1(1) = v1,
ϕa1(2) = v2; ϕa2(1) = v2, ϕa2(2) = v3; ϕb(1, 1) = v4, ϕb(1, 2) = v3, ϕb(2, 1) = v2,
ϕb(2, 2) = v0; ϕcs(x2) = vs (s = 3, . . . , m). The 2× 2 matrix of the game looks as follows:

(
λŪ

2 (v1), u4
) (

λŪ
2 (v1), u3

)
(
λŪ

2 (v2), u2
) (

λŪ
2 (v0), u3

)
.

Clearly, there is no Nash equilibrium in the game.

Lemma 5.2.7. If there is Ū ∈ U such that Ū(v1, v2) = λŪ
2 (max{v1, v2}) for all v1, v2 ∈ R

, then U(v1, v2, v3, . . . , vm) = U(v1, v1, v3, . . . , vm) for all U ∈ U, m ≥ 2, v1 ≥ v2, and
v3, . . . , vm ∈ R.

Proof. The proof is “dual” to that of Lemma 5.2.6. Suppose the contrary: v1 > v2 and
U(v1, v2, v3, . . . , vm) < U(v1, v1, v3, . . . , vm). By the continuity of U , we can choose v0 <
v1 < · · · < v4 such that v2 < v0, v1 > v4, and U(v1, v

s, v3, . . . , vm) < U(v1, v
s+1, v3, . . . , vm)

for s = 0, . . . , 3, and U(v1, v
0, v3, . . . , vm) > U(v1, v2, v3, . . . , vm). Denoting us = U(v1, v

s,
v3, . . . , vm) (s = 0, . . . , 4), we obtain u0 < u1 < · · · < u4. By Lemma 5.2.4, U(vs, vs′ , v3, . . . ,
vm) = us whenever s < s′ (s = 0, . . . , 3).

Now let us consider a two person game with structured utilities where player 1 uses the
aggregator Ū and player 2 uses U : N = {1, 2}; there are m + 1 activities, A = {a1, a2, b,
c3, . . . , cm}; Υ1 = {a1, b}; Υ2 = {a2, b, c3, . . . , cm}; X1 = X2 = {1, 2}; ϕa1(1) = v2,
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ϕa1(2) = v3; ϕa2(1) = v1, ϕa2(2) = v2; ϕb(1, 1) = v4, ϕb(2, 1) = v3, ϕb(1, 2) = v2,
ϕb(2, 2) = v0; ϕcs(x2) = vs (s = 3, . . . , m). The 2× 2 matrix of the game looks as follows:

(
λŪ

2 (v4), u1
) (

λŪ
2 (v2), u2

)
(
λŪ

2 (v3), u1
) (

λŪ
2 (v3), u0

)
.

Clearly, there is no Nash equilibrium in the game.

Let us address the statement of the theorem. For each U ∈ U, m ≥ 1, and u ∈ R, we
define λm(u) = U (m)(u, . . . , u); for m = 1, there is nothing to prove. By Lemma 5.2.5,
either U(v1, v2) = λU

2 (min{v1, v2}) or U(v1, v2) = λU
2 (max{v1, v2}). In the first case,

Lemma 5.2.6 implies that all two-dimensional sections of all aggregation functions are
minimum-like; then the equality U(v1, v2, . . . , vm) = λU

2 (min{v1, v2, . . . , vm}) is derived
exactly as in the proof of Theorem 3. In the second case, a dual reasoning establishes
U(v1, v2, . . . , vm) = λU

2 (max{v1, v2, . . . , vm}) for all U ∈ U, m ≥ 1, and v1, v2, . . . , vm ∈
R.

If a family of aggregators U satisfies the statement of Theorem 6, then in every game
with structured utilities where each player uses an aggregator from U, the strong coalition
improvement relation, defined by (2.2), is Ω-acyclic. The fact immediately follows from
Theorem 1 and Proposition 3.1.

5.3 Necessity of Additive Aggregation

Theorem 7. Let N be a finite set with #N ≥ 2; let 〈Ui〉i∈N be a list of universal ag-

gregators such that every function U
(m)
i is symmetric, continuous, and strictly increasing

in the sense of (2.6). If every game with structured utilities where N is the set of play-
ers and each player i uses the aggregator Ui possesses a Nash equilibrium, then there is
a continuous and strictly increasing mapping ν : R → R and a continuous and strictly
increasing mapping λm

i : m · ν(R) → R for every i ∈ N and m ≥ 1 such that

U
(m)
i (v1, . . . , vm) = λm

i

( m∑
s=1

ν(vs)
)

(5.8)

for all v1, . . . , vm ∈ R.

Remark. The comment to the formulation of Theorem 3 is appropriate here as well.

Proof. The general scheme of the proof is the same as in Theorem 5 (and even simpler
because we do not have to prove the second statement).

Lemma 5.3.1. Let i, j ∈ N , m,m′ ≥ 2, vs ∈ R for s = 1, . . . ,m, and v′s ∈ R for
s = 1, . . . , m′; let

U
(m)
i (v1, v

′
2, v3, . . . , vm) = U

(m)
i (v′1, v2, v3, . . . , vm). (5.9a)

Then
U

(m′)
j (v1, v

′
2, v

′
3, . . . , v

′
m′) = U

(m′)
j (v′1, v2, v

′
3, . . . , v

′
m′). (5.9b)
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Proof. As in the proof of Lemma 4.3.1, we suppose first that i 6= j. The negation of (5.9b)

can be written as U
(m′)
j (v1, v

′
2, v

′
3, . . . , v

′
m′) > U

(m′)
j (v′1, v2, v

′
3, . . . , v

′
m′). Pick δ > 0 such

that u2
j = U

(m′)
j (v1, v

′
2, v

′
3, . . . , v

′
m′) > U

(m′)
j (v′1 + δ, v2, v

′
3, . . . , v

′
m′) = u1

j ; by monotonicity

from (5.9a), u1
i = U

(m)
i (v1, v

′
2, v3, . . . , vm) < U

(m)
i (v′1 + δ, v2, v3, . . . , vm) = u2

i .

Let us consider a game with structured utilities where N is the set of players and
each player k uses the aggregator Uk: A = {a, b, c3, . . . , cm, d3, . . . , dm′ , e}; Υi =
{a, b, c3, . . . , cm}, Υj = {a, b, d3, . . . , dm′}, Υk = {e} for k ∈ N \ {i, j}; Xi = Xj = {1, 2},
Xk = {1} for k 6= i, j; ϕa(xi, xj) = v′1 + δ if xi = xj, ϕa(xi, xj) = v1 if xi 6= xj;
ϕb(xi, xj) = v2 if xi = xj, ϕb(xi, xj) = v′2 if xi 6= xj; ϕcs(xi) = vs (s = 3, . . . ,m);
ϕds(xj) = v′s (s = 3, . . . , m′). The 2× 2 matrix of the essential part of the game looks as
follows:

(u2
i , u

1
j) (u1

i , u
2
j)

(u1
i , u

2
j) (u2

i , u
1
j).

Since u2
k > u1

k (k = i, j), the game possesses no Nash equilibrium.

If i = j, we pick k 6= i and obtain

U
(m)
k (v1, v

′
2, v3, . . . , vm) = U

(m)
k (v′1, v2, v3, . . . , vm)

first, and then (5.9b).

Lemma 5.3.2. Let i ∈ N and let v′s < v′′s < v′′′s ∈ R for s = 1, 2; let

U
(2)
i (v′1, v

′′
2) = U

(2)
i (v′′1 , v

′
2) (5.10a)

and
U

(2)
i (v′1, v

′′′
2 ) = U

(2)
i (v′′1 , v

′′
2) = U

(2)
i (v′′′1 , v′2). (5.10b)

Then
U

(2)
i (v′′1 , v

′′′
2 ) = U

(2)
i (v′′′1 , v′′2). (5.11)

The statement immediately follows from Lemma 2 of Kukushkin (1994).

As in the proof of Theorem 5, the equality (5.8) now follows from the main theorem of
Gorman (1968) for m > 2 or from the Blaschke–Thomsen results cited by Debreu (1960)
for m = 2.

A family of aggregators satisfying (5.8) is obviously consistent with the universal sep-
arable order defined by the sums

∑m
s=1 ν(vs); therefore, the Ω-acyclicity of the individual

improvement relation is ensured by Proposition 5.1.

6 Representation Theorems

Among games with the minimum aggregation and negative impacts, games with struc-
tured utilities form a representative subclass.
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Proposition 6.1. Let Γ be a game with the minimum aggregation and negative impacts;
then Γ can be represented as a game with structured utilities (and also with the minimum
aggregation).

Proof. We define A∗ = {(α, I) ∈ A × (2N \ {∅})| N−(α) ⊆ I ⊆ N(α)}, Υ∗
i = {(α, I) ∈

A∗| i ∈ I},
ϕ∗(α,I)(xI) =

{
ϕα(I, xI), I ⊆ N(α, x),

+∞, else,

and u∗i (x) = min(α,I)∈Υi
ϕ∗(α,I)(xI).

Remark. The +∞ in the definition of ϕ∗ need not be understood literally: anything
large enough would do.

We only have to show ui(x) = u∗i (x) for every i ∈ N and x ∈ X. Let ui(x) =
ϕα(N(α, x), xN(α,x)) with i ∈ N(α, x) = M . We have (α,M) ∈ Υ∗

i and ϕ∗(α,M)(xM) =

ϕα(M, xM) = ui(x); therefore, u∗i (x) ≤ ui(x).

Now let (α, I) ∈ Υ∗
i and ϕ∗(α,I)(x) < +∞; then i ∈ I ⊆ N(α, x). If I ⊂ N(α, x), then

ϕ∗(α,I)(x) = ϕα(I, xI) ≥ ϕα(N(α, x), xN(α,x)) by (2.8). If I = N(α, x), then ϕ∗(α,I)(x) =

ϕα(N(α, x), xN(α,x)). In either case, ϕ∗(α,I)(x) ≥ ui(x) by (3.1); therefore, u∗i (x) ≥ ui(x).

An exact analogue of Proposition 6.1 for games with the maximum aggregation and
positive impacts is obviously valid as well.

Propositions 4.1 and 5.1 show that there are two distinct classes of games with addi-
tive aggregation where the acyclicity of individual improvements is ensured: anonymous
participation (i.e., congestion) games and games with structured utilities. However, if we
understand “a game” as defined in Subsection 2.1, we shall see that the former class is a
subclass of the latter (actually, the subclass of all finite games).

First of all, the proof of Proposition 5.1 and Theorem 3.2 of Monderer and Shapley
(1996) show that every finite game from the latter class can be interpreted as a conges-
tion game (up to monotonic transformations of utilities). Representation in the opposite
direction is even simpler and can be done in two independent ways.

Proposition 6.2. Let Γ be a strategic game with compact metric spaces as Xi, contin-
uous (cardinal) utilities, and a continuous exact potential (as defined by Monderer and
Shapley, 1996). Then Γ can be represented as a game with structured utilities and additive
aggregation.

Proof. By definition, there are continuous functions P : X → R and Q−i : X−i → R
(i ∈ N) such that ui(x) = P (x) + Q−i(x−i) for all i ∈ N and x ∈ X. We define
A = N ∪ {N}, Υi = A \ {i} (i.e., there are n + 1 activities; each player is engaged in n of
them; one activity is associated with all players; each of the other activities is associated
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with n−1 players), ϕN(x) = P (x)+
∑

j∈N Q−j(x−j), and ϕi(x−i) = −Q−i(x−i). Denoting
u∗i (x) the structured utilities, we have

u∗i (x) =
∑
α∈Υi

ϕα(xN(α)) = ϕN(x) +
∑

j 6=i

ϕj(x−j) =

P (x) +
∑
j∈N

Q−j(x−j)−
∑

j 6=i

Q−j(x−j) = P (x) + Q−i(x−i) = ui(x)

for all i ∈ N and x ∈ X.

Remark. Our topological assumptions were not used in the proof. Without them, how-
ever, the constructed game with structured utilities need not satisfy the basic assumptions
of Subsection 2.3.

Proposition 6.3. Let Γ be a congestion game; then it can also be represented as a game
with structured utilities and additive aggregation.

Proof. We define A∗ = {(α, I) ∈ A × (2N \ {∅})| N−(α) ⊆ I ⊆ N(α)}, Υ∗
i = {(α, I) ∈

A∗| i ∈ I},
ϕ∗(α,I)(xI) =

{
Φα(#I), I ⊆ N(α, x),

0, else,

where Φα(m) =
∑m

k=1(−1)m−k
(

m−1
k−1

)
ϕα(k) (if ϕα(k) is not defined, we set ϕα(k) = 0 ),

and u∗i (x) =
∑

(α,I)∈Υi
ϕ∗(α,I)(xI).

Let us show that ui(x) = u∗i (x) for every i ∈ N and x ∈ X. By definition,

u∗i (x) =
∑
α∈xi

∑

I⊆N(α,x), I3i

Φα(#I).

Let α ∈ xi and m = #N(α, x) ≥ 1. We have

∑

I⊆N(α,x), I3i

Φα(#I) =
m∑

h=1

(
m− 1

h− 1

)
Φα(h) =

m∑

h=1

h∑

k=1

(−1)h−k

(
m− 1

h− 1

)(
h− 1

k − 1

)
ϕα(k) =

m∑

k=1

(m− 1)!

(k − 1)!
ϕα(k) ·

m∑

h=k

(−1)h−k

(m− h)!(h− k)!
=

ϕα(m) +
m−1∑

k=1

(m− 1)!

(m− k)!(k − 1)!
ϕα(k) ·

m−k∑
s=0

(−1)s(m− k)!

(m− k − s)!s!
=

ϕα(m) +
m−1∑

k=1

(m− 1)!

(m− k)!(k − 1)!
ϕα(k) · (1− 1)m−k = ϕα(m).

Therefore, u∗i (x) =
∑

α∈xi

∑
ϕα(#N(α, x)) = ui(x).

Remark. A straightforward inductive reasoning shows that the potential for Γ∗ defined
in the proof of Proposition 5.1,

∑
(α,I)∈A∗ ϕ∗(α,I)(xI), coincides with Rosenthal’s (1973)

potential for Γ,
∑

α∈A

∑#N(α,x)
k=1 ϕα(k), used in the proof of Proposition 4.1.
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The application of Proposition 6.2 to a congestion game produces a game with struc-
tured utilities different from that constructed in Proposition 6.3. (A “game” here is
interpreted as in Subsection 2.3).

7 Games with a Fixed Structure of Objectives

Let a set of players N and a set of activities A be fixed; a structure of objectives consists
of sets Υi ⊆ A for i ∈ N . If we assume that our players may, in principle, find themselves
participating in any game with these sets Υi of relevant objectives, we might be interested
in aggregation functions guaranteeing certain nice properties. The concept of a universal
aggregator then becomes inadequate because we know beforehand that each player i will
face #Υi objectives; moreover, every objective has an identity of its own, so the symmetry
assumption would look arbitrary.

7.1 Games with Public and Private Objectives

In a game with public and private objectives there are n + 1 activities: one (private)
associated with each player and one (public) associated with all players. In other words,
the strategy sets Xi may be arbitrary, while the utilities are of the form

ui(x) = Ui(ϕN(x), ϕi(xi)) (7.1)

for all i ∈ N and x ∈ X, where ϕN : X → R, ϕi : Xi → R, and Ui : R2 → R are given
functions.

We shall be interested in conditions on the aggregation functions Ui ensuring the
Ω-acyclicity of weak coalition improvements regardless of all other characteristics. We
assume that the first argument v1 always corresponds to the public objective ϕN(x),
while v2 to the private objective ϕi(xi).

A family U of functions U : R2 → R is called strongly stable if for any finite set N ,
compact metric spaces Xi and functions Ui ∈ U for each i ∈ N , and continuous functions
ϕN : X → R and ϕi : Xi → R (i ∈ N), the weak coalition improvement relation .wCo,
defined by (2.3), in the game Γ defined by (7.1) is Ω-acyclic.

A family U of functions U : R2 → R is called weakly stable if for any finite set N ,
compact metric spaces Xi and functions Ui ∈ U for each i ∈ N , and continuous functions
ϕN : X → R and ϕi : Xi → R (i ∈ N), the game Γ defined by (7.1) possesses a Pareto
efficient Nash equilibrium.

We use the notion of a continuous and strictly increasing one-variable function having
infinite values. More precisely, any such function ν(·) is defined on an open interval
]v, v̄[⊆ R, is continuous and strictly increasing on it in the usual sense, ν(v) → −∞ as
v → v if v > −∞, and ν(v) → +∞ as v → v̄ if v̄ < +∞. The expression ν(v) for v < v
is understood as −∞, for v > v̄ as +∞. Any such function with v < v̄ has the inverse,
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which is also continuous and increasing, takes the value +∞ for the arguments greater
than ν(+∞) and −∞ for those less than ν(−∞).

Functions U ∈ U are all properly kinked if U = U1 ∪U2, for each U ∈ U2 there exists a
continuous and strictly increasing function λU : R→ R such that

U(v1, v2) = λU(v2) (7.2a)

for all (v1, v2) ∈ R2, and for each U ∈ U1 there exist continuous and strictly increasing
functions νU

1 , νU
2 , and νU

3 : R → R such that νU
1 has a finite value, one function of each

pair νU
1 , νU

2 may have −∞ as a value, one function of each pair νU
1 , νU

3 may have +∞ as
a value,

U(v1, v2) = min{max{νU
1 (v1), ν

U
2 (v2)}, νU

3 (v2)} (7.2b)

for all (v1, v2) ∈ R2, and

sup
U∈U1

(νU
1 )−1 ◦ νU

2 (+∞) = v− ≤ v+ = inf
U∈U1

(νU
1 )−1 ◦ νU

3 (−∞). (7.2c)

Remark. A function satisfying (7.2a) can be represented in the form (7.2b) with νU
1

taking no finite value, in which case (νU
1 )−1 in (7.2c) makes no sense.

There is a kind of geometric interpretation for the property. First, every function
U ∈ U may only have indifference curves of the following four types:

6

?

-¾

¾

? -

6

(the open ends should be extended to infinity). Second, the projection on the first (public)
axis of any maximum-like corner is situated to the left of the projection on the same axis
of any (for any U ∈ U) minimum-like corner.

Theorem 8. For any set U of continuous functions U : R2 → R increasing in the sense
of (2.5), the following statements are equivalent:

8.1. U is strongly stable;

8.2. U is weakly stable;

8.3. all functions from U are properly kinked.

The implication [8.1] ⇒ [8.2] is trivial.

Sufficiency proof. Given a set of functions U, all properly kinked, a finite set N , compact
metric spaces Xi and functions Ui ∈ U for each i ∈ N , and continuous functions ϕN :
X → R and ϕi : Xi → R (i ∈ N), we have to show the Ω-acyclicity of the weak coalition
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improvement relation .wCo in the game defined by (7.1). As in the proof of Theorem 1,
we show that .wCo admits a potential.

We have N = N1∪N2, where N s = {i ∈ N | Ui ∈ Us} (s = 1, 2). First, we denote Âmin

the leximin ordering built out of modified utility functions (νUi
1 )−1 ◦ ui, i ∈ N1, as in the

proof of Theorem 1, and Âmax the leximax ordering (again, for (νUi
1 )−1 ◦ ui and i ∈ N1)

defined dually. Then we define

y ∼′ x ⇐⇒ ∀i ∈ N2 [ui(y) = ui(x)],

y Â′ x ⇐⇒ [∀i ∈ N2 [ui(y) ≥ ui(x)] & ∃i ∈ N2 [ui(y) > ui(x)]
]
,

y Â x ⇐⇒
(
y Â′ x or

[
y ∼′ x &

(
[ϕN(y) > v+ & ϕN(x) < v−] or

[y Âmax x & ϕN(y) ≤ v+ & ϕN(x) ≤ v+] or

[y Âmin x & ϕN(y) ≥ v− & ϕN(x) ≥ v−]
)])

. (7.3)

Lemma 7.1.1. The relation Â is irreflexive and ω-transitive.

Proof. For every U ∈ U1, we have, by (7.2b), that (νU
1 )−1 ◦ U(v1, v2) = v1 whenever

(νU
1 )−1 ◦ νU

2 (+∞) ≤ v1 ≤ (νU
1 )−1 ◦ νU

3 (−∞); therefore,

v− ≤ v1 ≤ v+ ⇒ Ui(v1, v2) = νUi
1 (v1) (7.4)

for every i ∈ N1.

Now each component in (7.3) is obviously transitive; (7.4) implies that there cannot
emerge a contradiction when two components are applicable simultaneously. Irreflexivity
is obvious; for ω-transitivity, one can refer to Proposition 3.7 from Kukushkin (2003).

Lemma 7.1.2. y .wCo x ⇒ y Â x.

Proof. Let y .wCo
I x; we have to show y Â x. We denote I+ = {i ∈ I| ui(y) > ui(x)} 6= ∅.

If I+ ∩ N2 6= ∅, then y Â′ x, hence y Â x. If ϕN(y) > ϕN(x), then ui(y) ≥ ui(x) for all
i ∈ I with a strict inequality for some of them by our assumption, while ui(y) ≥ ui(x) for
all i ∈ N \ I because ϕi(xi) = ϕi(yi); therefore, y Pareto dominates x, hence y Â x.

Let ϕN(y) ≤ ϕN(x) and I+ ⊆ N1. (7.4) implies that either ϕN(x) < v− or ϕN(y) > v+.
In the latter case, we denote w = mini∈I+(νUi

1 )−1 ◦ ui(x). Whenever ui(y) > ui(x), we
have i ∈ N1 and (νUi

1 )−1 ◦ ui(x) = (νUi
1 )−1 ◦ νUi

3 ◦ ϕi(xi) < min{ϕN(y), (νUi
1 )−1 ◦ νUi

3 ◦
ϕi(yi)} ≤ ϕN(y); therefore, w < ϕN(y). Whenever uj(y) < uj(x), we have j ∈ N1 \ I and

(ν
Uj

1 )−1 ◦ uj(y) = ϕN(y) > w, so we can argue quite similarly to the proof of Theorem 1.
In the former case, we argue exactly dually.

A reference to Theorem 2 of Kukushkin (2003) ([2.2] ⇒ [2.1]) completes the proof.

Necessity proof. Suppose that a set U ∈ U of continuous increasing functions U : R2 → R
is weakly stable. We have to show that all the functions are properly kinked.
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Lemma 7.1.3. For every U ∈ U and u ∈ U(R2), the indifference curve U−1(u) follows
one of the five patterns:

-¾

[1]
¾

?

[2]

-

6

[3]

6

?

[4]

-

¾
[5]

where the open ends should be extended to infinity.

Proof. The lemma is proved in Kukushkin (1992, Lemma 2.2). That paper dealt with a
particular case of our current problem: the set U was a singleton. Since all players may
use the same aggregator, the necessary conditions established there remain valid in our
more general case.

A point (v0
1, v

0
2) of the plane is called a northeastern corner for U ∈ U if the inequalities

v0
1−ε < v1 < v0

1, v0
2−ε < v2 < v0

2 (for some ε > 0) imply U(v1, v
0
2) = U(v0

1, v
0
2) = U(v0

1, v2).
It follows from Lemma 7.1.3 that in this case U(v1, v

0
2) = U(v0

1, v
0
2) for any v1 < v0

1. A
point (v0

1, v
0
2) is called a southwestern corner for U ∈ U if the same equalities follow from

v0
1 < v1 < v0

1 + ε, v0
2 < v2 < v0

2 + ε. (Again, then the first equality holds for any v1 > v0
1).

Lemma 7.1.4. If (v′1, v
′
2) is a northeastern corner for U ∈ U, then for any v′′1 ≤ v′1,

v′′2 ∈ R, and U ′ ∈ U, the point (v′′1 , v
′′
2) is not a southwestern corner for U ′.

Proof. Suppose the contrary. It follows easily from Lemma 7.1.3 that in a rectangular
neighbourhood of the point (v′1, v

′
2) every indifference curve of U (locally) follows the

pattern [2], while in a rectangular neighbourhood of the point (v′′1 , v
′′
2) every indifference

curve of U ′ (locally) follows the pattern [3]. The expression “is close enough” below means
“belongs to the appropriate neighbourhood.” We may suppose v′′1 < v′1 without any loss
of generality, because otherwise we could slightly decrease v′′1 and find a new southwestern
corner for the same U ′.

We denote v21
1 = v′1, v21

2 = v′′2 , and v12
2 = v′2. Then we pick v11

1 > v′1 close enough to it,
v12

1 ∈]v′′1 , v
′
1[, v22

1 < v′′1 close enough to it, v11
2 < v′2 close enough to it, and v22

2 > v′′2 close
enough to it. Now we define N = {1, 2}, X1 = X2 = {1, 2}, ϕ1(1) = v11

2 , ϕ1(2) = v12
2 ,

ϕ2(1) = v21
2 , ϕ2(2) = v22

2 , ϕN(1, 1) = v11
1 , ϕN(1, 2) = v12

1 , ϕN(2, 1) = v21
1 , ϕN(2, 2) = v22

1 .
Let player 1 use the aggregation function U and player 2, U ′. It is easy to verify the
following inequalities:

u2(1, 1) = U ′(v11
1 , v21

2 ) = U ′(v′′1 , v
′′
2) < U ′(v12

1 , v22
2 ) = u2(1, 2);

u1(1, 2) = U(v12
1 , v11

2 ) < U(v′1, v
′
2) = U(v22

1 , v12
2 ) = u1(2, 2);

u2(2, 2) = U ′(v22
1 , v22

2 ) < U ′(v′′1 , v
′′
2) = U ′(v21

1 , v21
2 ) = u2(2, 1);

u1(2, 1) = U(v21
1 , v12

2 ) = U(v′1, v
′
2) < U(v11

1 , v11
2 ) = u1(1, 1).

Thus, the game has no Nash equilibrium.
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It follows immediately that no indifference curve of any function U follows the pattern
[5]. In fact, Lemma 7.1.4 incorporates both Lemmas 2.3 and 2.4 of Kukushkin (1992).

The image U(R2) must be an open interval. For k = 1, . . . , 4, denoting RU
k = {u ∈

U(R2)| U−1(u) follows the pattern [k]}, we have

U(R2) =
4⋃

k=1

RU
k .

As in Kukushkin (1992), the following statements are evidently true.

For each U ∈ U at least one of the sets RU
1 or RU

4 is empty. (7.5a)

The sets RU
1 and RU

4 are closed in U(R2). (7.5b)

The sets RU
2 and RU

3 are open. (7.5c)

If u ∈ RU
2 , u′ ∈ U(R2), and u′ < u, then u′ ∈ RU

2 . (7.5d)

If u ∈ RU
3 , u′ ∈ U(R2), and u′ > u, then u′ ∈ RU

3 . (7.5e)

We define U2 = {U ∈ U| RU
2 = RU

3 = RU
4 = ∅} and U1 = U \U2. Representation (7.2a)

is obvious for every U ∈ U2.

Let U ∈ U1; for u ∈ RU
1 , we define µU(u) by the condition U−1(u) = {(v1, v2) ∈

R2| v2 = µU(u)}; for u ∈ RU
4 , µU

1 (u) by U−1(u) = {(v1, v2) ∈ R2| v1 = µU
1 (u)}. If

u ∈ RU
2 , we denote

(
µU

1 (u), µU
2 (u)

)
the coordinates of the unique northeastern corner for

U on U−1(u); for u ∈ RU
3 ,

(
µU

1 (u), µU
3 (u)

)
are the coordinates of the unique southwestern

corner for U on U−1(u). If RU
2 = ∅, we define νU

2 ≡ −∞; if RU
3 = ∅, νU

3 ≡ +∞. If
RU

1 = RU
2 = RU

3 = ∅, we define νU
1 = (µU

1 )−1; (7.2b) and (7.2c) are obvious.

If RU
2 6= ∅, there are three alternatives: RU

2 = U(R2) (i.e., RU
1 = RU

3 = RU
4 = ∅), or

sup RU
2 ∈ RU

1 , or sup RU
2 ∈ RU

4 . In the first case, we define νU
1 = (µU

1 )−1 and νU
2 = (µU

2 )−1,
having νU

3 ≡ +∞; (7.2b) holds as U(v1, v2) = max{νU
1 (v1), ν

U
2 (v2)}. In the second case,

we extend µU
2 to RU

1 by µU
2 (u) = µU(u), notice that the extended µU

2 is still continuous
and strictly increasing, and define νU

1 and νU
2 exactly as in the previous case; (7.2b) holds

in the same form. In either case, there are northeastern corners for U with arbitrarily
large v1; by Lemma 7.1.4, RU ′

3 = ∅ for all U ′ ∈ U, hence νU ′
3 ≡ +∞ and (7.2c) holds as

v− = +∞ = v+. In the third case, we notice that µU
1 (u) → µU

1 (sup RU
2 ) as u → sup RU

2 −0,
hence µU

1 is continuous and strictly increasing on RU
2 ∪ RU

4 . If RU
3 = ∅, we define νU

1 and
νU

2 exactly as above, and obtain (7.2b) and (7.2c) in the same form.

When RU
3 6= ∅, we reproduce the previous paragraph with obvious modifications.

(7.2b) in full generality emerges when all the three RU
2 , RU

3 , and RU
4 are not empty.

Finally, we notice that (νU
1 )−1◦ν2(+∞) = µU

1 ◦ν2(+∞) = sup{v1 ∈ R| ∃v2 ∈ R [(v1, v2)
is a northeastern corner for U ]} whereas (νU

1 )−1 ◦ ν3(−∞) = µU
1 ◦ ν3(−∞) = inf{v1 ∈

R| ∃v2 ∈ R [(v1, v2) is a southwestern corner for U ]}. Now (7.2c) follows directly from
Lemma 7.1.4.
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7.2 On Necessity

In Theorem 8, as in Theorems 3, 4, and 6, our players picked their aggregators from
a common set, in particular, two players could pick the same aggregator, and it was
essential for the proofs. In Theorems 5 and 7, we considered a list of aggregators leaving
no freedom of choice to the players. In the context of games with public and private
objectives, introducing a list into the formulation of Theorem 8 would make it just wrong;
in more general cases, no such counterexample is known.

Proposition 7.1. Let N = {1, 2}, U1(v1, v2) = v1, and U2(v1, v2) be an arbitrary (con-
tinuous and increasing) function. Then the weak coalition improvement relation .wCo in
every game with public and private objectives where player 1 uses U1 and player 2, U2 is
Ω-acyclic.

Proof. We define y Â x ⇐⇒ [
u2(y) > u2(x) or [u2(y) = u2(x) & u1(y) > u1(x)]

]
. The

relation Â is obviously a potential for .wCo: increasing his utility, player 1 cannot decrease
that of player 2.

Remark. An analysis of the proofs of Theorems 5, 7, and 8 shows that they remain valid
if we consider a list of aggregators assuming that each of them enters the list, at least,
twice.

We define the Nash–Pareto improvement relation in a strategic game by

y .NP x ⇐⇒ [y .wCo
N x or y .Ind x], (7.6)

where .Ind is defined by (2.1) and .wCo
N , by (2.3a). A maximizer for .NP is a Pareto

optimal Nash equilibrium.

A structure of objectives 〈Υi〉i∈N is balanced if #N(α) = m is the same for all α ∈ A.

Proposition 7.2. If Γ is a game with a balanced structure of objectives and with additive
aggregation, then the Nash–Pareto improvement relation in Γ is Ω-acyclic.

Proof. As in the proof of Proposition 5.1, P (x) =
∑

α∈A ϕα(xN(α)) defines a potential for
individual improvements. Since the structure of objectives is balanced, we have P (x) =
1
m

∑
i∈N ui(x), hence P is also a potential for Pareto improvements.

The proposition shows that the presence of a universal aggregator in the formulation of
Theorem 6 was essential: when restricted to games with a balanced structure of objectives,
the theorem becomes just wrong.

As an example of a balanced structure, we may consider a completely ordered N ,
A = {(i, j) ∈ N ×N | i < j}, and Υi = {(i, j)}i<j ∪ {(j, i)}j<i. In other words, every pair
of players is engaged in an activity of their own, and each player sums up intermediate
utilities derived from all relevant activities.
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Another example: the players are arranged on an oriented circle, and each player
is engaged in two relationships, one with each neighbour. Again, additive aggregation
of intermediate utilities ensures the existence of a Pareto optimal Nash equilibrium in
discord with Theorem 6. Alternatively, every three consecutive players may be engaged
in an activity (so each player has three relevant objectives).

As to the necessity of additive aggregation for the “persistent” existence of a Nash
equilibrium (provided strong monotonicity is assumed), it was established for games with
public and private objectives in Kukushkin (1994). It seems plausible that a modifica-
tion of that proof [which, by the way, cannot be based on Debreu (1960) or even Gor-
man (1968)] could be developed if each player is only engaged in one or two activities.
With a greater number of relevant objectives, nothing seems clear at the moment.
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