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Abstract

If the preferences of the players in a strategic game satisfy certain continuity
conditions, then the acyclicity of individual improvements implies the existence of
a (pure strategy) Nash equilibrium. Moreover, starting from any strategy profile,
an arbitrary neighborhood of the set of Nash equilibria can be reached after a finite
number of individual improvements. JEL Classification Number: C 72.
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1 Introduction

By definition, if a strategic game admits a generalized ordinal potential as defined by
Monderer and Shapley (1996) and that potential attains its maximum, then the game
possesses a Nash equilibrium. No doubt, this condition for equilibrium existence is not
very widely applicable; however, we are concerned with another weak point here. Unless
the game in question is finite, our second supposition is only remotely connected with
the basics – strategies and preferences. For instance, although an exact potential of a
continuous game must be continuous, it is by no means clear that anything like that holds
for a generalized ordinal potential. (Concerning an ordinal potential, Voorneveld (1997,
Theorem 4.1) obtained a negative answer.)

Our main result sounds somewhat similar to the opening statement, but bypasses the
problem of (semi)continuity of potentials: If a compact-continuous game admits a general-
ized ordinal potential, then it possesses a Nash equilibrium.

To be more precise, we assume that each strategy set is a compact topological space,
while each utility function is upper semicontinuous in the total strategy profile and contin-
uous in the strategy profile of the partners/rivals; there is no finite individual improvement
cycle, but the existence of a numeric potential is not needed. Finally, we obtain more than
the mere existence of a Nash equilibrium: Given an arbitrary strategy profile, there is a
finite individual improvement path which starts at the profile and ends arbitrarily close to
a Nash equilibrium.

In Section 2 the basic definitions are given. Section 3 contains the formulation and
proof of the main result. A discussion of some related questions in Section 4 concludes the
paper.

2 Preliminaries

Our basic model is a strategic game with ordinal preferences. It is defined by a finite
set of players N , and strategy sets Xi and ordinal utility functions ui : XN → R, where
XN =

∏
i∈N Xi, for all i ∈ N . We denote X−i =

∏
j∈N\{i} Xj for each i ∈ N . Given a

strategy profile xN ∈ XN and i ∈ N , we denote xi and x−i its projections to Xi and X−i,
respectively.

With every strategic game, we associate this individual improvement relation BInd on
XN (i ∈ N , yN , xN ∈ XN):

yN BInd
i xN ­ [y−i = x−i & ui(yN) > ui(xN)]; (1a)

yN BInd xN ­ ∃i ∈ N [yN BInd
i xN ]. (1b)

By definition, a Nash equilibrium is a maximizer of the relation BInd on XN , i.e., a strategy
profile xN ∈ XN such that yN BInd xN holds for no yN ∈ XN .
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An individual improvement path is a (finite or infinite) sequence 〈xk
N〉k=0,1,... such that

xk+1
N BInd xk

N whenever k ≥ 0 and xk+1
N is defined. Since we consider no other kind of

improvements here, the adjective “individual” is dropped henceforth.

Following Monderer and Shapley (1996), we say that a strategic game Γ has the finite
improvement property (FIP) if it admits no infinite improvement path; then every improve-
ment path, if continued whenever possible, ends at a Nash equilibrium after a finite number
of steps. Γ has the weak FIP (Friedman and Mezzetti, 2001) if a Nash equilibrium can be
reached after a finite number of improvements starting from any strategy profile.

The relation BInd is acyclic if there is no finite improvement cycle, i.e., no improvement
path for which x0

N = xm
N with m > 0. For a finite game, the acyclicity of BInd is equivalent

to the FIP, and equivalent to the existence of a generalized ordinal potential, i.e., a function
P : XN → R such that P (yN) > P (xN) whenever yN BInd xN (Monderer and Shapley, 1996,
Lemma 2.5). When Γ need not be finite, either FIP or the existence of a generalized ordinal
potential still implies the acyclicity of BInd, but is not implied by it (Voorneveld and Norde,
1996, Example 4.1).

3 Main Result

Henceforth, we assume that each Xi is a topological space and XN is endowed with the
product topology. We say that Γ has the very weak FIP if, for every strategy profile
x0

N ∈ XN , there is a Nash equilibrium yN ∈ XN such that for every open neighborhood V
of yN there exists a finite improvement path x0

N , x1
N , . . . , xm

N with xm
N ∈ V .

Remark. There are plenty of alternative ways to “approximate” the weak FIP; e.g., we
could demand the existence of a finite improvement path ending in arbitrary open neigh-
borhood of the set of Nash equilibria, or the possibility to reach a Nash equilibrium either
after a finite number of improvements or in the limit of a convergent infinite improvement
path. The current version describes the strongest property of this kind I have been able to
derive from the assumptions of the theorem.

We assume that each ui is upper semicontinuous in xN and continuous in x−i; the
assumption has an immediate corollary for individual improvements:

∀i ∈ N ∀yN , xN ∈ XN

[
yN BInd

i xN ⇒ ∃U ⊆ XN

[
xN ∈ U &

[U is open] & ∀x′N ∈ U [(yi, x
′
−i) BInd

i x′N ]
]]

. (2)

Actually, what is needed for our main result is just condition (2).

Theorem. Let each Xi in a strategic game Γ be compact; let BInd satisfy condition (2) and
be acyclic. Then Γ has the very weak FIP.
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Remark. By the definition of the very weak FIP, Γ then possesses a (pure strategy) Nash
equilibrium.

Proof. Given x0
N ∈ XN , we denote Y ⊆ XN the set of strategy profiles that can be reached

from x0
N with finite improvement paths. Then we define Z = cl Y ; being a closed subset of

the compact space XN , Z is compact. We have to prove that Z contains a Nash equilibrium,
i.e., a maximizer of BInd on XN .

Claim 1. If zN ∈ Z, i ∈ N , and yN BInd
i zN , then yN ∈ Z too.

Proof. By (2), we have (yi, x−i) BInd
i xN whenever xN belongs to an appropriate neigh-

borhood U of zN . Let V be an arbitrary open neighborhood of yN . We pick an open
neighborhood V−i of y−i such that {yi} × V−i ⊆ V ; it is possible because V is open in the
product topology. Since y−i = z−i, the set U ∩ (Xi × V−i) is an open neighborhood of zN ,
hence there is a finite improvement path 〈x0

N , x1
N , . . . , xm

N〉 such that xm
N ∈ U ∩ (Xi × V−i).

We define xm+1
N = (yi, x

m
−i). Since 〈x0

N , x1
N , . . . , xm

N , xm+1
N 〉 remains a finite improvement

path, xm+1
N ∈ Y . Since xm+1

N ∈ V and V was arbitrary, we have yN ∈ Z.

Claim 2. There exists a maximizer of BInd on Z.

Proof. Supposing the contrary, we have yN(xN) ∈ Z and i(xN) ∈ N , for every xN ∈ Z,
such that yN(xN) BInd

i(xN ) xN ; therefore, there holds (yi(xN ), x
′
−i(xN )) BInd

i(xN ) x′N for every x′N
from an appropriate neighborhood of xN by (2). Since Z is compact, there are open subsets
U1, . . . , Um ⊆ XN , strategy profiles y1

N , . . . , ym
N ∈ Z, and i(h) ∈ N for each h ∈ {1, . . . , m}

such that Z ⊆ ⋃m
h=1 Uh and (yh

i(h), x−i(h)) BInd
i(h) xN whenever xN ∈ Uh (h ∈ {1, . . . , m}).

Now we recursively construct an infinite sequence 〈xk
N〉k∈N in Z, starting with x0

N already
given. Having xk

N ∈ Z defined, we pick h such that xk
N ∈ Uh and define xk+1

N = (yh
i(h), x

k
−i(h)).

By (2), we have xk+1
N BInd

i(h) xk
N , hence xk+1

N ∈ Z by Claim 1. Therefore, 〈xk
N〉k∈N is an infinite

improvement path in Z. The way our path is constructed ensures that, for every i ∈ N
and k ∈ N, xk

i is either x0
i or one of yh

i (h ∈ {1, . . . ,m}), i.e., there is a finite number of
possible values. Therefore, we must have xk′

N = xk′′
N with k′ 6= k′′, which contradicts the

supposed acyclicity of BInd.

To finish with the proof of the theorem, we pick a maximizer zN of BInd on Z, existing
by Claim 2. By Claim 1, it is a maximizer of BInd on XN , i.e., a Nash equilibrium. Let V be
an arbitrary open neighborhood of zN . By the definition of Z, there is a finite improvement
path 〈x0

N , x1
N , . . . , xm

N〉 such that xm
N ∈ V . Therefore, Γ has the very weak FIP indeed.
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4 Concluding remarks

4.1. The upper semicontinuity of ui in xN alone is not sufficient for our theorem to remain
valid, even under the existence of an ordinal potential rather than just acyclicity of BInd

(Kukushkin, 1999, Example 2). [For the analysis there to be correct, “π(x) = 0” in the
definition of the ordinal potential should be replaced with “π(x) = −∞”; the infinity can
be avoided by the replacement of all other values of π with, say, their exponentials.]

4.2. There is no counterexample to a conjecture that the assumptions of our theorem imply
the existence of a generalized ordinal potential. In particular, the game constructed in the
proof of Theorem 4.1 from Voorneveld (1997), which satisfies our assumptions and has the
very weak FIP, even admits an upper semicontinuous generalized ordinal potential. If R as
the strategy set of player 2 in Example 4.1 of Voorneveld and Norde (1996) is replaced with,
say, a closed interval, the game will have the weak FIP (even without “very”) although still
admit no generalized ordinal potential; however, the game is not continuous.

By the way, it is unclear whether a (numeric or not) “very weak potential” could be
defined producing an analog of Proposition 6.2 in Kukushkin (2004).

4.3. Following Milchtaich (1996) and Kukushkin (2004), we may consider best response
improvement paths. However, our theorem cannot be extended that far.

Example 1. Let N = {1, 2} and X1 = X2 be circles in the plane with polar coordinates,
{(ρi, ϕi) | ρi = 1} (0 ≤ ϕi < 2π), while utility functions be u1(x1, x2) = −d(ϕ1, ϕ2) and
u2(x1, x2) = −d(ϕ1⊕ϕ0, ϕ2), where d(ϕ, ψ) is the distance between points (1, ϕ) and (1, ψ)
in the plane, ⊕ denotes addition modulo 2π, and ϕ0 6= q · π for any rational q. Both utility
functions are continuous; best response improvements never cycle. However, there is no
Nash equilibrium, to say nothing of the very weak FIP.

4.4. One may wonder whether the (very) weak FIP is implied by popular sufficient con-
ditions for the existence of a Nash equilibrium. The answer is “yes” for a finite game
with perfect information (Kukushkin, 2002, Theorem 3) or strategic complementarities
(Kukushkin et al. 2005, Theorem 1). On the other hand, the applicability of Tarski’s fixed
point theorem to the best responses does not, by itself, ensure the weak FIP even in a finite
two person game (Kukushkin et al., 2005, Example 1).

Let us show that the applicability of the Brouwer fixed point theorem also does not
ensure the very weak FIP even in a continuous two person game.

Example 2. Let N = {1, 2} and X1 = X2 be unit discs in the plane with polar coordinates,
{(ρ, ϕ) | 0 ≤ ρ ≤ 1}; let the utility functions be defined with the following construction.
We define V (ρ1, ρ2) = min{ρ1, 4ρ2 − ρ1} and r(ρ) = min{2ρ, 1}. Then we pick functions
η′(ρ1, ρ2) and η′′(ϕ1, ϕ2) satisfying these requirements: η′(ρ1, ρ2) = 1 if ρ1 = r(ρ2), 0 <
η′(ρ1, ρ2) < 1 whenever 0 < |ρ1 − r(ρ2)| < min{ρ2, 1/3} and η′(ρ1, ρ2) = 0 otherwise;
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η′′(ϕ1, ϕ2) = 1 if ϕ1 = ϕ2 and 0 ≤ η′′(ϕ1, ϕ2) < 1 otherwise. To be more precise, we
pick η′′ continuous everywhere, while η′ continuous on [0, 1]2 \ {(0, 0)}. We also pick ϕ0 ∈
]0, 2π[. Finally, we set u1((ρ1, ϕ1), (ρ2, ϕ2)) = V (ρ1, ρ2) + ρ2 · η′(ρ1, ρ2) · η′′(ϕ1, ϕ2) and
u2((ρ1, ϕ1), (ρ2, ϕ2)) = u1((ρ2, ϕ2), (ρ1, ϕ1 ⊕ ϕ0)), where ⊕ denotes addition modulo 2π.

Both utility functions are continuous; the symmetry allows us to restrict attention to the
viewpoint of player 1. Given x2 = (ρ2, ϕ2), both V and η′ are maximized when ρ1 = r(ρ2); if
ρ2 > 0, η′′ is maximized when ϕ1 = ϕ2. Thus, the unique best response is x1 = (r(ρ2), ϕ2).
Similarly, the unique best response to x1 = (ρ1, ϕ1) is x2 = (r(ρ1), ϕ1⊕ϕ0). Therefore, the
existence of a Nash equilibrium is ensured by the Brouwer theorem; indeed, the origin is
the unique equilibrium.

Suppose that ρ2 ≥ 1/3. Then u1((ρ1, ϕ1), (ρ2, ϕ2)) ≥ V (ρ1, ρ2) ≥ 1/3 whenever ρ1 ≥
1/3. Meanwhile, if ρ1 < 1/3, then V (ρ1, ρ2) < 1/3 whereas ρ1 < r(ρ2) − 1/3, hence
η′(ρ1, ρ2) = 0; thus, u1((ρ1, ϕ1), (ρ2, ϕ2)) = V (ρ1, ρ2) < 1/3. We see that any improvement
path starting in the region where ρi ≥ 1/3 for both i remains in the region forever, hence
never reaches, nor even approaches, a Nash equilibrium. It may be noted that the players
have no reason to regret this failure because their utility levels at the equilibrium are 〈0, 0〉.
4.5. Our approach is purely ordinal to the extent that the preferences of the players can be
described with binary relations Âi rather than utility functions ui. It is enough to replace
ui(yN) > ui(xN) in (1a) with yN Âi xN . Condition (2) remains a meaningful “quasi-
continuity” assumption; it holds, e.g., if each set {(yN , xN) ∈ X2

N | yN Âi xN} (i ∈ N) is
open. The theorem remains valid; no modification of the proof is needed. We do not even
need any a priori restriction on the preference relations such as transitivity, acyclicity, etc.

Under this broad interpretation of preferences, a maximizer of any binary relation can
be seen as a Nash equilibrium in a game with one player. (2) then becomes the “open lower
contours” assumption, and our theorem implies the main result of Walker (1977). If there
are two (or more) non-dummy players, (2) does not imply open lower contours of BInd, so
our theorem (even if restricted to mere existence) does not follow from Walker’s.
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