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Abstract

Algebraic conditions for the existence of a Nash equi-
librium are studied for two classes of strategic form games:
games with public and private objectives and games with de-
creasing best replies. Considerable evidence 1is gathered to
support the claim that in both cases the crucial factor is the
presence of a separable ordering on the set of outcomes,
connected with the players’ utilities in a certain way. Some
technical problems related to the description of separable
orderings and to establishing separability are also discussed.
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1. Introduction

It is a wusual practice in economic theory to assume
everything (or at least as much as possible) smooth and convex.
In many cases such assumptions are necessary for reaching
clear-cut conclusions, but sometimes they just obscure the real
reasons for the existence (or good behavior) of solutions for
problems under investigation. Recently this point was raised
forcefully by Milgrom and Roberts (1994), who, in particular,
pointed out to the importance of monotonicity assumptions.

This paper concerns with purely combinatorial (or alge-
braic) causes for the existence of a Nash equilibrium, needing
no convexity or smoothness. Two classes of strategic form games
are considered; the first generalizes the usual model of the
voluntary provision of a public good (or a public bad); the
second is quite abstract: the strategy sets are ordered and the
best replies are decreasing. Besides adding new results to
those established earlier, the paper expounds the view that, in
both cases, the crucial factor is the presence of separable
orderings on R" (or its subsets). Unfortunately, the most
distinct formulation of the view remains a hypothesis in either
case.

It was not without hesitation that I decided to print the
results in their current, rather preliminary state. I can put
forward three reasons for this decision. First, even the
already established results show an unexpected and unexplained

similarity between two quite different game-theoretic contexts;



it is difficult not to think that separability can also play an
essential role in other situations. Second, there is no grounds
to believe that all the remaining open gquestions could be
answered in the foreseeable future. Finally, I have no idea of
when I could have another opportunity to relate my results.

Section 2 contains necessary definitions and notations.

Section 3 considers "games with public and private ob-
jectives"; the first example of a model of this kind was
suggested by Germeier and Vatel’ (1974). The most advanced
results on the existence of Nash or strong equilibrium in such
games are to be found in Kukushkin (1992, 1994b). Theorems 1
and 1’ unify these results (in the part concerning Nash
equilibrium) and explicitly show the crucial role of
separability here. Unfortunately, the necessity of separability
for the ‘'"persistent" existence of a Nash equilibrium,
established under stronger assumptions in Kukushkin (1994b),
remains a hypothesis.

Section 4 considers games where strategy sets are (par-
tially) ordered and the best replies are decreasing. It should
be noted that in many economic situations the assumption that
the best replies are monotonic (i.e. either increasing or de-
creasing) is guite natural, see Fudenberg and Tirole (1984) and
Bulow et al. (1985). However, there is a striking difference
between the two cases. The existence of a Nash equilibrium in a
game with increasing best replies is guaranteed by Tarski’s
(1955) theorem (under relatively mild restrictions on the
strategy sets). A subclass of such games - games with strategic

complementaries, also have nice comparative statics properties,



see Topkis (1979), Milgrom and Roberts (1990), Vives (1990),
Milgrom and Shannon (1994). On the other hand, not only is the
straightforward analogue of Tarski’s theorem for decreasing
mappings untrue, but the existence of an equilibrium in such a
game is by no means a forgone conclusion. As to the comparative
statics, I am unaware of any result in this direction (except
for duopoly games) and cannot suggest anything myself.

The section is devoted to a sole problem: Under what addi-
tional assumptions do decreasing best replies guarantee the
existence of a Nash equilibrium? Departing from the fist ever
result of this kind, Novshek (1985), refined in Kukushkin
(1994a), several new existence theorems are obtained (without
any attempt to assess the comparative importance of different
sets of assumptions). In each case it turns out that the
existence of an equilibrium is guaranteed when there Ais a
separable ordering on the set of outcomes such that each
player’s preferences are affected by the partners' choices only
to the extent that the latter affect the ranking of the out-
come. An exact formulation is given to the idea that the
existence of an equilibrium should not be expected otherwise,
but this statement 'also remains a hypothesis, except for just
one particular case (Theorem 8).

Section 5 may be regarded as an unnecessary technical
appendix. The point is that the two necessity results obtained
in the area (Kukushkin, 1994b, and Theorem 8 in Section 4)
require the continuity a;sumption and establish additive separ-
ability:; their proofs are strikingly similar to one another and

resemble to some extent the technique used in the classical



work on separability, Debreu (1960). Debreu’s result was later
strengthened by Gorman (1968a), using quite a different
approach. Theorem 1 of Section 5 shows that my technique (i.e.
an extension of Debreu’s one) is enough tb advance considerably
in the direction of Gorman’s result. I believe the Debreu-
Gorman theorem is so important that it justifies paying atten-
tion to purely technical aspects of feasible proofs.

Theorems, examples, and formulas are numbered in each

section separately.

2. General Definitions

An ordering ¢ on a set X is just a reflexive and transi-
tive binary relation on X; the ordering is complete if, for
every x,yeX, either xd9y or yﬂxfﬁﬁoth). The asymmetric part of
an ordering ¥ will be denoted ©¥°, i.e. x®%’y means xdy but not
y9x. x€X'€X is a maximal element of ¢ on X’ if no yeX’ satis-
fies y8°x. An ordering ¢ on R (or on a subset of R") is called
Pareto compatible if x’¥x” whenever x’ Pareto dominates x”.

A normal (or strategic) form game is defined by a finite

set of players N and, for each ieN, a set of strategies Xi and

an ordering ?i on the set of outcomes X:=I%£N Xi (XRiy means
that x is better for player i than y). Denoting X_i = Hj#i Xﬂ
we define Ri(xq) (for .xqex_ﬂ as the set {XiEXJ (xi,x_J is

a maximal element of Ri on {(X},X_QI X}EXi} }. Viewed as a
correspondence X_i - Xi, Iﬂ is called the best reply corres-
pondence (for player i) generally speaking, it may have empty
values for some (or even all) quxq'

An outcome x°¢X is a Nash equilibrium if xi°eR(x_i°) for



all ieN.

It should be noted that we allow the players to have
incomplete preference orderings (cf. Aumann, 1962, 1964; Rozen,
1976). This fact does not mean that I attach any particular
importance to such models; just there is no need to assume the
completeness. By the way, the above definition gives a rather
weak interpretation of the coﬁcept of Nash equilibrium for this
case.

Now I introduce an abstract definition playing a crucial
part throughout all the paper. Suppose there is a finite set N
and an ordering ¥ on X =1 X : suppose also that McN and 6M

ieN i

is an ordering on Xn=:nieM Xi. We say that 3, is a separable
projection of ¥ on XM if, for -every x",y"eXH and f—"ex_n,
<xnprm>ﬁ<y"me> if and only if xﬂﬂgﬁ. Note that if ¥ is
complete, then ﬂn is also complete.

The separability property emerges naturally in a wide
variety of situations and was studied by many authors. 1In
particular, the most popular aggrggation rules in social choice
theory - utilitarian and leximin ones, see e.g. d’Aspremont and
Gevers (1977) or Deschamps and Gevers (1978) - have separable
projections on all coordinate subspaces. Leximax and fixed-
order lexicographies have the same property.

In his seminal paper Debreu (1960) showed that every
continuous, Pareto compatible ordering on R" (m>2) which has a
separable projection on every two-dimensional subspace can be
represented by the suﬁ of rescaled coordinates (i.e. is
utilitarian in a somewhat generalized sense). In fact, Debreu’s

result was formulated for orderings on more general sets but,



as he showed himself, the general case is- easily reduced to
that of a rectangular subset of R'. The same statement was
earlier reported by Fleming (1952), but he assumed smoothness
and treated infinitesimals rather freely. (The result of
Harsanyi (1955), also establishing conditions for additive
separability, apparently has no connection with Debreu’s
theorem either technically or conceptually). In another seminal
paper, Gorman (1968a) strengthened the theorem considerably,
weakening the separability assumption; see also the edifying
discussion between Gorman (1971la,b) and vind (1971a,b, 1974).
Debreu’s approach was based on a geometric theorem due to
W. Blaschke; later Fishburn (1970, Chapter 5) replaced the
reference to Blaschke’s theorem with a direct inductive reason-
ing. Curiously, the proof of additive separability (in a
particular context) developed in Kukushkin (1994b, Appendix)
(without any knowledge of the Debreu-Gorman theorem, I must
confess) resembles that of Fishburn (1970, Theorem 5.4). From
the geometrical viewpoint, it could be interpreted as extending
a version of Blaschke’s theorem to a bunch of planes (unfortu-
nately, I am no expert in either geometry or German to say
whether Blaschke himself ever considered such an extension).
The proof is recalled in the following several times; in
principle, the reader may substitute "as in Fishburn (1970)"
for "as in Kukushkin (1994b)" in each case, although this would

make the reference a bit less relevant.



3. Games with Public and Private Objectives

A game with public and private objectives is a strategic
form game of the following type. There is a finite set of
players N (without restricting generality, we assume 0¢N) and,
for each ieN, a compact strategy set X‘, a continuous function
fizgg -+ R, and a Pareto compatible ordering p, on R2=Roxmi;

there is also a continuous function fh: X > R. Now the prefer-

ences of each player i on the set of outcomes X are these:
xRy if and only if (f (x),f (x)) p, (£ (¥),f (¥))-(1)

There is no real necessity to demand that P, should be
defined on the whole R°; strictly speaking, it would be suffi-
cient to have it on the set (fJJ})(X). However, for the inter-
pretation of some results to follow, it is convénient to
perceive p, as a stable characteristic of player i who may find
himself in different situations, playing different games. R®
could be replaced with an open rectangular subset if only games
with (fﬁxfi)(X) included in the subset are to be considered.

Throughout this section we will denote M the set (0}uN,
i.e. the set of all (public and private) objective functions in
the model under consideration.

Theorem 1, Suppose each strategy set Xi (ieN) 1is finite
and there exists an ordering ¢ on R" having separable projec-
tions 9 on all planes R xR such that apfb implies aﬂfb for
all ieN, (a,b)em&&%. Thgn the game has a Nash equilibrium.

The proof is quite straightforward: consider the mapping

f: X > R' defined by f(x)=(f (X),<f (¥ )>,

jey) and let f(x°) be



a maximal point of ¢ on f(X). If x° is not a Nash equilibrium,

(o]

J
all j=i. Therefore, (f (y),f (y)) ®° (£,(x°),f (x°)), hence

then there exist ieN and yeX such that y%fx° and )3=x for
(by separability) f(y)®f(x°), contradicting the choice of x°.

We call an ordering ¢ on R" regular if ¢ has a maximal
element on every compact subset of R".

Theoremwl’. Assume everything as in Theorem 1 with the
exception that each X is compact and ordering ¥ is regular;
then the game has a Nash equilibrium.

The proof is virtually the same.

-As particular cases of Theorem 1’ could be listed the main
result of Kukushkin (1992) in its sufficiency part (and re-
stricted to Nash equilibrium), and the theorem (sufficiency
part) and Proposition 3 of Kukushkin (1994b). The last case
may deserve an explanation; first of all, i remind that every

ordering p, on R° was there defined by the function

a-b, if a>0 and b>0,
F°(a,b) =

min {a,b}, otherwise.

Now for any <ai>iEMER§’ define <b1>ieM as follows: 1if a =0,
then I%=ai, otherwise, b_l is the product of all positive ai’s;
now the leximin ordering on b’s induces an ordering ¢ on a‘s,
which has a separable projection ¥, on every X and the
ordering defined by F° is a coarsening of 9.

Theorems 1 and 1’ are also applicable to players with
lexicographical prefereﬁces (leximin, 1leximax, og fixed-order

lexicography). The result of Kukushkin (1992) does not cover

these situations. It should be noted also that the proof of the



latter result is not completely analogous to that of Theorem
1(’). Consider the following example.

Lo,

Example., Let N={(1,2}, X1=X2={1,2}, f}(x&)sz, f2(x2)=x5,

fo(1,1)=1, fo(2,2)=2, fo(X1’X2)=O if X #X,, ui(x) = min {fo(x),

f (x,)}. Thus we have the following bimatrix game:

(1,1) (0,0)

(0,0) (2,4)

Obviously, there are two Nash equilibria, only one of which is
strong, i.e. Pareto optimal. The proof from Kukushkin (1992)
selects the strong equilibrium (Leximin in the utility space),
while the proof of Theorem 1 may select either of them because
in the space RH they produce equivalent vectors (1,2,2).

Another (and rather peéuliar) example is préduced by the
Pareto ordering as ¥: it is regular and its separable projec-
tion on any subspace is the Pareto ordering over that subspace.

Hypothesis. Suppose there is a finite set N and, for each
ieN, a Pareto compatible ordering p, on Raﬂ%xmi; suppose also
that for any collection of finite sets Xi (ieN) and any func-
tions f}: Xia R and fb:.x—am, the game with strategy sets.Xi
and preference relations Ri defined by (1) has a Nash equi-
librium. Then there exists an ordering ¥ on R" having separable
projections ¥ on all planes R xR, such that Xp:y implies
Xﬂfy for all ieN, x,yeR xR .

Remark. The hypothesis is formulated as a converse to
Theorem 1 rather than Theorem 1’ because I have no plausible
hypothesis concerning the regularity property (in fact, I even

have no example of a separable ordering, say, on R’ which is

10



not regular).

Particular cases of this hypothesis are proven 1in
Kukushkin (1992, 1994b): necessity parts of the main theorems.
If the hypothesis were proved in its full generality, then the
latter result would follow directly from the Debreu-Gorman
theorem; interestingly, its homogeneous version can be proved
with the same technique as used by Debreu (1960). I formulate
this version as a separate result here.

Theorem 2. Suppose there 1is a continuous, strictly
increasing (in both arguments) function F: R° > R such that for
any finite set N, any collection of finite sets X (ieN), and
any functions fﬁ Xi—aR and f}:,X-am, the game with strategy
sets X and utilities lH(X) = F(fo(x),fi(xﬂ) has a Nash
equilibrium. Then there exist continuous, strictly increasing

functions A,uo,u: R » R such that
F(a,b) = A(p (a) + u(b)) for all (a,b)eR’.

Lemma 4 (b) from Kukushkin (1994b, Appendix), in.projec—
tion to the case under consideration effectively says that if
we have ao<b0<c0 and a1<b1<c1 such that F(ao,b1)=F(b0,a1) and
F(ao,cl)=F(bo,b1)=F(co,a1), then F(bo,c1)=F(co,b1). And this 1is
Blaschke’s condition for the existence of a homeomorphic trans-
formation of the plane preserving the lines parallel to the
coordinate axes and converting the indifference curves of F
into straight lines (parallel to oné another) - exactly the
same condition as used by Debreu (1960) for similar purposes.

It would be interesting to obtain a general formulation

(with separable orderings) for the main result of Kukushkin
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(1992), showing the existence of a strong equilibrium among
players with minimum- or maximum-like utilities in a game with
public and private objectives. Unfortunately, my thoughts on
the subject are too preliminary to be written here; the above
example shows some of the emerging difficulties. I can only
state that no connection with the properties of similar
aggregation rules studied in the literature (see e.g. Moulin

1988; Thomson and Lensberg, 1989) has been established as yet.

4, Games with Decreasing Best Replies
4.1, Preliminaries

We will call a function f increasing if xsy implies
f(x)=f(y) and decreasing if x=y implies f(x)zf(y).

Throughout the section, we assume that in the game under
consideration each best reply correspondence has non-empty
values for all x_ . In fact we will study fixed points rather
than Nash equilibria; the basic model may be described as
follows: There is a finite set (of players) N, and for each ieN
there is a (partially) ordered set .Xi and a correspondence
Rﬁ X - Xi, allowing a decreasing single-valued selection

r:X -X. A fixed point for the system of <Ri>i€N is a

point x° € X = I, _y X, such that

N

xi° € Rl(x_i°) for all ieN.

In many cases the correspondences Ri may be replaced with
their (arbitrary) decreasing single-valued selections ro in

which case the definition of a fixed point becomes this:

x°=r (x °) for all ieN. (1)

12



When one is interested in fixed points of a system of
increasing mappings, Tarski’s (1955) theorem gives a general
existence result: if all X1'S are complete lattices and ri's
increasing, then (1) is always satisfied for some x°. However,
the situation with decreasing mappings is more complicated as
the straightforward analogue of Tarski’s theorem for such
mappings is not true (consider e.g. the set X={0,1} and the
mapping r(0)=1, r(l1)=0). Nonetheless, Tarski’s theorem could
sometimes be applied to systems of decreasing mappings too.

The first result of this kind was obtained vby Vives
(1990): If #N=2 and each X is a complete lattice then a fixed
point always exists. To see that, let us turn one of the sets,
say X, upside down; now both mappings are increasing and
Tarski’s theorem implies the existence of a fixed point (since
(1) contains no inequality, our trick with turning X, does no
harm). There is no obvious way to extend the trick (attributed
by Milgrom and Roberts, 1990, to X. Vives) to #N>2; moreover,
the corresponding statement is just not true.

Example 1. Let N={1,2,3}, X={0,1) (ieN) and r (x_,x)=
1—x2, rz(xl,x3)=1—x5, r3(x1,x2)=1—x&. It is easy to see that no

x° satisfies (1): we should have x:=1—x;=x;=l-x:.

4.2, "Novshek-style'" Results

The first ever result on the existence of a Nash equi-
librium with decreasing best replies 1is apparently due to
Novshek (1985). He showed (although his proof is open to
criticism concerning its mathematical rigor) that decreasing

best replies in the Cournot model imply the existence of an

13



equilibrium without any further assumptions (it should be noted

that this property holds in a "great majority" of models con-

sidered in the 1literature). Novshek’s proof was refined in
Kukushkin (1994a), the main result of which paper sounds as
follows:

Theoremil. Suppose N is a finite set and for each ieN
there is a compact set X, of reals and an upper hemi-continuous

correspondence Ri: Si-a Xl, where S allowing of

RN S NEILIL
a decreasing single-valued selection. Then there exists a point
(o]

x € X =11, X such that
ieN "1

o

€ R (Z]$1 j for all ieN.

The key point in the proof is the lemma stating that the
theorem is valid if every X is the set of ihtegers satisfying
the inequalities OSXfmi; let us denote such a set Int[O,mJ.
The lemma is proved by a backward induction process, which in
fact somewhat simplifies that developed by Novshek for con--
tinuous variables. Then it can easily be seen that the theorem
remains true if every X is a subset of Int{O,m ]; finally, an
integer approximation proves the theorem for arbitrary compact
Xi’s (here the continuity of addition and assumed upper hemi-
continuity of each R are essential).

If all X&’s are finite, every mapping has a closed graph,
so there 1is no need to consider correspondences (however, the
continuity of addition remains essential).

Theorem 1’. Suppose, N is a finite set and for each ieN
there is a finite set Xi of reals and a decreasing function

r: S - X, where S Then there exists a point

v = Lien ()%

14



x° e X =1. _ X such that
ieN i

o

x° =r (L .x;) for all ieN. (2)

jei

If the finiteness assumption in Theorem 1’ is replaced
with compactness (or compactness in order interval topology),
the proof through approximation as in Kukushkin (1994a) becomes
obviously invalid. However, I know no example disproving such a
statement and even strongly suspect that in fact it is true (I
had spent some time under the impression that I had a proof to
the effect before recognizing its invalidity).

As was noted in Kukushkin (1994a), the difference between
the situations covered by Theorems 1 and 1’ and the general
case lies 1in the "limited interdependence" property: the
partners’ choices enter every player’s utility only through
their aggregate, the sum. It is important for deeper under-
standing of the theorems to note that their straightforward
extension to the multi-dimensional case is untrue.

Examplelz. Consider  the three mappings r: R® - R’

(i=1,2,3):

rl(sl,sz,s3)

{ (1,0,0), s,51/2,

(0,0,0), s,>1/2,

r2(sl,sz,s3)

{ (0,1,0), s,21/2,

(0,0,0), s>1/2,

r3(sl,sz,s3)

{ (0,0,1), s,=1/2,

(0,0,0), s>1/2.

The ranges of the mappings are X1= {(0,0,0), (1,0,0)}, X2=

15



{(0,0,0), (0,1,0)}, X3 = {(0,0,0), (0,0,1)}.

All the three functions are decreasing, but no point
x° = <x{ﬂx€°Pg;> from the product of X 's satisfies (2): if
e.qg. Xf=(0,0,0), we would have x;=(0,0,1), hence x;=(0,0,0),
hence X:=(l,0,0) (essentially, this example 1is equivalent to
the previous one). No fixed point will emerge if we replace
each Xi e.g. with its convex hull; the functions can be slight-
ly modified so that they become strictly decreasing in every
argument.

In fact, there is no "limited interdependence" in the
example since knowing the sum of xi's allows one to know each
of them separately.

There may be different opinions about the exact message of
Example 2. I will interpret it as showing that the sum in
Theorems 1 and 1’ should be understood as a means to define a
complete ordering on X_i rather than Jjust an algebraic
operation applicable to multi-dimensional objects. This inter-

pretation is supported by the following simple result.

Theorem 2. Suppose N is a finite set and for each ieN

there is a partially ordered, finite set ‘XU an increasing
real-valued function fX on X, and a decreasing function
r: Si-e Xi, where S = Z]EN\{l}f (X ) (€R). Then there exists

a point x° € X =1, X such that
ieN i

x5 = ri(zjilfj(x °)) for all ieN.

It 1is sufficient to apply Theorem 1’ to the sets
Y =f (X )SR and the mappings g =f r . Having a fixed point y°,

o_ oy, ___o©
y f r(zﬁtl , we denote xi—rithlyJ), now f}(xi)—yi,

16



so r1(2j¢ifj(xjo)) = ri(zjxifgo) = xio'

The leximax ordering turns out to be almost as good, from
our current viewpoint, as the utilitarian one, defined by the
sum. We will write x’'¢x” (for x’,x”eR") whenever x’ dominates
x” 1in the leximax sense or both are equivalent in the same
sense. A mapping r: R" > R 1is called 1leximax decreasing if
x'¢x” implies r (x')sr (x").

Theorem 3. Suppose N 1is a finite set and for each ieN
there is a finite set X <R and a leximax decreasing mapping
r:X ->X. Then there exists a point x° e X = HieN X such
that

X;’= ri(x_:) for all ieN. (1)

Denoting‘m the set of all non-negative integers, we define
f: N> N by f(k)=(n—l)k—1, where n=#N, keN, and g: UieNXi'a N
as the rank function (g(x)=0 for the smallest of all X, (all
ieN), g(x)=1 for the second smallest, etc.). The following
equivalence holds for all x”,x”elN"'1 because f (k)>(n-1)-f(k-1)

for any k=1:

23: f(x;) 222: f(x;ﬁ if and only if x’'#x”. (3)

For each ieN we define Yi=fog(xl)§m and Si=2 Yi (€N) ; since

j#i
r is leximax decreasing, it easily follows from (3) that there
exists a decreasing function h1: Si«e Xi such that
ri(xq) = hi(zjii(fog(xj))) for all qux_i' (4)

Now it follows from Theorem 1’ that the system of sets Yi and
functions q =feogeh : Si-;lz has a fixed point y° such that

o o . ' o__ -1o -1 [
y, = q}(zjxiyj) (ieN) . Denoting X =g £ (yi) for each

ieN, we have fog(xio) =fogohi(zj=ifog(xj°)). Since both f and

17



o

g are monomorphisms, from (4) we obtain xl°=r1(x_i

).
Remark 1. A particular case of leximax decreasing function

is a function depending only on max Since the maximum

JEINES R
function is continuous, the complete analogue of Theorem 1 for
this case is valid. Interestingly, I have another proof of this
statement, based directly on Tarski’s theorem rather than on
Novshek’s induction process, but I can see no point in actually
writing it down here. For general leximax decreasing functions,
the validity of a similar statement (even if the closed graph
is assumed) remains unclear.

Remark 2. By replacing each X1 with -Xi, we obtain the
exact analogue of Theorem 3 for mappings decreasing w.r.t.
leximin ordering and the analogue of Theorem 1 for mappings
depending on the minimum (as in the above remark).

Remark 3. The extensions of Theorem 3 described in

previous remarks are obviously applicable to games with

utilities of the form Lﬂ(X},maX X)) or of the form

J*i™j
L%(X“HdnjiiXﬂ (provided the best replies exist, have closed
graphs, and are decreasing). Such utilities really emerge in

some public good models, see e.g. Hirshleifer (1983).
Quite a similar approach works for the function F°

considered in Kukushkin (1994b):

F°(<x >,

I X if all x1>0,
11€N)—

min X otherwise

(note that the definition is equally meaningful for any number

of arguments).

18



Theorem 4. Suppose N is a finite set and for each ieN
there is a compact set X of reals and an upper hemi-continuous

correspondence sz Si-e Xi, where Si = F°(H Xj), allowing

JeN\{1i}
of a decreasing single-valued selection. Then there exists a

point x° € X = I, _, X, such that

N

x&° € Ri(F°(<x3°>

j$i)) for all ieN.

The proof follows the same lines as in Theorem 3 and in
Remark 1 after it. First we consider finite models where
positive xi’s form a geometric progression (with the same
multiplier for all ieN) while negative Xi’s may be assumed
integer. Every such model is isomorphic to a model satisfying
the assumptions of Theorem 1’: the isomorphism is established
by applying a logarithmic function to positive xi's and a func-
tion similar to f(-) from the proof of Theorem 3 to negative
x 's; therefore, it has a fixed point. Every model with compact
X;’S can be approximated with such models just as in Proposi-
tion 3 of Kukushkin (1994a).

Certainly, analogues of Theorem 2 for dependencies
considered in Theorems 3 and 4 (and in the remarks following
the former) are also valid; in the following, I will restrict
myself to the case x&sm without explicitly mentioning the

possibility of such an extension every time.

4.3. On Sufficiency in General

Now let us consider the question: what unites all the
results of the previous subsection? In my view, it is the

separability property.
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Hypothesis’l. Suppose there is a finite set N and, for
each 1ieN, there is a finite set X of reals and a mapping

r: X - Xi; suppose also that there 1is a complete, Pareto

compatible ordering ¥ on X (sm"), having separable projections
on all sets Xﬁ; suppose finally that each r, is decreasing
w.r.t. the projection CaR (i.e. X’qu” implies rH(X’rﬂl(x”)).
Then there exists a fixed point satisfying (1).

Remark. The assumption that ¢ is complete is essential:
otherwise Pareto dominance would be acceptable and the hypo-
thesis would be disproved by Example 1 of this section (Sub-
section 4.1). Thus we see a technical difference with Theorem 1
of Section 3.

It is easy to see that Theorems 1/, 3, and 4 (reduced to
finite sets) are indeed particular cases of this statement.
Unfortunately, I am unable to prove Hypothesis 1 in its full
generality. The main difficulty lies in my inability to de-
scribe all separable orderings on finite sets. As a kind of
inductive support for the hypothesis, I end up this subsection
with a couple of examples not covered by Novshek’s scheme. For
simplicity, we will restrict ourselves to the case #N=3.

Theoremns. Suppose there are given three sets J&sm
(i=1,2,3) compact in the order interval topology; suppose there
are three functions r: X - Xi such that r3(x1,x2) is de-
creasing in both arguments (not necessarily strictly),
r(x,,x) is lexicographically decreasing in the sense that
rl(xz’,XB’) = rl(xz”,x3”) "if xg’>x2”, or x€’=x2” and x5’>x3”,

and r2(x&,x3) is lexicographically decreasing in the same sense

(first X, matters and only then Xa). Then there exists a fixed
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point satisfying

xi° = ri(x_,o) _ for all ieN. (1)

1

Given X, we have two decreasing mappings, rl(xz,-) and
r3(-,x2), between X1 and X . By Tarski’s theorem (with turning
one of the sets upside down), there exists a fixed point

= __ @ _ (2)
x=q,(x,), x=q,/7(x,) such that gq (x)=r (x,,q,°(x,)),
(2) — ’ ” s 2 /7 ’ -
a, (xz)—r3(q1(xz) ,xz) . Now X, <x, inmplies rl(x2 X ) =

i

r1(X2"’X3") for any X, , X "; therefore, ql(-) is decreasing.

3

Similarly, there exist (for each Xlexl) qz(xl)eX2 and q3(1)(xl)
(1) (1)

such that qz(x1)=r2(x1,q3 (X1)) and q, (x1)=r3(xl,q2(x1));

qz(-) is also decreasing. Applying Tarski’s theorem to the pair

¢

q, (), q,(-), we obtain X1°, x,” such that X1°=q1(x2°) and

) -

o o . (1) o o o (2) [
= . = — r —
X, q2(x1 ) Define X, aq, (x1 ) 3(x1 X, ) q, (x2

Obviously, xf, x;, g; constitute the fixed point needed.
TheoremGG. All the assumptions are the same as in Theorem
5 with the following exception: rlv,-) and r(-,+) are lexico-
graphically decreasing in the reversed sense, i.e. r, reacts to
X, first and then to X, and r, reacts to X, and then to X .
(There seems to be no formal equivalence between the two situ-
ations). Then there exists a fixed point satisfying (1).

For each X there exist qi(x3)ex1 and qz(x3)eX2 such that

q,(x)=r (q,(x)),x;) and g, (x)=r (q,(x,)),x,) (by Tarski’s

theorem applied to a duopoly with decreasing best replies).

Since x ‘<x” implies r(x',x')=zr (x",x") for all
3 3 1 2 3 1 2 3

X2' ,X2"EX2, ql(-) is decreasing; similarly, q2(-) is decreas-

ing. Now we have two decreasing mappings r;: X_3—>X3 and

q.xq,: X, > X i Tarski’s theorem implies the existence of x°
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o]

such that x°’=r (x.°,x
3 3 1 2

), X&°=q1(x3°), and Xé°=q2(x3°);
obviously, this is just what we need.

To connect Theorems 5 and 6 with Hypothesis 1, appropriaté
separakle orderings should be produced. In the case of Theorem
5, 1 suggest 1lexicographical maximization of the following
functions (listed 1in the order of decreasing importance):
<-r3(x1,X2), x, X, X>. For Theorem 6, the same functions
should be lexicographically maximized, but in a different order
of 1importance: <x_, —r3(x1,x2), X, X>. (Were the function
r30,-) supposed strictly decreasing, the terms X, and X, could
be omitted in both cases).

Theorem;7. All the assumptions are the same as in Theorem
5 with the following exception: there exists a level xg* such
that, whenever xg:x;j r1(X2'X3) and rz(x1’X3) are lexico-
graphically decreasing in the sense of Theorem 6, while for
x5<x;, they are decreasing in the sense of Theorem 5 (to pre-
serve monotonicity, we also require ri(xj’,x3’) z ri(xj”,xa”),
whenever }%’<x;sxg’ for all i,j=1,2, 1i=j, X{,X{@Xj). Then
there exists a fixed point satisfying (1).

Denote xlw=r1 (min XZ,X;) , x;=r2(min Xl,x;) ; by the
assumptions, x&zx3* implies ri(xj,x3)sxi*, and x3<x3* implies
ri(xj,x3)zxi* (for all i,je(1,2), i*j, XX ).

Suppose X;srg(xl*,x;) and dénote X3*={x3| xazx;}, Xi* =
{x“ X}SXC} (i=1,2). It can easily be checked that r, maps
xl*xx; into X;, while each r (i=1,2) maps X;xx; into Xi*.
Now for ri's (ieN) restrictea to Xf’s the assumptions of
Theorem 6 are fulfilled, hence the existence of a fixed point.

* * * - *
Now suppose x3>r3(x1,xz)=x3 and denote X3={x;
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X3sx3"}, Xi*={xilxizxi*} (i=1,2); again each r. maps X_1

into X1 (ieN). This time for I]'S (ieN) restricted to X;'s,
the assumptions of Theorem 5 are fulfilled; the theorem is
proved.

A similar treatment can be given to the reversed case
where (for i=1,2) the ordering from Theorem 5 is used for big
xs’s and that from Theorem 6 for small ones. The underlying
separable orderings on R’ are constructed in a straightforward
way.

Mdst likely, the "right" proof of Hypothesis 1 should
consist in applying Tarski’s theorem to auxiliary mappings
(somewhat similar to the proofs of Theorems 5 - 7 but in a more
complicated way), in which case Novshek’s scheme, with all its
mysterious beauty, will become superfluous; alas, the progress
of knowledge often demands sacrifices! On the other hand, it is
also possible that some orderings ¥ may be treated with
Tarski’s theorem, while others really require Novshek’s scheme
(Remark 1 after Theorem 3 hints that some overlapping is
possible). In the latter case the problem of how to relax the
closed graph assumption in Theorem 1 (and in its analogues)

becomes quite intriguing.

4.4, On Necessity

Hypothesis 2. Suppose there is a finite set N and, for

M) such that a

each ieN, a Pareto compatible ordering m, on R
fixed point (1) exists for any collection of finite sets X of
reals and mappings r: X_1 > X1 whenever each r, is decreasing

w.r.t. ordering n, - Then there must exist a complete ordering ¢
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N\{i}

on R having separable projection ¢9_, on each R such that

X%_y implies xn.y for all ieN, X,YERM(”.

The statement is trivially true for #N=2. I can only prove
it for #N=3 under stronger assumptions on nl's.

Theorem 8. Suppose #N=3 and there are three continuous,
strictly increasing functions s: RO SR having the
following property: For any finite sets X <R and any mappings
r: X_1 —>X1 such that r =q °s, where q: R > R 1is decreasing,
there exists a fixed point satisfying (1). Then there exist
strictly increasing continuous functions Asu:R-oR (ieN)
such that si(xj,xk)=hi(uj(xj)+uk(xk)) (here and 1later on we
adopt the convention 1i,j,keN, i#j#k#i; the arguments of the
functions S, will always be accompanied with subscripts, so we
may not bother about their correct order).

The proof is somewhat similar to that of Kukushkin (1994b,
Appendix), but the current situation is much easier to handle
(not only because we assumed n=3). We will consider three copies
of the real 1line, R, (ieN) simultaneously; we say.that a closed
interval I =[a,b]sR matches an interval Ij=[aj,bj]§[Rj iff
sk(ai,bj)=sk(bi,aj), and denote this Iizlj.

Lemma 1. If Iisz and Iszk, then Iizlk.

Suppose the contrary; let, for example,

sj(ai,bk)>sj(bi,ak). (5)
Taking into account the monotonicity and continuity, we may
slightly decrease first bk and then bj so that (5) continue to
hold and besides

si(aj,bk)<si(bj,ak).

sk(ai,bj)<sk(bi,aj).
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Define Xi={ai,bi},'Xj={aj,bj}, Xk={ak,bk},

b, if t=s (a b)),
g, (t) =

a., otherwise,

g (t) = bj, if tssj(ak,bi),
] aj, otherwise,

oty - b, if tss, (a ,b),
k a , otherwise;

then we have

b, x=a,
r(x,x)=qes (x,x)=4{ '
i3 Tk i i 3 Tk
a, x=b,
i y o
b, x=a, b, x=a,
j k k k i1
r (x ,x) = r (x ,x) =
S AN k' 1"
a, x=b, a, x=b._.
i k k k i i

It is easy to see that the situation is essentially equivalent
to that of Example 1 and has no fixed point for the same
reason. The lemma is proved.

We call an interval Ii short if there exist Ij, Ik such
that I&zlizIk; short intervals obviously exist. If Ii’,I'i”isi
are short, we say that I{mI{’ if there exists Ij (j#i) such
that I;ﬁIj:I;ﬂ

Lemma 2. The relation = is an equivalence on the set of
all short intervals (from all the three axes put togethér).

The only thing worth proving is transitivity. If the three
intervals belong to different axes, Lemma 1 immediately
applies. Suppose I;zI;%I;”; we have to show I;zlx“. By

definition, we have
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Il’ﬁIJ=Ii” and l}”zlkin”’; (6)
note that j and k here may coincide, in which case we have to
move a bit longer. Let us start with this case: I;=I{=IK and
Ii”=Ij”x11”’. Since Ij” is short, there must exist Ik (this
time certainly i=zjzk#i!) such that I;%Ik; by Lemma 1 we have
I;”zIk and so we return to (6) with j#k. Now Lemma 1 implies
IJzIk, hence Iszi”’, hence Ii’in”’. The proof for the case
when two intervals belong to the same axis and the third to a
different one is even simple.

The rest of the proof literally follows the proof from the
Appendix of Kukushkin (1994b) with several simplifications:
There is no need to distinguish between ¥ and Q. all ieN are
perfectly symmetric. The analogue of Lemma 1 (of Kukushkin,
1994b) remains obviously valid; Lemmas 3 and 4 transform into
an obvious statement of the existence of a unique middle for
every short  interval (c, is a middle for [a,,b,] if la,,c] =
[Ci'bi]); Lemma 5 becomes completely superfluous. The main
induction process of the proof goes virtually the same way.

As was noted in the previous section, this approach can be
interpreted as an extension of Blaschke’s theorem to a bunch of
planes and is thus comparable with that of Debreu (1960). Most
likely, the necessity to assﬁme #N=3 in Theorem 8 follows from
the fact thaf my technique 1is essentially two-dimensional
(though it can be applied to objects of a more complex geo-
metrical nature than a bunch of planes, see the next section).
It should be noted that Debreu’s problem was quite multi-
dimensional but he used Blaschke’s theorem only to start an

induction process; I have been unable to do anything similar in
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the current context. I am also unable to épply in this case

Gorman’s technique, which seems more powerful.
5. A Version of the Debreu-Gorman Theorem

The following result is, in fact, an intermediate
version of the theorem: stronger than that of Debreu (1960) but
apparently weaker than that of Gorman (1968a). As noted in the
Introduction, it is related here since it shows the limits to
which the approach of Kukushkin (1994b) can be stretched.

Theorem 1. Suppose N is a finite set and ¢ is an ordering
on R defined by a continuous, strictly increasing in each
argument, function F (thus ¥ is Pareto compatible). Let G be a
graph with vertices ieN such that i and j are connected with an
edge if and only if ¥ has a separable projection on Rﬁmj. Then
the equality:

F(<x>; ) = Ay (1 (X))
(for some continuous and strictly increasing functions A,uﬁ
R » R) holds if and only if G is connected.

Remark 1., A resemblance with the formulation of the main
result of Gorman (1968b) is obvious; I cannot explain the fact
quite convincingly.

Remark 2, The theorem implies that if G is connected, it
is complete.

The necessity is quite obvious. I start with a three-
dimensional version of the sufficiency part of the result,
which requires less cumbersome notations.

Theorem 2, Let N={1,2,3}; suppose that an ordering ¥ on RY

is defined by a continuous, strictly increasing in each
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argument, function F and has separable projections on R xR, and
R xR . Then the equality:

F(x,,X,,%,) = A1 (X) + 1, (x) + p (X))
holds, for some appropriate continuous and strictly increasing
functions &, Mo R » R, for all (xi,xz,x3)e[R".

The proof goes along the same 1lines as in Kukushkin
(1994b) . For Il=[a1,b1]§[R1 and IZ=[a2,b2}§lR2, we say that IlzI2
if F(al,bz,x3)=F(b1,a2,x3) (x'3 is unessential, according to our
assumptions); similarly is defined I=~I . For I and I, we
will only use the equivalence relation Ilz(x2)13, given X, €R_,
meaning F(al,xz,b3)=F(b1,x2,a3) .

Lemma 1. If Il=[a1,b1] = IZ=[a2,b2], and 12 = I3=[a3,b3.],
then I =(a_)I_and I =(b_ )I._.

1 2 3 1 2 3

Indeed, IlzI2 implies F(bi,az,a3)=F(a1,b2,a3), while 12213
implies F(ai,bz,a3)=F(a—~1,a2,b3), which means just Ilz(az)IB. To
prove the second statement, we write Ilzl2 as F(a1,b2,b3)=
F(b1’a2’b3) , and IZzI3 as F(bl,az,b3)=F(b1,b2,a3).

Lemma 2, If I =TI and [I =(a )I_or I =(b)I 1, then I =I..

1 2 1 2 3 1 2 3 2 3

IlzI2 implies F(al,bz,a3)=F(b1,a2,a3), while ‘Ilz(a2)13
implies F(bl,az,a3)=F(a1,a2,b3). The second statement is proved
quite similarly.

Now we choose Il°=I2°=I3° and denote their ends ui'l(O),
ui'l(l) (ieN). Then the usual process takes place: if there

. o -1 : -1 = .
exists xzelR2 such that 11_[“2 (1),x2], we define M, (2)—x2,
similarly are defined u'l(in) for natural n. Finally, we

2
define ul'l(tn) and u3'1(in) , using IZ° as a yardstick.
Lemma 3. For both i=1,3 and all integers n and m,

[ui"1 (n) ,ui'l (n+1) ]=[¢.L2'1 (m) ,uz'l (m+1) 1], provided both sides
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are well defined. Similarly, [u{d(n), u{d(n+1)] z(ugd(k))
[u?d(m), ugi(m+1)] for all integers n, m, and k.

The proof goes by induction, using Lemmas 1 and 2. I
1),k ()] by

definition, Ifz(u;q(l))15° by Lemma 1; therefore, by Lemma 2,

demonstrate Jjust the first step: I °=[u

1 2

-1 -1 o
[u2 (1),u2 (2)]—I3 and so on.
Lemma 4. If both sides are well defined, then

) (m)) = P () e (n) 0 (ny)

-1
F(u, (m),u, 5

if and only if m +m +m_= n +n_+n_.
12 3 1 72 73
Is derived from Lemma 3 by induction.
To complete the process of defining u;d(-), we only need
the existence of the middles for short intervals on the axes.
Lemma 5. For each Ii=[ai,b1] such that 1&z12z13, there

exist a unique collection ofcieIi such that:

(1) [a,,c,1=[a,,c,], (5) [a, c,]~[a,c,],
(2) [c,,b1=[a,,c,], (6) [c, b1=[a,,c,],
(3) [a,,c,1=[c,,b,], (7) la,,c,)=[c,,b,],
(4) [c,,b1=[c,,b,], (8) [c,,b,1=[c,,b,].
First of all, choose ¢ and ¢  so that (1) - (3) be

satisfied; this is quite similar to the proof of Lemma 3 in
Kukushkin (1994b): for each x el we define e(xl) by the equi-
valence [al,chﬂaz,e(xl)], find a solution for the equation

F(xl,e(xl),a3)=F(a1,b2,a3) and denote c2=e(cl). Then we choose
c, co that (5) be satisfied. Now, (1), (5), and Lemma 1 imply
[al,cJ z(cg [a3,c3], and this with (3) and Lemma 2 imply (7),
hence (6) too. Further, (2)3 (5), and Lemma 1 imply [cl,bl] =
(c) [a3ﬁa], and this together with (7) and Lemma 2 produce

2

(4). Finally, (1), (6), and Lemma 1 imply [al,cJ z(c?

29



[c3,b3], hence (using (3) and Lemma 2), we have (8).

It should be noted that Lemmas 5 and 1 immediately imply
that Il’z(x2)13’, where one may substitute either (a,,c,] or
[C1’b1] for Il’, either [a3,c3] or [c3,b3] for I; and any of
a, ¢, or b2 for X,

Now Lemma 5 allows us to define u{q(l/Z) and, using
Lemmas 1 and 2, extend each uJJ(-) to all the "halves"; then
we proceed to quarters, etc. without any difference with
Kukushkin (1994b). Theorem 2 may be regarded as proven.

Turning to Theorem 1, we first delete some edges in G so
that the remaining graph constitute a tree (the connectedness
assumption allows us to do so). The simple equivalence relation

I;=Ij, meaning F(ai,bj,x_

1J)=F(b1’aj’x-n) for all X_U, is
well defined for (i, j)eG; in the general case, we will consider
the relation Iiz(XK)IJ_, where K<N\{(i,j} and xKeXK are given,

meaning F(a ,b ,x ,x ) = F{(b ,a ,x ,X ) for all x (in
i bi K -ijkK i K -

B ijK -ijK

fact, each pair i, j requires just one set K to be considered
but it depends on the choice of the initial vertex).

Lemma 1. If (i,j)eG, (j,k)eG, and Iizljzlk (IJ=[aj,bj]),
then Iiz(aj)Ik and Iiz(bJ)Ik.

Lemma 2. If (i,]j)eG, IizI‘

3 and Ijz(xK)Ik, then

Iiz(<xK,aj>)Ik and Ii=(<xK,bj>)Ik.

Both proofs are quite similar to those of Lemmas 1 and 2
from Theorem 2.
| To start the induction process, we need a collection éf
If, ieN, such that I:zI; whenever (i,j)eG; such a collection

really exists: we may go along the tree "backwards", from the

terminal vertices, finding, for each ieN, an interval Ii that
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matches some intervals for all succeeding vertices. Lemmas 1 and
2 allow us to define points u{q(m) for ieN, m integer such

that F(<u1_1(mi)>ieN)=F(<ul_1(ni)>. if and only if

1eN)
m+mtm = n +n_+n_ (provided both sides are well defined).

Then we prove the exact analogue of Lemma 5 from Theorem 2
and finish the proof in the same way (each induction process
should start at the initial vertex and go along the tree).

Gorman (1968a) derived additive separability from Aczel’s
(1966) theorem on associative functions. Hopefully, there
should exist a purely geometrical interpretation of Aczel’s
results - cf. Artin (1957) where e.g. the validity of Pappus’
diagram is shown to be equivalent to the commutative law in the
underlying field (p. 73-74); such an interpretation would
finally clarify the relationship between Debreu’s and Gorman’s
approaches.

On the other hand, to advance towards proving the above
hypothesis in full generality, one has to abandon the continu-
ity assumption, thus 1leaving a very small chance that even
Gorman’s technique could be of much help. Note that the
ordering underlying the main result of Kukushkin (1992) has
separable projections on each R ¥R, (ieN) but not on ﬂﬁij, in
sharp contrast with the principal feature of Gorman’s (1968a)
result, captured in Theorems 1 and 2 above. The usual argument
that everything is continuous in economics is not convincing in
our context: the minimum- or maximum-like functions are con-
tinuous, but their relations with the separability property can
only be established through leximin or leximax orderings, which

are utterly discontinuous.
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