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Abstract
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1 Introduction

A.A. Cournot addressed the question of whether individual myopic adaption may (or must)
lead to an equilibrium long before the term “game theory” came into use. Similar questions
were raised now and then in various contexts (see, e.g., Topkis, 1979; Bernheim, 1984;
Moulin 1984; Vives, 1990; Milgrom and Roberts, 1991; Kandori and Rob, 1995).

A more systematic approach to unilateral improvement dynamics was originated by
Monderer and Shapely (1996). Milchtaich (1996) observed similarity with the case of best
response improvements. Kukushkin (1999, 2000, 2003) suggested the language of binary
relations and developed transfinite techniques. The crucial question can be formulated as:
Is the individual (best response) improvement relation in a given game [Ω-]acyclic? A pos-
itive answer implies that every individual (best response) improvement path, if continued
whenever possible, ends at a Nash equilibrium

This paper is essentially an extension of Kukushkin (2006): conditions for the acyclicity
of improvement relations in strategic games are developed along the same lines.

Concerning “games with common intermediate objectives,” a single result on the ne-
cessity of additivity, Theorem 1 in Section 2, is presented. The result was motivated by
Propositions 4.1 and 5.1 from Kukushkin (2004b); it shows that a “universal separable
ordering” on a finite set must be “additive lexicography.” From a technical viewpoint, the
theorem is distinct from the results on the necessity of additivity for the existence of Nash
equilibrium in Kukushkin (2004b, 2006, 2007).

In principle, Theorem 1 can be viewed as a discrete analogue of the famous Debreu–
Gorman Theorem (Debreu, 1960; Gorman, 1968; see also Wakker, 1989), although it cer-
tainly cannot claim anything approaching the importance of the latter.

The main bulk of this paper is about games with ordered strategy sets where each
player’s best responses are increasing in an aggregate of the partners’ strategies. The class
includes games of both strategic complements and substitutes (Bulow et al., 1985), which
properties are found in many important economic models (Tirole, 1988; Fudenberg and
Tirole, 1991; Topkis, 1998). As is well known, the existence of a Nash equilibrium in a
game with strategic complements can be derived from Tarski’s (1955) fixed point theorem;
however, the latter does not ensure acyclicity. In the case of strategic substitutes, acyclicity
is virtually the only reason for Nash equilibrium existence (in the absence of convexity).

In Section 3, basic notions such as a system of reactions, an iteration path (cycle), and
Ω-acyclicity are reproduced. The section also contains a few ways to extend a (pre)order
to nonempty subsets; they are needed to define monotonicity of multi-valued reactions.

In Section 4, a separable ordering is assumed on the space of strategy profiles; in the first
two subsections, it is continuous. Theorems 2 and 3 generalize, to multi-valued reactions,
Theorems 6.1 and 6.2, respectively, from Kukushkin (2000). Theorem 4 is about strategic
complements with discontinuous, to be more precise, lexicographic, aggregation. There are
just three players and the reactions are single-valued; to the best of my knowledge, this is
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the first sufficient condition for Ω-acyclicity without the continuity of aggregation (apart
from Theorem 6 of Kukushkin (2003), which was about an increasing endomorphism rather
than a system of reactions).

Section 5 explores the possibilities opened by a very interesting technical trick due
to Huang (2002) and Dubey et al. (2006). Theorem 5 proves Ω-acyclicity of a “system
of reactions with reciprocal quasi-polylinear aggregates.” The most important economic
interpretation is a game with positive linear externalities, see Example 5.3.

It is instructive to compare the Huang–Dubey–Haimanko–Zapechelnyuk trick with
Novshek’s (1985) construction (see also Kukushkin, 1994) used in the proofs of Theo-
rem 6.2 from Kukushkin (2000), Theorem 2 from Kukushkin (2004a), and Theorem 3 from
this paper. Both defy explanation; both produce “almost” the same result for decreasing
reactions under additive aggregation (by the way, the two potentials in this case seem not
to be related to each other in any way). They are logically independent in the sense that
there is a situation where one works but the other does not: generally, neither separable,
nor linear, aggregation need be additive. However, if one takes into account the relative
importance of the domain of applicability of either approach, the former appears a clear
winner (so far).

The last Section 6 is about a purely mathematical problem of the existence of monotone
selections from correspondences. The situation here is shown to be much more complicated
than was asserted in Milgrom and Shannon (1994). Theorem 6 proves the existence of a
monotone selection from every ascending correspondence to a chain. It implies, in par-
ticular, that the existence of a Nash equilibrium in Theorems 3 and 5 is retained under
weaker monotonicity conditions; actually, we have “restricted acyclicity” in those situa-
tions, which is more than the mere existence of an equilibrium, cf. Kukushkin (2004a,
Sections 6 and 7.7).

2 Universal separable orderings on a finite set

We start with a modification of a concept introduced in Kukushkin (2004b, Section 4.1). A
universal separable ordering on V ⊆ R is a sequence of orderings, i.e., reflexive, transitive,
and complete relations, ºm on V m (m = 1, 2, . . . ) such that

1. º1 is the standard order ≥ on V induced from R;

2. for every permutation σ of {1, . . . , m},

〈v1, . . . , vm〉 ∼m 〈vσ(1), . . . , vσ(m)〉

(symmetry);
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3. for every m′ > m ≥ 1, every 〈v1, . . . , vm′〉 ∈ V m′
, and every 〈v′1, . . . , v′m〉 ∈ V m,

〈v1, . . . , vm, vm+1, . . . , vm′〉 ºm′ 〈v′1, . . . , v′m, vm+1, . . . , vm′〉 ⇐⇒
〈v1, . . . , vm〉 ºm 〈v′1, . . . , v′m〉

(separability).

Theorem 1. For every finite V ⊆ R and every universal separable ordering on V , there is
a natural number n ≥ 1 and a strictly increasing mapping µ : V → Rn such that

〈v′1, . . . , v′m〉 ºm 〈v1, . . . , vm〉 ⇐⇒
m∑

s=1

µ(v′s) ≥Lex

m∑
s=1

µ(vs) (2.1)

for every m ≥ 1, where ≥Lex denotes the lexicographic order on Rn : first the first coordinate
matters, then the second, etc.

Remark. There is a small discrepancy with Kukushkin (2004b): here we assume com-
pleteness, which was not needed there. It is unclear whether a preorder may satisfy the
above conditions without being complete.

Proof. An interval [v, v′] is a pair of v, v′ ∈ V . An interval [v, v′] is positive if v′ ≥ v. A
formal sum

∑m
s=1[vs, v

′
s] is called positive if 〈v′1, . . . , v′m〉 ºm 〈v1, . . . , vm〉; by separability, the

sum of positive intervals is positive as well. Since the same interval may be repeated several
times, we also have a notion of a positive combination

∑m
s=1 ks[vs, v

′
s] with nonnegative

integer ks. Assuming −[vs, v
′
s] = [v′s, vs], we extend the notion to negative ks as well. The

separability of the original ordering implies that a formal sum of two positive combinations
is also positive.

Now we consider the free Abelian group generated by all positive intervals and define
I ′ º I ® [I ′ − I is positive] for all members I ′ and I of the group (with zero positive by
definition). Clearly, º is an ordering consistent with addition (I º 0 ⇐⇒ I ′ + I º I ′);
we define Â and ∼ as its asymmetric and symmetric components, respectively. It is worth
noting that

[v, v′] + [v′, v′′] ∼ [v, v′′] (2.2)

by symmetry, and I ′ º I ⇐⇒ mI ′ º mI for any m > 0 by separability.

We call [v, v′] an elementary interval if v′ > v and there is no v′′ ∈ V such that
v′ > v′′ > v. We denote Q the field of rational numbers and Q the set of all formal
combinations

∑m
s=1 rs[vs, v

′
s] of elementary intervals with rational coefficients. Clearly, Q is

a vector space over Q; since V is finite, Q is finite-dimensional. Our ordering is defined on
combinations with integer coefficients; we extend it to the whole Q by

∑m′
s=1 r′s[v

′′
s , v

′′′
s ] º∑m

s=1 rs[vs, v
′
s] ®

∑m′
s=1 k ·r′s[v′′s , v′′′s ] º ∑m

s=1 k ·rs[vs, v
′
s], where k > 0 is an integer such that

all coefficients k ·r′s and k ·rs are integer (it does not matter which particular k is chosen for
the comparison). The extended ordering is still consistent with addition; besides, rI Â 0
whenever I Â 0 and r > 0 (r ∈ Q).
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Let I ′, I ∈ Q and I Â 0; we say that I ′ is not Archimedean dominated by I, I ′ ºº I,
if there is an integer k such that kI ′ Â I. For I ≺ 0, we define I ′ ºº I ® ∃k [kI ′ Â −I].
Adding I ºº 0 by definition for all I ∈ Q, we obtain an ordering; its asymmetric and
symmetric components are denoted ÂÂ and ≈, respectively. When I ′ ≈ I, we say that I ′

and I have the same Archimedean rank.

Whenever I0 Â 0 and I0 ºº I º 0, we define

I/I0 = sup{r ∈ Q | I º rI0} ∈ R
(an attempt to apply the definition to I ÂÂ I0 would lead to I/I0 = +∞). When I ≺ 0, we
define I/I0 = −[(−I)/I0] = inf{r ∈ Q | rI0 º I}.
Lemma 1.1. Let I, I ′, I0 ∈ Q, I0 Â 0, I0 ºº I ′, I0 ºº I, and r ∈ Q. Then

(I ′ + I)/I0 = (I ′/I0) + (I/I0);

(rI)/I0 = r(I/I0);

I0 ÂÂ I ⇐⇒ I/I0 = 0.

Proof. The proof consists of rather tedious checks. Let I ′ Â 0 and I Â 0; then for every
r ∈ Q such that r < (I ′/I0) + (I/I0), we can find r1, r2 ∈ Q such that r1 + r2 = r,
r1 < I ′/I0, and r2 < I/I0. By definition, I ′ Â r1I0 and I Â r2I0, hence (I ′ + I) Â rI0;
since r was arbitrary, (I ′ + I)/I0 ≥ (I ′/I0) + (I/I0). Conversely, for every r ∈ Q such
that r > (I ′/I0) + (I/I0), we can find r1, r2 ∈ Q such that r1 + r2 = r, r1 > I ′/I0, and
r2 > I/I0. By definition, I ′ ≺ r1I0 and I ≺ r2I0, hence (I ′+I) ≺ rI0; since r was arbitrary,
(I ′ + I)/I0 ≤ (I ′/I0) + (I/I0).

Turning to negative intervals, it is enough to consider I ′ Â 0, I Â 0, and I ′−I Â 0; then
for every r ∈ Q such that r < (I ′/I0)− (I/I0), we can find r1, r2 ∈ Q such that r1− r2 = r,
r1 < I ′/I0, and r2 > I/I0. By definition, I ′ Â r1I0 and I ≺ r2I0, hence (I ′− I) Â rI0; since
r was arbitrary, (I ′ − I)/I0 ≥ (I ′/I0) − (I/I0). The converse inequality is obtained in a
similar way.

Checking the second equality, we may assume I Â 0 and r > 0; then rI º rr′I0 ⇐⇒
I º r′I0.

As to the last equivalence, it is again sufficient to consider I Â 0. If nI º I0, then
I/I0 ≥ 1/n. Conversely, if I/I0 > 0, then I º rI0 for every r ∈ Q such that 0 < r < I/I0,
hence (1/r)I º I0, hence I ºº I0.

Let I be a finite subset of Q; we denote Q(I) the vector subspace of Q (over Q)
generated by I.

Lemma 1.2. For every finite subset I 6= ∅ of Q, there is a natural number n and a
mapping λ : Q(I) → Rn such that λ is linear over Q and

∀I ′, I ∈ Q(I) [I ′ º I ⇐⇒ λ(I ′) ≥Lex λ(I)].
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Proof. We argue by induction in #I; when it is 1, the statement is obvious. Picking I+ ∈ I
with a maximal Archimedean rank, we denote I0 = I+ if I+ Â 0 and I0 = −I+ otherwise.
By Lemma 1.1, I0 ºº I for every I ∈ Q(I); we denote q(I) = I/I0. By the same lemma,
q : Q(I) → R is linear over Q; since q(I0) = 1, the kernel of q, K = {I ∈ Q(I) | q(I) = 0},
is a proper vector subspace of Q(I). By the induction hypothesis, there is a linear operator
λ′ : K → Rn representing º on K.

Now we fix a projection p : Q(I) → K, i.e., a linear operator such that p(I) = I
whenever I ∈ K, and define λ : Q(I) → Rn+1 by λ(I) = 〈q(I), λ′(p(I))〉 for every I ∈ Q(I).
Checking that λ represents º on Q(I) is straightforward: if q(I ′) > q(I), then obviously
I ′ Â I; if q(I ′) = q(I), then (I ′−I) ∈ K, hence λ(I ′) ≥Lex λ(I) ⇐⇒ λ′(I ′) ≥Lex λ′(I) ⇐⇒
I ′ º I.

Since the total number of elementary intervals is finite, Lemma 1.2 implies the existence
of a λ representing º on the whole Q. Let V = {v0, v1, . . . , vm̄} with vs < vs+1 for every
relevant s. We define κ : V → Q by κ(v0) = 0 and κ(vk) =

∑k−1
s=0 [v

s, vs+1], and µ : V → Rn

as µ = λ ◦ κ. By the definition of a positive sum of intervals, 〈v′1, . . . , v′m〉 ºm 〈v1, . . . , vm〉
if and only if

∑m
s=1[vs, v

′
s] º 0; by (2.2), [vs, v

′
s] ∼

(
κ(v′s)−κ(vs)

)
. Now Lemma 1.2 implies

(2.1).

As was shown in Kukushkin (2004b, Proposition 4.1), an arbitrary universal separable
ordering can successfully replace additive aggregation in Rosenthal’s (1973) congestion
games. Very formally speaking, we have thus obtained a generalization. On the other
hand, in a particular game only a finite number of ºm can be relevant and the lexicographic
ordering on Rn obviously admits a scalar additive representation on every finite subset. The
application of the necessity part of Theorem 1 to a single congestion game is prevented by
the assumption in the theorem that ºm was defined (and well-behaved) for all m ≥ 1.
Moreover, universal separable orderings are needed for Rosenthal’s proof to remain intact;
their necessity for the existence of Nash equilibrium, or even for the acyclicity of individual
improvements, is by no means obvious. All that is true with respect to Proposition 5.1
from Kukushkin (2004b) as well, but here the necessity of separability was disproved by
Example 3.1 of Kukushkin (2006). It should be noted that the example contains a typo
corrected in the pdf version.

3 Systems of monotonic reactions

3.1 Iteration paths

A natural generalization of best response correspondences in a strategic game is a “system of
reactions” (Kukushkin, 2000). Virtually the same object was called an “abstract game” by
Vives (1990); however, he focussed attention on an endomorphism, the Cartesian product
of all reactions.
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A system of reactions S is defined by a finite set of players N , and sets Xi and mappings
Ri : X−i → 2Xi \ {∅} for all i ∈ N . A point x0 ∈ XN =

∏
i∈N Xi is called a fixed point of S

if x0
i ∈ Ri(x

0
−i) for all i ∈ N . With every system S, one can associate binary relations on

XN :
yN BS

i xN ® [y−i = x−i & xi /∈ Ri(x−i) 3 yi]; (3.1a)

yN BS xN ® ∃i ∈ N [yN BS
i xN ]. (3.1b)

Clearly, xN ∈ XN is a maximizer for BS if and only if xN is a fixed point of S. Here we are
interested not so much in the existence of fixed points as in what happens when the iteration
of Ri’s is combined with picking limit points. I reproduce basic formal constructions
(Kukushkin, 2000, 2003).

A linearly ordered set is well ordered if every subset contains a least point; Natanson
(1974, Chapter XIV) can be used as a reference textbook. Considering a well ordered
set Σ, we will denote 0 the least point of the whole Σ, and β + 1, for β ∈ Σ, the least
point exceeding β (the latter exists unless β = max Σ). A point β ∈ Σ \ {0} is called
isolated if β = β′ + 1 for some β′ ∈ Σ; otherwise, β is called a limit point. Thus, we
have a partition Σ = {0} ∪ Σiso ∪ Σlim. Whenever β, β′ ∈ Σ and β ≤ β′, we denote
[β, β′] = {γ ∈ Σ | β ≤ γ ≤ β′}.

We always assume that each Xi, hence X too, is a metric space. An iteration path for
S is a mapping πN : Σ → XN , where Σ is a countable well ordered set, satisfying these two
conditions:

πN(β + 1) BS πN(β) whenever β, β + 1 ∈ Σ; (3.2a)

whenever βω ∈ Σlim, there exists a sequence {βk}k∈N in Σ for which

βk+1 > βk for all k ∈ N, βω = sup
k

βk, and πN(βω) = lim
k→∞

πN(βk). (3.2b)

An iteration path πN is narrow if

πN(βω) = lim
k→∞

πN(βk)

whenever βω ∈ Σlim and a sequence {βk}k in Σ is such that

βω = sup
k

βk and βk+1 > βk for all k. (3.2c)

In a general iteration path, limit points are taken at appropriate steps; if the path is narrow,
they are limits.

An iteration cycle is an iteration path πN such that πN(α) = πN(β) for some α > β ∈ Σ.
Deleting from Σ all γ < β and γ > α, we can assume β = 0 and Σ = [0, α]. A system S
is called Ω-acyclic if it admits no iteration cycle. By Theorem 2 of Kukushkin (2003), an
Ω-acyclic system of reactions with compact sets Xi has a fixed point ([2.1] ⇒ [2.6]) and
every iteration path “eventually” reaches one of them ([2.1] ⇒ [2.4]).
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An ω-potential of S is a strict order Â on XN which is ω-transitive,

[
xω = lim

k→∞
xk & ∀k ∈ N[xk+1 Â xk]

] ⇒ xω Â x0, (3.3a)

and satisfies
yN BS xN ⇒ yN Â xN . (3.3b)

By Theorem 2 ([2.1] ⇐⇒ [2.2]) of Kukushkin (2003), S is Ω-acyclic if and only if it admits
an ω-potential (3.3).

3.2 Monotonicity conditions

A reflexive and transitive binary relation is called a preorder ; with every preorder º, strict
orders Â and ≺, as well as an equivalence relation ∼, are naturally associated. As usual,
we call a set endowed with a partial order a poset ; a set with a preorder will be called a
proset. A complete preorder is called an ordering.

Given a set X, we denote BX = 2X \ {∅}. If X is a proset, there are various ways to
extend the preorder to BX . Quite a few of them are used in the following.

Let X be a proset and Y, Z ∈ BX . We define

Y ºsup Z ® ∀z ∈ Z ∃y ∈ Y [y º z]; (3.4a)

Y ºinf Z ® ∀y ∈ Y ∃z ∈ Z [y º z]; (3.4b)

Y º∗ Z ® ∀y ∈ Y \ Z ∀x, x′ ∈ Y ∩ Z ∀z ∈ Z \ Y [y Â x ∼ x′ Â z]. (3.4c)

All the three relations are preorders on BX ; if º is an ordering on X, then both ºsup and
ºinf are orderings too. Loosely speaking, ºsup compares suprema of subsets of X, while ºinf

compares infima. Clearly, X itself is a greatest point in BX for ºsup and a least for ºinf . It
is easy to see that

Y Âsup Z ⇐⇒ ∃y ∈ Y ∀z ∈ Z [y Â z]; (3.4d)

and
Y Âinf Z ⇐⇒ ∃z ∈ Z ∀y ∈ Y [y Â z]. (3.4e)

The preorder º∗ is antisymmetric, i.e., a partial order. If º itself is a partial order, (3.4c)
can be simplified to

Y º∗ Z ⇐⇒ ∀y ∈ Y ∀z ∈ Z [y º z]. (3.4f)

When X is a lattice (of most interest for us are just chains), Veinott’s order (Topkis, 1978)
can be defined:

Y ºV Z ® ∀y ∈ Y ∀z ∈ Z [y ∨ z ∈ Y & y ∧ z ∈ Z]. (3.4g)

The relation ºV is antisymmetric and transitive on BX , hence its reflexive closure is a
partial order. It is easy to see that

Y º∗ Z ⇒ Y ºV Z ⇒ [Y ºsup Z & Y ºinf Z]
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whenever X is a lattice and Y, Z ∈ BX .

Let S and Y be two prosets. A mapping f : S → Y is increasing if y ∼ x ⇒ f(y) = f(x)
and y º x ⇒ f(y) º f(x); f is decreasing if y ∼ x ⇒ f(x) = f(y) and y º x ⇒ f(x) º
f(y).

When Y = BX , where X is a proset, every (pre)order (3.4) generates two versions of
monotonicity. For instance, a correspondence R : S → BX , where X is a lattice, is called
ascending (Topkis, 1978, 1998) if it satisfies the condition

∀s′, s ∈ S [s′ º s ⇒ R(s′) ºV R(s)].

4 Separable aggregation

Let º be a binary relation on XN = X1×X2. A relation º1 on X1 is a separable projection
of º to X1 (along X2) if

(x′1, x2) º (x1, x2) ⇐⇒ x′1 º1 x1

for all x′1, x1 ∈ X1 and x2 ∈ X2. Usually X2 is clear from the context and not mentioned at
all. Obviously, a separable projection “inherits” all properties inherited by the restrictions
to subsets (as being a preorder, strict order, ordering, etc.). If XN = X1 ×X2 ×X3 and º
admits separable projections to both X1×X2 and X2×X3, then º also admits a separable
projection to X2 (Gorman, 1968).

In this section, we consider systems of reactions with separable aggregation. This means
that there is an ordering º on XN , which admits a separable projection to each X−i.
Therefore, º admits a separable projection to each Xi as well; we assume throughout that
it is a linear order. To simplify notation, we use the same symbols, º, Â and ∼, for all
separable projections. In the two following subsections, we assume that º is continuous,
i.e., both upper and lower contours, {yN ∈ XN | yN Â xN} and {yN ∈ XN | xN Â yN},
are open for every xN ∈ XN . This implies that all projections of º are continuous too;
virtually without restricting generality we assume Xi ⊆ R.

When dealing with a system of reactions, we employ shortened notations BN instead of
BXN

and Bi instead of BXi
.

4.1 Increasing reactions

Given a preorder º on X−i, we call a mapping Ri : X−i → Bi increasing (w.r.t. º) if

∀x′−i, x−i ∈ X−i [x
′
−i º x−i ⇒Ri(x

′
−i) ºV Ri(x−i)], (4.1)

where ºV is defined by (3.4g). Since ºV is antisymmetric, (4.1) implies that Ri(x
′
−i) =

Ri(x−i) whenever x′−i ∼ x−i.
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Theorem 2. Let a system of reactions S be defined by a finite set N , compact Xi ⊂ R and
Ri : X−i → Bi such that every value Ri(x−i) is closed. Let there be a continuous ordering
º on XN admitting a separable projection to each X−i such that the separable projection of
º to each Xi coincides with the natural order ≥ and each Ri is increasing in the sense of
(4.1). Then S is Ω-acyclic.

Proof. For every VN = 〈Vi〉i∈N ∈ BN
N and Y ∈ BN , we denote I+(VN , Y ) = {i ∈ N |

Vi ºinf Y }, I−(VN , Y ) = {i ∈ N | Y ºsup Vi}, n+(VN , Y ) = #I+(VN , Y ), and n−(VN , Y ) =
#I−(VN , Y ). Then we define lexicographic orderings ºLinf and ºLsup on BN

N :

V ′
N ºLinf VN ® ∀Y ∈ BN

[
n+(VN , Y ) > n+(V ′

N , Y ) ⇒
∃Z ∈ BN [Z Âinf Y & n+(V ′

N , Z) > n+(VN , Z)]
]
; (4.2a)

V ′
N ºLsup VN ® ∀Y ∈ BN

[
n−(VN , Y ) > n−(V ′

N , Y ) ⇒
∃Z ∈ BN [Y Âsup Z & n−(V ′

N , Z) > n−(VN , Z)]
]
. (4.2b)

For every i ∈ N , xi ∈ Xi, and xN ∈ XN , we define:

S+
i (xi) = {x−i ∈ X−i | xi ∈ Ri(x−i) or ∀yi ∈ Ri(x−i)[yi ≥ xi]};

τ+
i (xi) = {xi} × S+

i (xi) ⊆ XN ; N+(xN) = {i ∈ N | τ+
i (xi) Âinf {xN}};

λ+
i (xN) =

{
τ+
i (xi), if i ∈ N+(xN);

XN , else;
λ+

N(xN) = 〈λ+
i (xN)〉i∈N ∈ BN

N ;

S−i (xi) = {x−i ∈ X−i | xi ∈ Ri(x−i) or ∀yi ∈ Ri(x−i)[yi ≤ xi]};
τ−i (xi) = {xi} × S−i (xi) ⊆ XN ; N−(xN) = {i ∈ N | {xN} Âsup τ−i (xi)};

λ−i (xN) =

{
τ−i (xi), if i ∈ N−(xN);

XN , else;
λ−N(xN) = 〈λ−i (xN)〉i∈N ∈ BN

N ;

yN ÂÂ xN ®
[
[λ+

N(xN) ÂLinf λ+
N(yN) & λ−N(yN) ºLsup λ−N(xN)] or

[λ+
N(xN) ºLinf λ+

N(yN) & λ−N(yN) ÂLsup λ−N(xN)]
]
. (4.3)

We denote X0
i = cl

⋃
x−i∈X−i

Ri(x−i) for each i ∈ N and N0(xN) = {i ∈ N | xi ∈ X0
i }

for every xN ∈ XN . Finally, we define

yN ÂÂÂ xN ®
[
N0(xN) ⊂ N0(yN) or

[N0(xN) = N0(yN) = M & y−M = x−M & yN ÂÂ xN ]
]
. (4.4)

Clearly, both ÂÂ and ÂÂÂ are irreflexive and transitive.
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Lemma 2.1. If i ∈ N and xi ∈ X0
i , then S−i (xi) ∪ S+

i (xi) = X−i.

Proof. Suppose the contrary: there are x′i < xi < x′′i and x−i ∈ X−i such that x′i ∈ Ri(x−i)
and x′′i ∈ Ri(x−i), but xi /∈ Ri(x−i). Since Ri(x−i) is closed, there is ε > 0 such that
[xi − ε, xi + ε] ∩ Ri(x−i) = ∅, hence x′i < xi − ε and xi + ε < x′′i . Since xi ∈ X0

i , there is
yN ∈ XN such that yi ∈ Ri(y−i) and yi[xi−ε, xi+ε], hence y−i 6∼ x−i. Assuming x−i Â y−i,
we have Ri(x−i) ºV Ri(y−i) by (4.1), hence yi = yi ∨x′i ∈ Ri(x−i), contradicting the choice
of yi and ε. If y−i Â x−i, then, similarly, yi = yi ∧ x′′i ∈ Ri(x−i).

Remark. The statement is invalid for xi ∈ Xi \ X0
i . Lemma 2.1 itself would be wrong

without our closed values assumption.

Lemma 2.2. If yN BS xN , then yN ÂÂÂ xN .

Proof. Let yN BS
i xN . Clearly, yi ∈ X0

i , hence N0(xN) ⊆ N0(yN). If xi /∈ X0
i , the inclusion

is strict, hence the first disjunctive term in (4.4) holds. Assuming xi ∈ X0
i , we consider

two alternatives.

Let yi < xi. Then x−i /∈ S+
i (xi), hence i ∈ N+(xN); on the other hand, x−i =

y−i ∈ S+
i (yi), hence i /∈ N+(yN), hence λ+

i (xN) Âinf λ+
i (yN) = XN . Since yj = xj

for j 6= i, we have I+(λ+
N(yN), Y ) = I+(λ+

N(xN), Y ) whenever Y Âinf τ+
i (xi), whereas

I+(λ+
N(yN), τ+

i (xi)) = I+(λ+
N(xN), τ+

i (xi)) \ {i}. Therefore, the first disjunctive term of
(4.2a) applies, producing λ+

N(xN) ÂLinf λ+
N(yN).

Since xi ∈ X0
i and x−i /∈ S+

i (xi), Lemma 2.1 implies x−i ∈ S−i (xi), hence i /∈ N−(xN).
Since xN Â yN and yj = xj for j 6= i, we have N−(xN) ⊇ N−(yN), hence λ−N(yN) ºLsup

λ−N(xN). Now the first disjunctive term in (4.3) applies, producing yN ÂÂ xN , hence yN ÂÂÂ
xN .

The case of yi > xi is treated dually.

Lemma 2.3. The relation ÂÂÂ is ω-transitive.

Proof. Let xk
N → xω

N and xk+1
N ÂÂÂ xk

N for all k ∈ N. Since each X0
i is closed, we have

N0(x0
N) ⊆ N0(xω

N) by (4.4). If the inclusion is strict, the first disjunctive term in (4.4)
ensures that xω

N ÂÂÂ x0
N . Otherwise, we have N0(xk

N) = N0(xω
N) = M for all k ∈ N, hence

x0
−M = xω

−M .

Step 2.3.1. If i ∈ N , x′i, xi ∈ X0
i , and x′i > xi, then

S+
i (x′i) ⊆ S+

i (xi); S−i (xi) ⊆ S−i (x′i); (4.5a)

τ+
i (x′i) Âinf τ+

i (xi); τ−i (x′i) Âsup τ−i (xi). (4.5b)

Proof. Both inclusions in (4.5a) immediately follow from Lemma 2.1. Each relation in
(4.5b) immediately follows from the appropriate relation in (4.5a).
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Since N is finite while N infinite, we may assume that N+(xk
N) = N+ and N−(xk

N) = N−

for all k ∈ N; moreover, we may assume that the (pre)orders induced on N by τ+
(·)(x

k
N) and

ºinf , as well as by τ−(·)(x
k
N) and ºsup, also do not depend on k. Finally, we assume that

N is partitioned into N = N↑ ∪ N= ∪ N↓, where N↑ = {i ∈ N | ∀k ∈ N [xk+1
i > xk

i ]},
N= = {i ∈ N | ∀k ∈ N [xk+1

i = xk
i ]}, N↓ = {i ∈ N | ∀k ∈ N [xk+1

i < xk
i ]}. Clearly,

N↑ ∪N↓ ⊆ M , while xω
i = x0

i for each i ∈ N=, hence N= may be ignored.

Step 2.3.2. If i ∈ N↑, then S+
i (xω

i ) =
⋂

k∈N S+
i (xk

i ). If i ∈ N↓, then S−i (xω
i ) =

⋂
k∈N S−i (xk

i ).

Proof. If x−i ∈ S+
i (xω

i ) and k ∈ N, then either xk
i ∈ Ri(x−i) or x−i /∈ S−i (xk

i ). In the first
case, we have x−i ∈ S+

i (xk
i ) by definition; in the second, by Lemma 2.1. If x−i /∈ S+

i (xω
i ),

then xω
i /∈ Ri(x−i) 3 yi < xω

i . Since Ri(x−i) is closed, we have xk
i /∈ Ri(x−i) 3 yi < xk

i for
all k ∈ N large enough; therefore, x−i /∈ S+

i (xk
i ).

The second statement is proven dually.

Step 2.3.3. Let Y, Y ′ ∈ BN , i ∈ N↑, and Y Âinf Y ′ ºinf τ+
i (xk

i ) for each k ∈ N. Then
Y ºinf τ+

i (xω
i ).

Proof. Suppose to the contrary that τ+
i (xω

i ) Âinf Y ; by (3.4e), there is t ∈ Y such that
(xω

i , x−i) Â t for every x−i ∈ S+
i (xω

i ). By (3.4e) and (3.4b), there are t′ ∈ Y ′ and zk
−i ∈

S+
i (xk

i ) for each k ∈ N such that t Â t′ º (xk
i , z

k
−i). Since X−i is compact, we may assume

zk
−i → zω

−i, hence t Â t′ º (xω
i , zω

−i), hence zω
−i /∈ S+

i (xω
i ). Without restricting generality,

we may assume that either zk+1
−i º zk

−i for each k ∈ N or zk
−i Â zk+1

−i for each k ∈ N. In
the first case, we would have zω

−i = supk zk
−i ∈

⋂
k∈N S+

i (xk
i ) = S+

i (xω
i ) by Step 2.3.2. In

the second, zk
−i ∈ S+

i (xh
i ) for all k, h ∈ N, hence zk

−i ∈ S+
i (xω

i ), hence (xω
i , zk

−i) Â t for each
k ∈ N, which is incompatible with t Â (xω

i , zω
−i) since º is continuous.

Remark. Without the continuity assumption, the statement would be just wrong. More-
over, it would be wrong without Y ′ in the assumptions.

Step 2.3.4. Let Y, Y ′ ∈ BN , i ∈ N↓, and τ−i (xk
i ) ºsup Y ′ Âsup Y for each k ∈ N. Then

τ−i (xω
i ) ºsup Y .

The proof is dual to that of Step 2.3.3.

To complete the proof of Lemma 2.3, we consider a couple of alternatives. Let N+ 6⊆ N=.
Then there must be j ∈ N+∩N↓ such that τ+

j (xk
j ) Âinf τ+

i (xk
i ) for each i ∈ N+∩N↑ and k ∈

N. Step 2.3.3 with Y = τ+
j (x1

j) and Y ′ = τ+
j (x2

j) immediately gives us τ+
j (x0

j) Âinf τ+
j (x1

j) ºinf

τ+
i (xω

i ) for each i ∈ N+ ∩N↑. Therefore, n+(λ+
N(x0

N), τ+
j (x0

j)) > n+(λ+
N(xω

N), τ+
j (x0

j)) while

n+(λ+
N(x0

N), Y ) = n+(λ+
N(xω

N), Y ) for every Y ∈ BN such that Y Âinf τ+
j (x0

j). By (4.2a), we

have λ+
N(x0

N) ÂLinf λ+
N(xω

N).

Dually, if N− 6⊆ N=, then λ−N(xω
N) ÂLsup λ−N(x0

N).

If N+ ⊆ N=, then, obviously, λ+
N(xk

N) = λ+
N(x0

N) for all k ∈ N. If N+(xω
N) = N+,

then λ+
N(x0

N) = λ+
N(xω

N); otherwise (which is not impossible), N+(xω
N) ⊂ N+, hence
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λ+
N(x0

N) ºLinf λ+
N(xω

N) because τ+
i (x0

N) ºinf XN for each i ∈ N . Dually, if N− ⊆ N=,
then λ−N(xω

N) ºLsup λ−N(x0
N). Both inclusions simultaneously, i.e., N+ ∪ N− ⊆ N=, would

contradict the assumption xk+1
N ÂÂ xk

N . Therefore, xω
N ÂÂ x0

N , hence xω
N ÂÂÂ x0

N .

Lemmas 2.2 and 2.3 mean that ÂÂÂ is an ω-potential for S.

4.2 Decreasing reactions

Given a preorder º on X−i, we call a mapping Ri : X−i → Bi decreasing (w.r.t. º) if

∀x′−i, x−i ∈ X−i [x
′
−i º x−i ⇒Ri(x−i) º∗ Ri(x

′
−i)], (4.6)

where º∗ is defined by (3.4c). Since º∗ is antisymmetric, (4.6) implies that Ri(x
′
−i) =

Ri(x−i) whenever x′−i ∼ x−i. A subset Y ⊆ R is upper closed if whenever y /∈ Y , there is
ε > 0 such that [y − ε, y] ∩ Y = ∅.
Theorem 3. Let a system of reactions S be defined by a finite set N , compact Xi ⊂ R
and Ri : X−i → Bi such that every value Ri(x−i) is upper closed. Let there be a continuous
ordering º on XN admitting a separable projection to each X−i such that the separable
projection of º to each Xi coincides with the natural order ≥ and each Ri is decreasing in
the sense of (4.6). Then S is Ω-acyclic.

Proof. For each i ∈ N , xi ∈ Xi, and t ∈ XN , we define:

Gi =
{
zN ∈ XN | zi ∈ Ri(z−i) or

∃〈zk
N〉k∈N

[
zk

N → zN & ∀k ∈ N [zk
i ∈ Ri(z

k
−i) & zk+1

N Â zk
N ]

]}
, (4.7)

“the upper closure of the graph of Ri”;

Ξi(xi, t) = {zN ∈ Gi | xi ≥ zi & zN º t};

ξi(xi, t) = {zi ∈ Xi | ∃z−i ∈ X−i[(z−i, zi) ∈ Ξi(xi, t)]}.
Lemma 3.1. These statements hold for every i ∈ N , xi, x

′
i, x

′′
i ∈ Xi, and t, t′, t′′ ∈ XN :

{xi} ºsup ξi(xi, t); (4.8a)

x′′i ≥ x′i ⇒ ξi(x
′′
i , t) ºsup ξi(x

′
i, t); (4.8b)

t′′ º t′ ⇒ ξi(xi, t
′) ºsup ξi(xi, t

′′); (4.8c)

ξi(x
′′
i , t) Âsup ξi(x

′
i, t) ⇒ ξi(x

′′
i , t) Âsup {x′i}; (4.8d)

[ξi(x
′′
i , t

′) ºsup ξi(x
′
i, t

′) & t′′ º t′] ⇒ ξi(x
′′
i , t

′′) ºsup ξi(x
′
i, t

′′). (4.8e)
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Proof. The statement (4.8a) immediately follows from the definition; (4.8b), from Ξi(x
′
i, t) ⊆

Ξi(x
′′
i , t); (4.8c), from Ξi(xi, t

′′) ⊆ Ξi(xi, t
′). The left hand side of (4.8d) implies the exis-

tence of z′′N ∈ Ξi(x
′′
i , t) such that z′′i > z′i for each z′N ∈ Ξi(x

′
i, t); therefore, z′′i > x′i because

we would have z′′N ∈ Ξi(x
′
i, t) otherwise; therefore, ξi(x

′′
i , t) Âsup {x′i}. The negation of the

right hand side of (4.8e) implies, by (4.8d), the existence of z′N ∈ Ξi(x
′
i, t

′′) ⊆ Ξi(x
′
i, t

′) such
that z′i > x′′i ; therefore, z′′i ≥ z′i is impossible for any z′′N ∈ Ξi(x

′′
i , t

′), which contradicts the
first relation in the left hand side of (4.8e).

For each xN ∈ XN , we define binary relations on XN :

yN ÂÂ′ xN ® ∃t∗ ∈ XN

[
t∗ º yN & t∗ º xN & ∀i ∈ N [ξi(yi, t

∗) ºsup ξi(xi, t
∗)] &

∃i ∈ N [ξi(yi, t
∗) Âsup ξi(xi, t

∗)]
]
; (4.9)

yN ÂÂ′′ xN ®
[
xN Â yN & ∀i ∈ N [ξi(yi, xN) ºsup ξi(xi, xN)]

]
;

yN ÂÂ xN ®
[
yN ÂÂ′ xN or yN ÂÂ′′ xN

]
.

The relation ÂÂ is obviously irreflexive.

Lemma 3.2. The relations ÂÂ, ÂÂ′, and ÂÂ′′ are transitive.

Proof. Whenever yN ÂÂ′ xN , we pick τ ∗(yN , xN) ∈ XN suited for the role of t∗ in (4.9);
for yN ÂÂ′′ xN , we denote τ ∗(yN , xN) = xN . Having zN ÂÂ yN ÂÂ xN , we define t∗ =
τ ∗(zN , yN) if τ ∗(zN , yN) º τ ∗(yN , xN), and t∗ = τ ∗(yN , xN) otherwise; by Lemma 3.1,
(4.8e), ξi(zi, t

∗) ºsup ξi(yi, t
∗) ºsup ξi(xi, t

∗) for all i ∈ N . If t∗ can be associated with a ÂÂ′
relation (which holds if zN ÂÂ′ yN ÂÂ′ xN), then at least one of the relations for at least
one i ∈ N is strict, hence ξi(zi, t

∗) Âsup ξi(xi, t
∗), hence zN ÂÂ′ xN . Otherwise (which holds

if zN ÂÂ′′ yN ÂÂ′′ xN), yN ÂÂ′′ xN , t∗ = xN Â yN , and xN º τ ∗(zN , yN) º zN ; therefore,
zN ÂÂ′′ xN because ξi(zi, xN) ºsup ξi(xi, xN) for all i ∈ N .

Lemma 3.3. Let i ∈ N , t ∈ XN , xi, x
ω
i , xk

i ∈ Xi (k ∈ N), xk
i → xω

i , and ξi(x
k
i , t) ºsup

ξi(xi, t) for all k ∈ N. Then ξi(x
ω
i , t) ºsup ξi(xi, t).

Proof. Otherwise, there would exist zN ∈ Ξi(xi, t) such that zi > xω
i ; therefore, zi > xk

i for
k large enough, which contradicts the condition ξi(x

k
i , t) ºsup ξi(xi, t).

Lemma 3.4. The relation ÂÂ is ω-transitive.

Proof. Let xk
N → xω

N and xk+1
N ÂÂ xk

N for all k ∈ N. Since both ÂÂ′ and ÂÂ′′ are transitive by
Lemma 3.2, we may, without restricting generality, assume that either xk+1

N ÂÂ′ xk
N for all

k ∈ N, or xk+1
N ÂÂ′′ xk

N for all k ∈ N. In the second case, we have xk+1
N ≺ xk

N for all k, hence
xω

N ≺ x0
N ; besides, ξi(x

ω
i , x0

N) ºsup ξi(x
0
i , x

0
N) for every i ∈ N by Lemma 3.3. Therefore,

xω
N ÂÂ′′ x0

N .

Assuming xk+1
N ÂÂ′ xk

N for all k ∈ N, we can pick tk ∈ XN suited for the role of t∗ in
(4.9). Since N is finite, we may, without restricting generality, assume that ξi(x

k+1
i , tk) Âsup

ξi(x
k
i , t

k) for an i ∈ N and all k ∈ N. Now we consider two alternatives.
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If the sequence 〈tk〉k contains a greatest (w.r.t. º) element, we may, without restricting
generality, assume that t0 º tk for each k ∈ N. Then we have ξj(x

k
j , t

0) ºsup ξj(x
1
j , t

0) for all
j ∈ N and k ≥ 1 by (4.8e). Therefore, ξj(x

ω
j , t0) ºsup ξj(x

1
j , t

0) ºsup ξj(x
0
j , t

0) by Lemma 3.3.
For j = i, the last relation is strict by the definition of t0, hence ξi(x

ω
i , t0) Âsup ξi(x

0
i , t

0).
Therefore, xω

N ÂÂ′ x0
N .

Otherwise, we may assume that tk+1 Â tk for each k and tk → tω; then tω Â tk for each k.
By (4.8e), we have ξj(x

k
j , t

ω) ºsup ξj(x
0
j , t

ω); hence by Lemma 3.3, ξj(x
ω
j , tω) ºsup ξj(x

0
j , t

ω),
for each j ∈ N . We only have to show that the last relation is strict for j = i. By
(4.8d), we may pick zk

N ∈ ξi(x
k+1
i , tk) such that zk

i > xk
i ; without restricting generality,

we may assume zk
N → zω

N . Clearly, zω
N ∈ Gi, zω

i = xω
i , and zω

N º tω º xω
N ; therefore,

zω
N ∈ ξi(x

ω
i , tω) Âsup ξi(x

0
i , t

ω), hence xω
N ÂÂ′ x0

N .

Lemma 3.5. If yN BS xN , then yN ÂÂ xN .

Proof. Let yN BS
i xN ; we consider two alternatives.

Let yi > xi; then yN Â xN by separability, hence yN ∈ Ξi(yi, yN), hence yi ∈ ξi(yi, yN) Âsup

ξi(xi, yN). On the other hand, for j 6= i, we have ξj(yj, yN) = ξj(xj, yN) since yj = xj. Thus,
yN ÂÂ′ xN (with “t∗ = yN”).

Now let yi < xi; then xN Â yN . To prove that yN ÂÂ′′ xN , it is sufficient to show that
ξj(yj, xN) ºsup ξj(xj, xN) for all j ∈ N . For every j 6= i, we have ξj(yj, xN) = ξj(xj, xN)
since yj = xj. By the monotonicity of Ri, we have zi ≤ yi whenever zi ∈ Ri(z−i) and
z−i Â x−i. Let ξi(xi, xN) Âsup ξi(yi, xN); then, by (4.8d), there is zN ∈ Gi such that
yi < zi ≤ xi and zN º xN , hence z−i º x−i. Clearly, zi ∈ Ri(z−i) is impossible, hence
there must be a sequence 〈zk

N〉k∈N as in (4.7) with strictly decreasing zk
−i, i.e. there must

hold zk
i ∈ Ri(z

k
−i), yi < zk

i < zi, and zk
−i Â z−i; but this is impossible.

Lemmas 3.4 and 3.5 immediately imply that ÂÂ is an ω-potential for S. Theorem 3 is
proved.

Example 5.1 below shows that our rather strong monotonicity condition cannot be
weakened; therefore, the difference between (4.1) and (4.6) reflects some underlying reality.
As to the closed values assumptions in both Theorems 2 and 3, it is very difficult to believe
that they are indispensable; Theorem 5 below shows that they are not needed for additive
aggregation. On the other hand, a relatively simple description of an ω-potential could,
indeed, be impossible without the assumptions.

4.3 Lexicographic aggregation

Theorem 6 of Kukushkin (2003) shows that a proset may have the property that every
increasing endomorphism is Ω-acyclic without the preorder being continuous; in particular,
lexicographic orderings will do. For systems of increasing reactions (even with two players)
the situation is more complicated; no characterization result like that Theorem 6 has yet
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been obtained. The following example shows that a system of two increasing reactions with
chains in a lexicographic order as strategy sets need not be Ω-acyclic.

To the end of this subsection, we only consider single-valued reactions, which we denote
ri : X−i → Xi.

Example 4.1. Let N = {0, 1}, X1 = X2 = [0, 1]× [0, 1] with a lexicographical order

(y1
i , y

2
i ) ºi (x1

i , x
2
i ) ®

[
y1

i > x1
i or [y1

i = x1
i & y2

i ≥ x2
i ]

]
,

and reactions be as follows: r1(0, x
2
2) = (x2

2, 1) if 0 ≤ x2
2 < 1, r1(0, 1) = (1, 0), and

r1(x
1
2, x

2
2) = (1, x1

2) if 0 < x1
2 ≤ 1 and 0 ≤ x2

2 ≤ 1; r2(x
1
1, x

2
1) = (0, (x1

1 + 1)/2) if 0 ≤ x1
1 < 1

and 0 ≤ x2
1 ≤ 1, r2(1, 0) = (0, 1), and r2(1, x

2
1) = (x2

1/2, 0) if 0 < x2
1 ≤ 1. It is easily checked

that both reactions are increasing.

We define an iteration path recursively. First, πN(0) = 〈(1, 0), (0, 0)〉; then, π1(2k+1) =
r1(π2(2k)) = π1(2k + 2), π2(2k + 1) = π2(2k), and π2(2k + 2) = r2(π1(2k + 1)) for all
k ∈ N. It is easily checked that πN(2k + 1) = 〈(1 − 1/2k, 1), (0, 1 − 1/2k)〉 while πN(2k +
2) = 〈(1 − 1/2k, 1), (0, 1 − 1/2k+1)〉; therefore, πN(k) converges to πN(ω) = 〈(1, 1), (0, 1)〉.
Then we define π1(ω + 2k + 1) = π1(ω + 2k), π1(ω + 2k + 2) = r1(π2(ω + 2k + 1)), and
π2(ω + 2k + 1) = r2(π1(ω + 2k)) = π2(ω + 2k + 2) for all k ∈ N. It is easily checked that
πN(ω+2k) = 〈(1, 1/2k), (1/2k, 0)〉 while πN(ω+2k+1) = 〈(1, 1/2k), (1/2k+1, 0)〉; therefore,
πN(ω + k) converges to πN(ω + ω) = 〈(1, 0), (0, 0)〉 = πN(0).

Theorem 4. Let a system of reactions S be defined by N = {1, 2, 3}, compact Xi ⊂ R and
ri : X−i → Xi increasing w.r.t. the separable projection to X−i of the lexicographic order
≥Lex on R3 ⊃ XN . Then S is Ω-acyclic.

Proof. We start with auxiliary notions and statements. Let xN ∈ XN and i ∈ N ; we say
that xi is supported at xN , and denote the fact i ∈ N+(xN), if ri(x−i) ≥ xi. If N+(xN) = N ,
we say that xN is completely supported. The following assertions are checked easily:

yN BS
i xN ⇒ i ∈ N+(yN); (4.10a)

[yN BS
i xN & i ∈ N+(xN)] ⇒ yi > xi; (4.10b)

[yN BS xN & N+(xN) = N ] ⇒ N+(yN) = N. (4.10c)

Let πN be an iteration path for S, defined on Σ = [0, α].

Lemma 4.1. Whenever β′ > β and πN(β) is completely supported, there hold:

N+(πN(β′)) = N ; (4.11a)

∀i ∈ N [πi(β
′) ≥ πi(β)]; (4.11b)

πN is narrow on [β, α]; (4.11c)

∃i ∈ N [πi(β
′) > πi(β)]. (4.11d)
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Proof. Supposing the contrary, we denote β∗ the least β′ ∈ Σ for which there is β < β′

such that πN(β) is completely supported while at least one of (4.11a), (4.11b), or (4.11c)
is violated. If β∗ ∈ Σiso, then (4.11a) holds by (4.10c); (4.11b), as well as (4.11d), holds by
(4.10b); and (4.11c) holds because β∗ ∈ Σiso. Therefore, we must have β∗ ∈ Σlim. Then
(4.11b) for all β < β′ < β∗ immediately implies

πi(β
∗) = sup

β′<β∗
πi(β

′) (4.12)

for each i ∈ N , hence (4.11b) and (4.11c) hold for β′ = β∗. If (4.11a) is violated at β′ = β∗,
we pick i ∈ N such that πi(β

∗) > ri(π−i(β
∗)). By (4.12), there is β′ < β∗ such that

πi(β
′) > ri(π−i(β

∗)); since π−i(β
∗) ≥ π−i(β

′), we have a contradiction with (4.11a) for β′.

Finally, if (4.11a), (4.11b), and (4.11c) hold for all β, β′ ∈ Σ, then (4.11d) holds because
of (4.10b) applied to πN(β + 1) and πN(β), and (4.11b) applied to β + 1 and β′.

Lemma 4.1 immediately implies that no iteration cycle can pass through a completely
supported profile. In the rest of the proof, we assume that πN is an iteration cycle, i.e.,
α > 0 and πN(α) = πN(0), and derive the existence of β ∈ Σ for which πN(β) is completely
supported. This will constitute a contradiction proving the theorem.

We denote Y = cl{πN(β)}β∈Σ ⊆ XN . Since Y is compact, there is a (unique) maximum
of ≥Lex on Y ; we denote it MN . Without restricting generality, we may assume that for
each i ∈ N there is β ∈ Σ such that πN(β + 1) BS

i πN(β): otherwise, we would have a
system of two increasing reactions on continuous chains where everything is crystal clear.
A consequence of the assumption is that, whenever i ∈ N and vi < Mi, there is β ∈ Σ such
that vi < πi(β) = ri(π−i(β)).

Lemma 4.2. MN is completely supported.

Proof. Supposing ri(M−i) < Mi for an i ∈ N , we consider two alternatives. If there is
β ∈ Σ such that Mi ≤ πi(β) = ri(π−i(β)), then we obviously have π−i(β) >Lex M−i,
hence πN(β) >Lex MN , which contradicts the definition of MN . Otherwise, we can pick an
infinite sequence 〈βk〉k∈N such that πi(β

0) > ri(M−i), πi(β
k) = ri(π−i(β

k)) and πi(β
k+1) >

max{πi(β
k),Mi−1/k} for each k ∈ N. Then π−i(β

0) >Lex M−i, and π−i(β
k+1) >Lex π−i(β

k)
for each k ∈ N. Picking an arbitrary limit point yN of the sequence 〈πN(βk)〉k∈N, we
obviously have yi = Mi and y−i >Lex M−i, hence yN >Lex MN , which again contradicts the
definition of MN because yN ∈ Y .

Remark. For i = 3, the infinite sequence is superfluous: just β0 is enough.

Lemma 4.3. There is either β ∈ Σ for which πN(β) = MN , or an infinite sequence βk

such that βk+1 > βk and πN(βk) → MN .

Proof. Let MN 6= πN(β) for any β ∈ Σ. Then there must be an infinite sequence of γh ∈ Σ
such that πN(γh) → MN . We pick κ(0) ∈ N such that γκ(0) = minh∈N γh. Then we
recursively, for k = 0, 1, . . . , define Bk = {γh | h > κ(k) & γh > γκ(k) } [Bk 6= ∅ because
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MN 6= πN(γh) for any h ∈ N ] and pick κ(k + 1) such that γκ(k+1) = min Bk. Finally,
we define βk = γκ(k); now βk+1 > βk by definition, and βk → MN because 〈βk〉k is a
subsequence of 〈γh〉h.

If the first alternative in Lemma 4.3 holds, then Lemma 4.2 applies; therefore, we may
assume that Σ is infinite and the second alternative in Lemma 4.3 holds. Since we can
start the cycle anyplace, we may assume that supk βk = α.

For any i ∈ N , β ∈ Σ, and vi ∈ R, we denote

Pi(β, vi) = {γ ∈ Σ | γ > β & πi(γ) > vi}.

Whenever Pi(β, vi) 6= ∅, we define τ i(β, vi) = min Pi(β, vi); the minimum exists because Σ
is well ordered.

Lemma 4.4. Whenever β ∈ Σ and π1(β) < v1 < M1, there hold:

P1(β, v1) 6= ∅; (4.13a)

π1(τ
1(β, v1)) = r1(π−1(τ

1(β, v1))); (4.13b)

i ∈ N \N+(πN(τ 1(β, v1))) ⇒
[
πi(·) is a constant on [β, τ 1(β, v1)]

]
; (4.13c)

N+(πN(β)) ⊆ N+(πN(τ 1(β, v1))); (4.13d)

N+(πN(β)) = N+(πN(τ 1(β, v1))) ⇒
[
N+(πN(·)) is a constant on [β, τ 1(β, v1)]

]
; (4.13e)

N+(πN(β)) = N+(πN(τ 1(β, v1))) ⇒ ∀i ∈ N
[
πi(·) is increasing on [β, τ 1(β, v1)]

]
. (4.13f)

Proof. (4.13a) and (4.13b) are obvious. To prove (4.13c), we suppose to the contrary that
ri(π−i(τ

1(β, v1))) < πi(τ
1(β, v1)) 6= πi(β

′) and β ≤ β′ < τ 1(β, v1). We denote B = {γ ∈
[β′, τ 1(β, v1)] | πi(β

′) 6= πi(γ) > ri(π−i(τ
1(β, v1))) } 3 τ 1(β, v1) and β∗ = min B. Clearly,

πi(β
∗) = ri(π−i(β

∗)), hence π−i(β
∗) >Lex π−i(τ

1(β, v1)), hence π1(β
∗) ≥ π1(τ

1(β, v1)) >
π1(β), hence β∗ ∈ P1(β), hence β∗ = τ 1(β, v1), hence πi(β

∗) > ri(π−i(β
∗)): a contradiction.

If i ∈ N \ N+(πN(τ 1(β, v1))), then πi(τ
1(β, v1)) > ri(π−i(τ

1(β, v1))) ≥ ri(π−i(β)) be-
cause π1(τ

1(β, v1)) > π1(β); therefore, i ∈ N \N+(πN(β)). Thus, (4.13d) holds. Now both
(4.13e) and (4.13f) follow from Lemma 4.1 applied to the reduced system with N+(πN(β))
as the set of players.

Now we define a sequence βk
1 in Σ recursively. First, we define β0

1 = min{β ∈ Σ | π1(β) <
M1}. Whenever βk

1 is defined and π1(β
k
1 ) < M1, we define βk+1

1 = τ 1(βk
1 ,M1/2+π1(β

k
1 )/2).

If βk
1 is defined and π1(β

k
1 ) = M1, we stop the process and denote α1 = βk

1 . Finally, if βk
1 is

defined for all k ∈ N, we denote α1 = supk∈N βk
1 ; clearly, supk∈N π1(β

k
1 ) = M1 in this case.

Lemma 4.5. There hold π1(α1) = M1 and 1 ∈ N+(πN(α1)).

Proof. If α1 was reached at a finite step, both statements are obvious. Let βk
1 be defined

for all k ∈ N, hence α1 = supk∈N βk
1 . By (4.13d), we have N+(πN(βk

1 )) = N∗ for all k ≥ k̄;
by (4.13b), 1 ∈ N∗; by (4.13c), πi(·) is a constant on [β k̄

1 , α1[, hence a constant on [β k̄
1 , α1],
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for each i ∈ N \N∗. Now Lemma 4.1, applied to the reduced system with N∗ as the set of
players, gives us both statements.

If α1 = α, then πN(α1) = MN by (4.11c) in the reduced system, hence Lemma 4.2
applies; let α1 < α. If πN(α1) is completely supported, we are home. Let i ∈ N \
N+(πN(α1)) 6= ∅; we denote j = 5− i.

A. Let πi(α1) < Mi; then β∗ = τ i(α1, πi(α1)) is well defined. We have πi(β
∗) =

ri(π−i(β
∗)) as in (4.13b), hence i ∈ N+(πN(β∗)), π1(β

∗) = M1, and πj(β
∗) > πj(α1);

further, 1 ∈ N+(πN(β∗)) because π−1(β
∗) >Lex π−1(α1); finally, j ∈ N+(πN(β∗)) as in

(4.13c) because πj(·) is not a constant on [α1, β
∗]. Thus, πN(β∗) is completely supported.

B. Now let πi(α1) ≥ Mi; then πj(α1) < Mj by the definition of MN , hence j ∈
N+(πN(α1)) by Lemma 4.2. It is convenient to consider the cases i = 2 and i = 3 separately.

B1. Let i = 2; then π2(α1) = M2 > r2(π−2(α1)), hence β0
2 = τ 2(α1, r2(π−2(α1)) is well

defined. We have π2(β
0
2) = r2(π−2(β

0
2)) as in (4.13b), hence 2 ∈ N+(πN(β0

2)), π1(β
0
2) = M1

and π3(β
0
2) > π3(α1); moreover, 3 ∈ N+(πN(β0

2)) as in (4.13c) because π3(·) is not a
constant on [α1, β

0
2 ]. If 1 ∈ N+(πN(β0

2)), then πN(β0
2) is completely supported and we are

home.

Let 1 /∈ N+(πN(β0
2)). Then π1(·) is a constant (M1) on [α1, β

0
2 ] as in (4.13c). Now we

define a sequence βk
2 in Σ recursively, similar to βk

1 above. Whenever βk
2 is defined and

π2(β
k
2 ) < M2, we define βk+1

2 = τ 2(βk
2 ,M2/2 + π2(β

k
2 )/2). As in the case of βk

1 , we always
have {2, 3} ⊆ N+(πN(βk

2 )). If 1 ∈ N+(πN(βk
2 )), we are home; otherwise π1(·) is a constant

(M1) on [α1, β
k
2 ] as in (4.13c). Once we have reached π2(α2) = M2, with either α2 = βk

2 for
some k ∈ N, or α2 = supk∈N βk

2 , we do have 1 ∈ N+(πN(α2)) because π−1(α2) >Lex π−1(α1).

B2. Let i = 3; then we consider two alternatives.

B2a. Let P3(α1, r3(π−3(α1))) 6= ∅, hence β∗ = τ i(α1, r3(π−3(α1)) is well defined. Then
πN(β∗) is completely supported for exactly the same reasons as in A above: π3(β

∗) =
r3(π−3(β

∗)) as in (4.13b), hence 3 ∈ N+(πN(β∗)), π1(β
∗) = M1 and π2(β

∗) > π2(α1);
further, 1 ∈ N+(πN(β∗)) because π−1(β

∗) >Lex π−1(α1), while 2 ∈ N+(πN(β∗)) as in
(4.13c) because π2(·) is not a constant on [α1, β

∗].

B2b. Finally, let P3(α1, r3(π−3(α1))) = ∅; then π3(α) ≤ r3(π−3(α1)), hence r3(π−3(α1)) ≥
M3. Since π3(0) = π3(α), we have P3(0, r3(π−3(α1))) 3 α1, hence β∗ = τ 3(0, r3(π−3(α1)))
is well defined and π3(β

∗) = r3(π−i(β
∗)). Again, π1(β

∗) = M1 and π2(β
∗) > π2(α1);

again, 1 ∈ N+(πN(β∗)) because π−1(β
∗) >Lex π−1(α1). Finally, 2 ∈ N+(πN(β∗)) because

π3(β
∗) > M3. Thus, πN(β∗) is completely supported.

Most likely, similar arguments work for #N > 3 (most auxiliary statements are valid
for arbitrary finite N) and for multi-valued reactions (under an appropriate interpretation
of monotonicity); probably, simple lexicography can be replaced with, say, leximax. The
prospects for a similar approach to arbitrary separable aggregation are unclear. Even
more intriguing is the question of whether this proof can be made applicable to decreasing
reactions, in which case a new fixed point theorem would be obtained.
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5 Reciprocal polylinear aggregates

5.1 Formulation

A system of reactions with reciprocal quasi-polylinear aggregates (an RQPLA system) is
characterized by these assumptions: each Xi is simultaneously a proset and a metric space;
there is a continuous and strictly increasing mapping νi : Xi → R for each i ∈ N ; Ri = Ri◦σi

for every i ∈ N , where

σi(x−i) =
n−1∑

h=1

∑

j1,...,jh∈N\{i}
jh′ 6=jh′′ (h

′ 6=h′′)

α
(h)
ij1...jh

× νj1(xj1)× · · · × νjh
(xjh

), (5.1)

and Ri : Si → Bi for Si = σi(X−i) ⊆ R; each α
(h)
i0i1...ih

is invariant under all permutations of
i0, i1, . . . , ih.

For each i ∈ N , we also impose a monotonicity condition:

∀s′i, si ∈ Si [s
′
i > si ⇒ Ri(s

′
i) º∗ Ri(si)], (5.2)

where º∗ is defined by (3.4c).

Theorem 5. Every RQPLA system where every mapping Ri satisfies (5.2) is Ω-acyclic.

Remark. There is no requirement on concord between topology and preorder on each Xi

beyond the existence of a continuous and strictly increasing function.

The proof is deferred to Subsection 5.2.

Condition (5.2) is rather strong. For instance, if Xi is a lattice, it implies that Ri is
ascending, whereas the converse implication does not hold even if Xi is a chain. However,
there seems to be no way to relax the condition while preserving the theorem.

Example 5.1. Let N = {1, 2, 3}, X1 = {0, 1, 2, 3, 4}, X2 = {0, 1, 2, 3, 4, 5}, X3 = {0, 1},
σi(x−i) = −xj−xk, hence S1 = {0,−1, . . . ,−6}, S2 = {0,−1, . . . ,−5}, and S3 = {0,−1, . . .
,−9}. Let R1(−6) = {0}, R1(s1) = {1, 2, 3} for −5 ≤ s1 ≤ −1, R1(0) = {4}, R2(s2) = {0}
for s2 < −2, R2(s2) = {5} for s2 ≥ −2, R3(s3) = {0} for s3 < −4, and R3(s3) = {1} for
s3 ≥ −4. Condition (5.1) holds with identity mappings as νi; (5.2) holds for i = 2 and
i = 3, but not for i = 1 although R1 is ascending. There is an iteration cycle:

(3, 0, 0)
1−−−→ (4, 0, 0)

3−−−→ (4, 0, 1)
1−−−→ (1, 0, 1)x2

y2

(3, 5, 0)
1←−−− (0, 5, 0)

3←−−− (0, 5, 1)
1←−−− (1, 5, 1)

.

The theorem also becomes wrong if νi : Xi → R are not strictly increasing.

21



Example 5.2. Let N = {1, 2, 3} and, for each i ∈ N , Xi = {0, 1, 2, 3}, νi(0) = νi(1) = 0,
νi(2) = νi(3) = 1, σi(x−i) = −νj(xj) − νk(xk) (hence Si = {−2,−1, 0}), Ri(−2) = {0},
Ri(−1) = {1, 2}, and Ri(0) = {3}. Both (5.1) and (5.2) are satisfied. However, there is an
iteration cycle:

(2, 3, 1)
3−−−→ (2, 3, 0)

2−−−→ (2, 1, 0)
1−−−→ (3, 1, 0)

3−−−→ (3, 1, 2)
2−−−→ (3, 0, 2)x1

y1

(0, 3, 1)
2←−−− (0, 2, 1)

3←−−− (0, 2, 3)
1←−−− (1, 2, 3)

2←−−− (1, 0, 3)
3←−−− (1, 0, 2)

.

Theorem 5 admits a straightforward application to the best responses in a strategic game
where each utility function satisfies ui(xN) = Ui(σi(x−i), xi) for all i ∈ N and xN ∈ XN ,
where each σi : X−i → R is defined by (5.1) with strictly increasing mappings νi : Xi → R
and each α

(h)
i0i1...ih

invariant under all permutations of i0, i1, . . . , ih. The standard argument
(Milgrom and Shannon, 1994; Topkis, 1998) shows that the following strict single crossing
condition is sufficient for (5.2):

[x′i > xi & s′i > si & Ui(si, x
′
i) ≥ Ui(si, xi)] ⇒ Ui(s

′
i, x

′
i) > Ui(s

′
i, xi) (5.3)

for all i ∈ N , x′i, xi ∈ Xi, and s′i, si ∈ Si. The condition (5.3) cannot be called either
strategic substitutes or strategic complements because si = σi(x−i) can be either decreasing
or increasing in each xj, depending on α’s and perhaps on the other players’ choices;
“strategic supplements” may be an appropriate term.

If α
(m)
i0i1...im

= 0 for m > 1 and α
(1)
ij = 1, we obtain a game with strict strategic com-

plements and additive aggregation; here Theorem 5 gives a result similar to Theorem 2,
with stronger monotonicity conditions, but without the closed values assumption. For fi-
nite games from the class, the acyclicity of best response improvements was established
in Kukushkin (2004a, Theorem 1), under even weaker monotonicity conditions (6.2a). If

α
(m)
i0i1...im

= 0 for m > 1, while α
(1)
ij = −1, we obtain a game with strict strategic substitutes

and additive aggregation; here, again, Theorem 5 requires a bit less than Theorem 3. For
finite games from the class, either theorem is equivalent to Theorem 2 from Kukushkin
(2004a).

Example 5.3. Each player owns a small business in an area. The decision problem for
each of them is how much lighting, xi, to provide at her location at night. The higher
xi, the higher expenses; on the other hand, the more light, the lower insurance costs.
There is a positive externality effect: each player’s lamps add something to the light at
other lots. It seems reasonable to assume that insurance costs decrease in xi +

∑
j 6=i αijxj,

where 0 ≤ αij < 1. Each coefficient αij depending primarily on the distance between i’s
and j’s locations, the reciprocity condition, αij = αji, seems natural. If we assume the
insurance-cost-reduction effect of light to be subject to strictly diminishing returns, then
(5.2) becomes valid, for σi(x−i) = −∑

j 6=i αijxj, regardless of the production costs.

Theorem 5 implies that the game possesses a Nash equilibrium and the behavior of best
response improvements is nice enough. In particular, if we assume that only a finite number
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of xi’s are technologically feasible, then every best response improvement path reaches an
equilibrium in a finite number of steps. It is impossible to derive either statement from the
previous literature.

Example 5.4. The players are music fans living in the same apartment block. Each player
chooses the volume xi of his own music, the others providing a negative externality, noise,∑

j 6=i αijxj (0 ≤ αij < 1). It seems reasonable to assume αij = αji and that each player’s
optimal volume increases in the outside noise. The existence of an equilibrium, certainly,
follows from Tarski’s fixed point theorem, but the acyclicity of best response improvements
can only be derived from our Theorem 5.

Remark. Generally, linear aggregates as in Examples 5.3 and 5.4 are not separable pro-
jections to X−i of the same ordering on XN .

I am as yet unprepared to produce specific models with more general aggregates al-
lowed by Theorem 5, but such aggregates do not seem redundant. For instance, α

(1)
ij of

different signs could appear in a monopolistic competition model if xi describes the level
of advertising by firm i. It seems natural to expect strategic complementarity, α

(1)
ij > 0,

when the products of the two firms are substitutes, strategic substitutability, α
(1)
ij < 0,

when the products are complements, and “strategic indifference,” α
(1)
ij = 0, when they are

independent.

The possibility to include nonlinear terms, in principle, widens the scope of potential
applications. It must be admitted, though, that the interpretation of nonlinear aggregation
in the style of Examples 5.3 and 5.4 meets with difficulties. For instance, α

(2)
ijk 6= 0 means

that the externalities produced at locations j and k interact nonlinearly between them-
selves when they affect location i; however, similar nonlinear interaction with xi would be
incompatible with (5.1).

5.2 Proof

For every i ∈ N , we denote Wi = νi(Xi) ⊆ R and define νN : WN =
∏

i∈N Wi → XN by
νN(xN) = 〈νi(xi)〉i∈N . For every t ∈ R, we denote Ξi(t) = {si ∈ Si | si > t} and define
r+
i (t) = inf

⋃
si∈Ξi(t)

νi

(
Ri(si)

)
if Ξi(t) 6= ∅ and r+

i (t) = sup
⋃

si∈Si
νi

(
Ri(si)

)
otherwise;

r−i (t) = supt′<t r
+
i (t′). Condition (5.2) implies that r−i (t) ≤ r+

i (t); by definition, r−i (t′) ≥
r+
i (t) whenever t′ > t. Therefore, r+

i (t) = r−i (t) for all t ∈ R except for a countable subset.
We also define R̄i(t) = [r−i (t), r+

i (t)]; clearly, νi(xi) ∈ R̄i(si) whenever xi ∈ Ri(si).

We denote s+∞
i = inf{t ∈ R | r+

i (t) = +∞} [= inf{t ∈ R | r−i (t) = +∞}], and
s−∞i = sup{t ∈ R | r−i (t) = −∞} [= sup{t ∈ R | r+

i (t) = −∞}]. Clearly, s−∞i ≤ s+∞
i ;

an equality implies #Si = 1, i.e., player i does not react to anything and may be deleted.
In the following, we assume s−∞i < s+∞

i for all i ∈ N . For every i ∈ N and m ∈ N, we
define functions s+

i (m) and s−i (m) in a rather complicated way. If s+∞
i = +∞, we set

s+
i (m) = max{s−∞i ,m}; if s+∞

i ∈ Si (in which case, s+∞
i = max Si and r+

i (s+∞
i ) = +∞ ),
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we set s+
i (m) = s+∞

i ; if +∞ > s+∞
i = sup Si /∈ Si, we set s+

i (m) = max{s−∞i , s+∞
i −

(1/m)}. Similarly, s−i (m) = min{s+∞
i ,−m} whenever s−∞i = −∞, s−i (m) = s−∞i whenever

s−∞i ∈ Si, and s−i (m) = min{s+
i (m), s−∞i + (1/m)} whenever −∞ < s−∞i = inf Si /∈ Si.

Those definitions ensure that s−i (m) ≤ s+
i (m) and that −∞ < r+

i (t) < +∞ whenever
s−i (m) < t < s+

i (m).

If each Xi is bounded (hence so is each Si), we have s+∞
i = +∞ and s−∞i = −∞,

hence s+
i (m) = m and s−i (m) = −m for all m ∈ N. In this case, much of the following

becomes superfluous: There is m ∈ N such that Si ⊂ [−m,m] for each i ∈ N ; Lemma 5.1
holds for this m and every i ∈ N and si ∈ Si; instead of a sequence 〈P (m)(νN(xN))〉m∈N,
we may consider just one function P (m), which is obviously continuous, hence Lemma 5.2
is redundant. From a “pragmatic” viewpoint, a compactness assumption in Theorem 5
looks natural because otherwise Ω-acyclicity does not imply even the existence of a fixed
point. Nonetheless, since the theorem is valid as stated, it seemed worthwhile to develop
an appropriate proof. (Generally, a binary relation may be Ω-acyclic on every compact
subset of its domain without being Ω-acyclic on the domain itself.)

For every i ∈ N , wi ∈ Wi, wN ∈ WN , and m ∈ N, we define these functions:

F
(m)
i (wi) =

∫ s+
i (m)

s−i (m)

min{wi, r
+
i (t)} dt − s+

i (m) · wi; (5.4)

Q(wN) =
n−1∑

h=1

∑
i0,i1,...,ih∈N

ih′ 6=ih′′ (h
′ 6=h′′)

1

h + 1
α

(h)
i0i1...ih

× wi0 × wi1 × · · · × wih ; (5.5)

P (m)(wN) = Q(wN) +
∑
i∈N

F
(m)
i (wi). (5.6)

We denote P (wN) = 〈P (m)(wN)〉m∈N and define two binary relations:

P (w′
N) Â∞ P (wN) ® ∃m̄ ∈ N∀m > m̄ [P (m)(w′

N) > P (m)(wN)];

P (w′
N) ∼∞ P (wN) ® ∃m̄ ∈ N ∀m > m̄ [P (m)(w′

N) = P (m)(wN)].

Let si ∈ Si and m ∈ N. We say that m is proper for si if these two conditions hold:
either si > s−i (m) or si = s−∞i = s−i (m); either si < s+

i (m) or si = s+∞
i = s+

i (m).

Lemma 5.1. Let yN BS
i xN , s̄i = σi(x−i) = σi(y−i), and m be proper for s̄i. Then

P (m)(νN(yN)) ≥ P (m)(νN(xN)); besides, P (m)(νN(yN)) = P (m)(νN(xN)) if and only if
νi(xi) ∈ R̄i(s̄i).

Proof. For every wi ∈ Wi, we have

F
(m)
i (wi) =

∫ s̄i

s−i (m)

min{wi, r
+
i (t)} dt +

∫ s+
i (m)

s̄i

min{wi, r
+
i (t)} dt − s+

i (m) · wi =

∫ s̄i

s−i (m)

min{wi, r
+
i (t)} dt +

∫ s+
i (m)

s̄i

min{r+
i (t)− wi, 0} dt − s̄i · wi; (5.7)
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therefore,

F
(m)
i (wi) =

∫ s̄i

s−i (m)

r+
i (t) dt − s̄i · wi (5.8)

whenever wi ∈ R̄i(s̄i). Since yi ∈ Ri(s̄i), (5.8) holds for wi = νi(yi). If wi < r−i (s̄i), which
is only possible if s̄i > s−i (m), then

F
(m)
i (wi) <

∫ s̄i

s−i (m)

r+
i (t) dt − s̄i · wi (5.9)

because the first additive term in (5.7) is strictly less than in (5.8), while the second is still
zero. If wi > r+

i (s̄i), which is only possible if s̄i < s+
i (m), then again (5.9) holds because

now the first additive term in (5.7) is the same as in (5.8), but the second is strictly negative.

Combining the terms containing νi(xi) (respectively, νi(yi)) and taking into account that
x−i = y−i, we obtain Q(νN(xN)) = s̄i · νi(xi) + q(x−i) and Q(νN(yN)) = s̄i · νi(yi) + q(x−i).
Therefore,

P (m)(νN(yN)) =

∫ s̄i

s−i (m)

r+
i (t) dt + q(x−i) +

∑

j 6=i

F
(m)
j (νj(xj)) (5.10)

by (5.8). Simultaneously, (5.8) and (5.9) imply that

P (m)(νN(xN)) ≤
∫ s̄i

s−i (m)

r+
i (t) dt + q(x−i) +

∑

j 6=i

F
(m)
j (νj(xj)) (5.11)

with an equality if and only if νi(xi) ∈ R̄i(s̄i). Now both statements of the lemma imme-
diately follow from (5.10) and (5.11).

Lemma 5.2. Let xk
N → xω

N and, for each k ∈ N, there hold P (m)(νN(xk+1
N )) ≥ P (m)(νN(xk

N))
for all m ∈ N except for a finite number of them. Then either P (νN(xω

N)) Â∞ P (νN(x0
N))

or P (νN(xω
N)) ∼∞ P (νN(x0

N)).

Proof. For each i ∈ N , we denote

W̄i = conv
⋃

si∈Si

νi

(
Ri(si)

)
;

for each k ∈ N,
N0(k) = {i ∈ N | νi(x

k
i ) ∈ W̄i};

N++(k) = {i ∈ N | ∀wi ∈ W̄i [νi(x
k
i ) > wi]};

N−−(k) = {i ∈ N | ∀wi ∈ W̄i [νi(x
k
i ) < wi]}.

Without restricting generality, the argument k in each of the three sets can be dropped.
We partition N0 into three subsets:

N00 = {i ∈ N0 | νi(x
ω
i ) ∈ W̄i};

25



N+ = {i ∈ N0 | ∀wi ∈ W̄i [νi(x
ω
i ) > wi]};

N− = {i ∈ N0 | ∀wi ∈ W̄i [νi(x
ω
i ) < wi]}.

Note that s+∞
i = +∞ for each i ∈ N+ ∪N++ while s−∞i = −∞ for each i ∈ N− ∪N−−.

We pick m∗ ∈ N such that: (1) s−∞i < m∗ = s+
i (m∗) for all i ∈ N+ ∪ N++; (2)

s−i (m∗) = m∗ < s+∞
i for all i ∈ N− ∪N−−; (3) r−i (s−i (m∗)) ≤ νi(x

k
i ), νi(x

ω
i ) ≤ r+

i (s+
i (m∗))

for all i ∈ N00 and all k ∈ N; (4) r−i (s−i (m∗)) ≤ νi(x
k
i ) < νi(x

ω
i ) for all i ∈ N+ and all

k ∈ N; (5) νi(x
ω
i ) < νi(x

k
i ) ≤ r+

i (s+
i (m∗)) for all i ∈ N− and all k ∈ N. Clearly, the same

inequalities hold for all m > m∗.

Let m′ > m ≥ m∗ and k′ > k. If i ∈ N00, we have

F
(m′)
i (νi(x

k
i ))− F

(m)
i (νi(x

k
i )) =

∫ s−i (m)

s−i (m′)
r+
i (t) dt, (5.12)

hence
F

(m′)
i (νi(x

k′
i ))− F

(m′)
i (νi(x

k
i )) = F

(m)
i (νi(x

k′
i ))− F

(m)
i (νi(x

k
i )). (5.13)

Let i ∈ N+ ∪ N++; by the choice of m∗, s+
i (m) = m and s+

i (m′) = m′. Similarly to
(5.12), we obtain

F
(m′)
i (νi(x

k
i ))− F

(m)
i (νi(x

k
i )) =

∫ s−i (m)

s−i (m′)
r+
i (t) dt +

∫ m′

m

min{r+
i (t)− νi(x

k
i ), 0} dt; (5.14)

therefore,

[F
(m′)
i (νi(x

k′
i ))− F

(m′)
i (νi(x

k
i ))]− [F

(m)
i (νi(x

k′
i ))− F

(m)
i (νi(x

k
i ))] =

[F
(m′)
i (νi(x

k′
i ))− F

(m)
i (νi(x

k′
i ))]− [F

(m′)
i (νi(x

k
i ))− F

(m)
i (νi(x

k
i ))] =

∫ m′

m

[
min{r+

i (t)− νi(x
k′
i ), 0} −min{r+

i (t)− νi(x
k
i ), 0}

]
dt. (5.15)

In particular,

[F
(m′)
i (νi(x

k+1
i ))− F

(m′)
i (νi(x

k
i ))]− [F

(m)
i (νi(x

k+1
i ))− F

(m)
i (νi(x

k
i ))] =

(m′ −m) · [νi(x
k
i )− νi(x

k+1
i )] (5.16)

for each i ∈ N++. For each i ∈ N+, we may, without restricting generality, assume
νi(x

k
i ) < νi(x

k+1
i ) for all k ∈ N, hence

[F
(m′)
i (νi(x

k′
i ))− F

(m′)
i (νi(x

k
i ))]− [F

(m)
i (νi(x

k′
i ))− F

(m)
i (νi(x

k
i ))] =

∫ m′

m

min{max{r+
i (t), νi(x

k
i )} − νi(x

k′
i ), 0} dt ≤ 0. (5.17)
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Let i ∈ N− ∪ N−−; by the choice of m∗, s−i (m) = −m and s−i (m′) = −m′. This time,
we obtain

F
(m′)
i (νi(x

k
i ))− F

(m)
i (νi(x

k
i )) =

∫ −m

−m′
min{r+

i (t), νi(x
k
i )} dt; (5.18)

therefore,

[F
(m′)
i (νi(x

k′
i ))− F

(m′)
i (νi(x

k
i ))]− [F

(m)
i (νi(x

k′
i ))− F

(m)
i (νi(x

k
i ))] =∫ −m

−m′

[
min{r+

i (t), νi(x
k′
i )} −min{r+

i (t), νi(x
k
i )}

]
dt. (5.19)

In particular,

[F
(m′)
i (νi(x

k+1
i ))− F

(m′)
i (νi(x

k
i ))]− [F

(m)
i (νi(x

k+1
i ))− F

(m)
i (νi(x

k
i ))] =

(m′ −m) · [νi(x
k+1
i )− νi(x

k
i )] (5.20)

for each i ∈ N−−. For each i ∈ N−, we may, without restricting generality, assume
νi(x

k+1
i ) < νi(x

k
i ) for all k ∈ N, hence

[F
(m′)
i (νi(x

k′
i ))− F

(m′)
i (νi(x

k
i ))]− [F

(m)
i (νi(x

k′
i ))− F

(m)
i (νi(x

k
i ))] =∫ −m

−m′
min{νi(x

k′
i )−min{r+

i (t), νi(x
k
i )}, 0} dt ≤ 0. (5.21)

For each k ∈ N, we denote

∆k =
∑

i∈N++

[νi(x
k
i )− νi(x

k+1
i )] +

∑

i∈N−−
[νi(x

k+1
i )− νi(x

k
i )];

∆ω =
∑

i∈N++

[νi(x
0
i )− νi(x

ω
i )] +

∑

i∈N−−
[νi(x

ω
i )− νi(x

0
i )] =

∑

k∈N
∆k.

Step 5.2.1. ∆k ≥ 0 for each k ∈ N.

Proof. Fixing k ∈ N, we pick m̄ ≥ m∗ such that r+
i (s+

i (m̄)) ≥ νi(x
k+1
i ) > νi(x

k
i ) for each

i ∈ N+ and r+
i (s−i (m̄)) ≤ νi(x

k+1
i ) < νi(x

k
i ) for each i ∈ N−. It is immediately seen from

(5.13), (5.17), and (5.21) that

F
(m)
i (νi(x

k+1
i ))− F

(m)
i (νi(x

k
i )) = F

(m̄)
i (νi(x

k+1
i ))− F

(m̄)
i (νi(x

k
i ))

for all m > m̄ and i ∈ N0. Taking into account (5.16) and (5.20), we obtain

P (m)(νN(xk+1
N ))− P (m)(νN(xk

N)) = P (m̄)(νN(xk+1
N ))− P (m̄)(νN(xk

N)) + (m− m̄) ·∆k.

If ∆k < 0, then P (m)(νN(xk+1
N )) < P (m)(νN(xk

N)) for all m ∈ N large enough, contradicting
the assumptions of the lemma.
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It follows immediately that ∆ω ≥ 0 as well.

Step 5.2.2. If ∆ω > 0, then P (νN(xω
N)) Â∞ P (νN(x0

N)).

Proof. For each i ∈ N+ ∪ N−, we pick w̄i ∈ W̄i such that νi(x
0
i ) ≤ w̄i for each i ∈ N+,

νi(x
0
i ) ≥ w̄i for each i ∈ N−, and

∑
i∈N+ [νi(x

ω
i )− w̄i] +

∑
i∈N− [w̄i − νi(x

ω
i )] ≤ ∆ω/2. Then

we pick m∗∗ > m∗ such that r+
i (m∗∗) ≥ w̄i for each i ∈ N+, and r+

i (−m∗∗) ≤ w̄i for each
i ∈ N−. Finally, we pick m̄ ∈ N such that

m̄ ≥ max{m∗∗,m∗∗ − 2[P (m∗∗)(νN(xω
N))− P (m∗∗)(νN(x0

N))]/∆ω}. (5.22)

For each m > m∗∗ and i ∈ N , we denote

∆
(m)
i = F

(m)
i (νi(x

ω
i ))− F

(m∗∗)
i (νi(x

ω
i ))− F

(m)
i (νi(x

0
i )) + F

(m∗∗)
i (νi(x

0
i )).

Clearly,

P (m)(νN(xω
N))− P (m)(νN(x0

N)) = P (m∗∗)(νN(xω
N))− P (m∗∗)(νN(x0

N)) +
∑
i∈N

∆
(m)
i . (5.23)

If i ∈ N00, then ∆
(m)
i = 0 by (5.13). If i ∈ N+, then r+

i (m∗∗) ≥ w̄i, hence (5.17) implies

∆
(m)
i ≥ (m∗∗ − m)[νi(x

ω
i ) − w̄i]; if i ∈ N−, then r+

i (−m∗∗) ≤ w̄i, hence (5.21) implies

∆
(m)
i ≥ (m∗∗ −m)[w̄i − νi(x

ω
i )]. Therefore,

∑
i∈N+∪N− ∆

(m)
i ≥ (m∗∗ −m)∆ω/2. By (5.16)

and (5.20),
∑

i∈N++∪N−− ∆
(m)
i = (m − m∗∗)∆ω. Now P (m)(νN(xω

N)) − P (m)(νN(x0
N)) > 0

immediately follows from (5.23), (5.22), and m > m̄.

Now let us suppose that ∆ω = 0, hence ∆k = 0 for each k, hence players from N++∪N−−

can be forgotten about.

Step 5.2.3. For each m > m̄, P (m)(νN(xω
N)) ≥ P (m)(νN(x0

N)).

Proof. Suppose the contrary; since P (m)(νN(·)) is continuous, we have P (m)(νN(xk
N)) <

P (m)(νN(x0
N)) for all k large enough. Let m′ > m; if i ∈ N00, we have F

(m′)
i (νi(x

k
i )) −

F
(m′)
i (νi(x

0
i )) = F

(m)
i (νi(x

k
i ))−F

(m)
i (νi(x

0
i )) by (5.13); if i ∈ N+∪N−, then F

(m′)
i (νi(x

k
i ))−

F
(m′)
i (νi(x

0
i )) ≤ F

(m)
i (νi(x

k
i ))−F

(m)
i (νi(x

0
i )) by (5.17) or (5.21). Therefore, P (m′)(νN(xk

N)) <
P (m′)(νN(x0

N)) for all m′ > m, which contradicts the assumptions of the lemma.

Finally, if N+ ∪ N− = ∅, then P (m)(νN(xω
N)) − P (m)(νN(x0

N)) is the same for all
m > m∗ by (5.13); if it is zero, we have P (νN(xω

N)) ∼∞ P (νN(x0
N)); if it is strictly pos-

itive, P (νN(xω
N)) Â∞ P (νN(x0

N)). Whenever i ∈ N+ ∪ N−, F
(m)
i (νi(x

ω
i )) − F

(m)
i (νi(x

0
i ))

strictly decreases in m > m∗ by (5.17) or (5.21), hence it must be strictly positive, hence
P (νN(xω

N)) Â∞ P (νN(x0
N)) again.
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To construct an ω-potential, we lexicographically complement the sequence of functions
P (m) with binary relations on each Xi. For each i ∈ N , yi, xi ∈ Xi, xN ∈ XN , we define:

yi BBi xi ® ∃s̄i ∈ Si

[
xi /∈ Ri(s̄i) 3 yi & νi(xi) ∈ R̄i(s̄i)]

]

(in the following, we say “yi BBi xi holds with si = s̄i”);

yi BB∼
i xi ® [yi BBi xi & νi(yi) = νi(xi)];

yi BB+
i xi ® [yi BBi xi & νi(yi) ≥ νi(xi)];

yi BB++
i xi ® [yi BBi xi & νi(yi) > νi(xi)];

yi BB−
i xi ® [yi BBi xi & νi(yi) ≤ νi(xi)];

yi BB−−
i xi ® [yi BBi xi & νi(yi) < νi(xi)];

ÂÂ+
i and ÂÂ−i are ω-transitive closures of BB+

i and BB−
i , respectively;

yi ÂÂ++
i xi ® [yi ÂÂ+

i xi & νi(yi) > νi(xi)];

yi ÂÂ−−i xi ® [yi ÂÂ−i xi & νi(yi) < νi(xi)];

yi ÂÂi xi ® [yi ÂÂ++
i xi or yi ÂÂ−−i xi or yi BB∼

i xi];

yN ÂÂ xN ® ∀i ∈ N [yi = xi or yi ÂÂi xi] & ∃i ∈ N [yi ÂÂi xi];

yN ÂÂÂ xN ®
[
P (νN(yN)) Â∞ P (νN(xN)) or [P (νN(yN)) ∼∞ P (νN(xN)) & yN ÂÂ xN ]

]
.

Lemma 5.3. If yN BS xN , then yN ÂÂÂ xN .

Proof. Let yN BS
i xN and s̄i = σi(x−i). Clearly, all m ∈ N are proper for s̄i except for a

finite number of them. If νi(xi) /∈ R̄i(s̄i), then P (νN(yN)) Â∞ P (νN(xN)) by Lemma 5.1,
hence yN ÂÂÂ xN . If νi(xi) ∈ R̄i(s̄i), then P (νN(yN)) ∼∞ P (νN(xN)), but yi BBi xi, hence
yi ÂÂi xi; since yj = xj for j 6= i, we have yN ÂÂ xN , hence yN ÂÂÂ xN .

Lemma 5.4. Each relation ÂÂi is ω-transitive.

Proof.

Step 5.4.1. If zi BB∼
i yi, then yi BBi xi is impossible for any xi ∈ Xi.

Proof. Let zi BB∼
i yi hold with si = s̄i; then yi /∈ Ri(s̄i) 3 zi. For si < s̄i, yi ∈ Ri(si) would

imply zi Â yi by (5.2), hence νi(zi) > νi(yi) since νi is strictly increasing. For si > s̄i,
yi ∈ Ri(si) would imply yi Â zi by (5.2), hence νi(yi) > νi(zi). Therefore, yi /∈ Ri(si) for
any si ∈ Si.

Step 5.4.2. Let zi BB++
i yi hold with si = s̄i, and νi(y

′
i) ∈ [νi(yi), νi(zi)[; then y′i BB−−

i xi

is only possible, for any xi ∈ Xi, with si = s̄i.
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Proof. By definition, y′i BB−−
i xi implies νi(y

′
i) < νi(xi). For si > s̄i, we have r−i (si) ≥

r+
i (s̄i) ≥ νi(zi) > νi(y

′
i), hence y′i /∈ Ri(si); for si < s̄i, r+

i (si) ≤ r−i (s̄i) ≤ νi(yi) ≤ νi(y
′
i) <

νi(xi), hence νi(xi) /∈ R̄i(si). Therefore, both conditions in the definition of y′i BBi xi could
only be satisfied when si = s̄i.

Step 5.4.3. If zi BB++
i yi, then yi ÂÂ−−i xi is impossible for any xi ∈ Xi.

Proof. Supposing the contrary, let zi BB++
i yi hold with si = s̄i. By the previous step,

yi BB−−
i xi could only hold with si = s̄i as well; but this is impossible because yi /∈ Ri(s̄i).

Therefore, yi must be a limit point of an improvement path for BB−
i , hence there are

y0
i , y

1
i , y

2
i ∈ Xi such that νi(zi) > νi(y

0
i ) > νi(y

1
i ) > νi(y

2
i ) > νi(yi) and y2

i BB−−
i y1

i BB−−
i

y0
i . By Step 5.4.2, both relations must hold with si = s̄i, hence y1

i /∈ Ri(s̄i) 3 y1
i : a

contradiction.

Step 5.4.4. If zi ÂÂ++
i yi, then yi ÂÂ−−i xi is impossible for any xi ∈ Xi.

Proof. By definition, z′i BB+
i yi must hold for some z′i ∈ Xi such that zi ÂÂ++

i z′i. If
z′i BB++

i yi, the previous step applies; let z′i BB∼
i yi. There must be z′′i ∈ Xi such that

z′′i BB+
i z′i; this time, z′′i BB∼

i z′i is impossible by Step 5.4.1, hence z′′i BB++
i z′i. Since

νi(z
′
i) = νi(yi), there holds z′′i BB++

i yi (with the same si as the previous relation), and we
are home again.

Step 5.4.5. If zi ÂÂ−−i yi, then yi ÂÂ++
i xi is impossible for any xi ∈ Xi.

Proof. The proof is dual to the proof of Steps 5.4.2, 5.4.3, and 5.4.4.

To finish with the lemma, it is enough, in the light of Steps 5.4.1, 5.4.4, and 5.4.5, to
notice that zi ÂÂ++

i xi (zi ÂÂ−−i xi) whenever zi ÂÂ++
i yi BB∼

i xi (zi ÂÂ−−i yi BB∼
i xi).

Lemma 5.5. The relation ÂÂÂ is irreflexive and ω-transitive.

Proof. The irreflexivity is obvious; to check transitivity, it is sufficient to notice that Â∞, ∼∞,
and ÂÂ are transitive and that P (w′′

N) Â∞ P (wN) whenever P (w′′
N) Â∞ P (w′

N) ∼∞ P (wN)
or P (w′′

N) ∼∞ P (w′
N) Â∞ P (wN). Let xk

N → xω
N and xk+1

N ÂÂÂ xk
N for all k ∈ N.

Lemma 5.2 is applicable, producing P (νN(xω
N)) Â∞ P (νN(x0

N)) (hence xω
N ÂÂÂ x0

N) or
P (νN(xω

N)) ∼∞ P (νN(x0
N)). If P (νN(xk+1

N )) Â∞ P (νN(xk
N)) for some k, we may apply

Lemma 5.2 to the sequence xk+1
N , xk+2

N , . . . (which converges to the same xω
N), and ob-

tain P (νN(xω
N)) Â∞ P (νN(xk+1

N )) or P (νN(xω
N)) ∼∞ P (νN(xk+1

N )), hence P (νN(xω
N)) Â∞

P (νN(x0
N)). If P (νN(xk+1

N )) ∼∞ P (νN(xk
N)) for all k, then xk+1

N ÂÂ xk
N for all k, hence

xω
N ÂÂ x0

N by Lemma 5.4, hence xω
N ÂÂÂ x0

N even if P (νN(xω
N)) ∼∞ P (νN(x0

N)).

Lemmas 5.5 and 5.3 mean that ÂÂÂ is an ω-potential, so Theorem 5 is proved.
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6 Monotone selections

Let X and S be posets and R : S → BX . Then a monotone selection from R is a mapping
r : S → X such that (1) r(s) ∈ R(s) and (2) s′ ≥ s ⇒ r(s′) ≥ r(s), for all s, s′ ∈ S.

The best-known results on the existence of monotone selections (Topkis, 1998) are
applicable to ascending correspondences to lattices. Similar results are easily obtained
under weaker monotonicity conditions:

∀s′, s ∈ S
[
[s′ > s & x ∈ R(s) & x′ ∈ R(s′)] ⇒ x′ ∨ x ∈ R(s′)

]
; (6.1a)

∀s′, s ∈ S
[
[s′ > s & x ∈ R(s) & x′ ∈ R(s′)] ⇒ x′ ∧ x ∈ R(s)

]
. (6.1b)

Note that the corresponding modifications of Veinott’s order ºV need not even be transitive.

Proposition 6.1. A correspondence R from a poset S to a lattice X admits a monotone
selection if it satisfies (6.1a) and every R(s) contains a greatest element, or if it satisfies
(6.1b) and every R(s) contains a least element.

Proof. In the first case, we define r(s) = max R(s); in the second, r(s) = min R(s).

At a first glance, the existence of a greatest/least point may seem a far-fetched require-
ment. However, it is satisfied, e.g., if X is a separable metric space, the order is continuous,
each R(s) is compact, and either condition (6.1) holds in a strengthened version, with s′ > s
in the left hand side replaced with s′ ≥ s. On the other hand, the assumption cannot be
just dropped.

Example 6.1. Let X = [0, 1] and R : X → BX be this: R(0) =]0, 1]; R(x) = {x/2} for
x > 0. Clearly, R satisfies (6.1b), but there is neither monotone selection, nor fixed point.

There is no ground to believe that Proposition 6.1 is the last word on monotone se-
lections. For instance, Milgrom and Shannon (1994) ascribe the following statement to
Veinott (1989).

Theorem A2. Let {Sτ} be a net of nonempty sets that is weakly ascending, that is, such
that if τ ′ ≥ τ , and x ∈ Sτ , x′ ∈ Sτ ′, then either x ∨ x′ ∈ Sτ ′ or x ∧ x′ ∈ Sτ . Then there
exists a monotone selection {x(τ)} from {Sτ}.

Example 6.1 shows that the statement is just wrong. A valid analog can be obtained
under much stronger conditions.

Proposition 6.2. Let X be a complete lattice, S be a poset, and R be a weakly ascending
mapping S → BX such that every R(s) is a complete sublattice of X, i.e., whenever
Y ⊆ R(s), there hold sup Y ∈ R(s) and inf Y ∈ R(s). Then there exists a monotone
selection from R.
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Proof. For every s ∈ S, we denote r+(s) = sup R(s) ∈ R(s), R+(s) = {r+(s′)}s′≥s, and
r0(s) = inf R+(s). Whenever, s′ ≥ s, we have R+(s′) ⊆ R+(s), hence r0(s′) ≥ r0(s). Let
us show that r0(s) ∈ R(s) for every s ∈ S; then r0 will be the selection needed.

We denote R∗(s) = {x ∈ R(s) | r0(s) ≤ x} 3 r+(s) and r∗(s) = inf R∗(s) ∈ R(s). By
definition, r∗(s) ≥ r0(s); in the case of an equality, we are home. Suppose the contrary.
Then there must be s′ > s such that r+(s′) 6≥ r∗(s), hence r+(s′) ∨ r∗(s) > r+(s′) and
r+(s′) ∧ r∗(s) < r∗(s). The first inequality implies that r+(s′) ∨ r∗(s) /∈ R(s′); therefore,
r+(s′) ∧ r∗(s) ∈ R(s). Now the inequalities r+(s′) ≥ r0(s) and r∗(s) ≥ r0(s) imply that
r+(s′) ∧ r∗(s) ∈ R∗(s), which plainly contradicts the definition of r∗(s).

The distance from the conditions of Theorem A2 to those of Proposition 6.2 is great;
there must be valid statements in between. I was unable to find out exactly what was
meant by Veinott or Milgrom and Shannon; the only result of my enquiries can be found at
http://www.stanford.edu/∼milgrom/publishedarticles/Kukushkin%20CounterExample.pdf

Without topological restrictions on values R(s), the existence of a monotone selection
can be obtained for an ascending correspondence to a chain.

Theorem 6. Let X be a chain, S be a poset, and R be a mapping S → BX satisfying both
conditions (6.1); then there exists a monotone selection from R.

Proof. We use the Axiom of Choice to the full extent. The set S can be well ordered;
to avoid considering two independent orders on the same set, we assume that there is a
bijection λ : A → S, where A is a well ordered set of the same cardinality as S. We define
r(λ(α)) by (transfinite) induction in α ∈ A. First, we pick r(λ(0)) ∈ R(λ(0)) arbitrarily.

Let r(λ(β)) be defined for all β < α. We define B(α) = {β < α | r(λ(β)) ∈ R(λ(α))}.
If B(α) = ∅, we pick r(λ(α)) ∈ R(λ(α)) arbitrarily. Otherwise, we define r(λ(α)) =
r(λ(min B(α))), the minimum existing because A is well ordered. Since there is no pos-
sibility that r(λ(α)) could be left undefined, we obtain r(λ(α)) for all α ∈ A eventually.
Clearly, r(λ(α)) ∈ R(λ(α)) for all α ∈ A, so we only have to check monotonicity.

Suppose to the contrary that λ(α′) < λ(α) whereas r(λ(α′)) > r(λ(α)); the assumption
that X is a chain is essential here. By (6.1a), r(λ(α′)) ∈ R(λ(α)); by (6.1b), r(λ(α)) ∈
R(λ(α′)). Without restricting generality, α′ < α, hence α′ ∈ B(α) 6= ∅. The assumption
that r(λ(α′)) 6= r(λ(α)) implies that min B(α) = β < α′ and r(λ(α)) = r(λ(β)). Now
β ∈ B(α′) 6= ∅, so the assumption that r(λ(α′)) 6= r(λ(β)) implies that min B(α′) = β′ < β
and r(λ(α′)) = r(λ(β′)). However, now we have β′ ∈ B(α), hence β ≤ β′. The contradiction
proves the monotonicity of r.

Remark. If S ⊆ R, there exists a countable subset order dense in S; then the transfinite
induction can be replaced with ordinary one where parameters are natural numbers.

Generally speaking, the assumption that X is a chain is very restrictive; in our context,
however, multi-dimensional strategies afford bleak prospects for acyclicity anyway.
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Proposition 6.1 and Theorem 6 allow us to prove the existence of a Nash equilibrium
under monotonicity conditions milder than (5.3).

Proposition 6.3. Let a game Γ satisfy these assumptions:

1. each Xi is a compact subset of R;

2. ui(xN) = Ui(σi(x−i), xi) for all i ∈ N and xN ∈ XN , where each σi : X−i → R
is defined by (5.1) with strictly increasing mappings νi : Xi → R and each α

(h)
i0i1...ih

invariant under all permutations of i0, i1, . . . , ih;

3. each function Ui is upper semicontinuous in the second argument;

4. each function Ui satisfies either

[x′i ≥ xi & s′i ≥ si & Ui(si, x
′
i) ≥ Ui(si, xi)] ⇒ Ui(s

′
i, x

′
i) ≥ Ui(s

′
i, xi), (6.2a)

or

[x′i ≥ xi & s′i ≥ si & Ui(s
′
i, xi) ≥ Ui(s

′
i, x

′
i)] ⇒ Ui(si, xi) ≥ Ui(si, x

′
i). (6.2b)

Then Γ possesses a Nash equilibrium.

Proof. Assumptions 1 and 3 imply that each player i ∈ N has both the greatest and the
least best response to every x−i ∈ X−i. As is well known, (6.2a) implies (6.1a) for the
best response correspondence, whereas (6.2b) implies (6.1b). Therefore, Theorem 5 can be
applied to monotone selections existing by Proposition 6.1.

Proposition 6.4. Let a game Γ satisfy these assumptions:

1. each Xi is a compact subset of R;

2. ui(xN) = Ui(σi(x−i), xi) for all i ∈ N and xN ∈ XN , where each σi : X−i → R
is defined by (5.1) with strictly increasing mappings νi : Xi → R and each α

(h)
i0i1...ih

invariant under all permutations of i0, i1, . . . , ih;

3. for each i ∈ N and si ∈ σi(X−i), the preference relation yi Âi xi ® Ui(si, yi) >
Ui(si, xi) is ω-transitive;

4. each function Ui satisfies both conditions (6.2), which is Milgrom and Shannon’s
(1994) single crossing condition.

Then Γ possesses a Nash equilibrium.

Proof. Assumptions 1 and 3 imply that each player’s best response correspondence has
nonempty values. As is well known, (6.2) imply (6.1) for the best response correspondence.
Therefore, Theorem 5 can be applied to monotone selections existing by Theorem 6.
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Similar corollaries to Theorem 3 are proven in the same way. On the other hand, no
aggregation is needed for the mere existence of Nash equilibrium when the best responses
are increasing.

Proposition 6.5. Let a game Γ satisfy these assumptions:

1. each Xi is a compact subset of R;

2. for each i ∈ N and x−i ∈ X−i, the preference relation yi Âi xi ® ui(yi, x−i) >
ui(xi, x−i) is ω-transitive;

3. each function ui satisfies both conditions (6.2), where si is replaced with x−i.

Then Γ possesses a Nash equilibrium.

Proof. Again, each player’s best response correspondence has nonempty values by assump-
tions 1 and 2, and satisfies (6.1) by (6.2). Therefore, Tarski’s (1955) fixed point theorem
can be applied to the Cartesian product of monotone selections existing by Theorem 6.

Remark. To the best of my knowledge, the statement cannot be derived from the previous
literature.

In Propositions 6.3, 6.4, and, especially, 6.5, the assumption Xi ⊂ R is too restric-
tive. Unfortunately, there is no idea so far about how Theorem 6 could be proven for
multi-dimensional X. There is another, even more compelling, reason to be interested
in extensions of the theorem. Consider a supermodular game with bounded, but not
(semi)continuous in any sense, utilities. We cannot hope for the existence of a Nash equi-
librium, but the existence of an ε-equilibrium might be expected to be derivable via the
application of Tarski’s fixed point theorem to monotone selections. The problem is that
the ε-best response correspondence need not be ascending, hence Theorem 6 is inapplica-
ble even in the case of scalar strategies. Each ε-best response correspondence is weakly
ascending, but this is of no immediate help because “Theorem A2” is wrong while the
assumptions of Proposition 6.2 are too strong.

Remark. The conditions of Proposition 6.2 seem to admit no clear interpretation in terms
of utility functions.
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