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Abstract

Strategic games are considered where each player’s total utility is the sum of local utilities
obtained from the use of certain “facilities.” All players using a facility obtain the same utility
therefrom, which may depend on the identities of users and on their behavior. If a “trimness”
condition is satisfied by every facility, then the game admits an exact potential; conversely, if a
facility is not trim, adding it to a potential game may destroy that property. In both congestion
games and games with structured utilities, all facilities are trim. Under additional assumptions the
potential attains its maximum, which is a Nash equilibrium of the game.
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1 Introduction

When Monderer and Shapley (1996) introduced the notion of a potential game, the main example they
had in mind were Rosenthal’s (1973) congestion games. Their Theorems 3.1 and 3.2 showed that a
finite game admits an exact potential if and only if it can be represented as a congestion game (the
sufficiency part was implicit in Rosenthal’s reasoning). An alternative, more transparent proof was
given in Voorneveld et al. (1999, Theorem 3.3).

Kukushkin (2007) introduced games with structured utilities, in a sense, “dual” to congestion games;
the players there do not choose which facilities to use, only how to use facilities from a fixed list. The
idea of such a structure of utility functions can be traced back to Germeier and Vatel’ (1974), although
the local utilities in that paper were aggregated with the minimum function. Theorem 5 from Kukushkin
(2007) showed that a strategic game admits an exact potential if and only if it can be represented as
a game with structured utilities.
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Thus, two different, but somewhat similar, constructions generating potential games were consid-
ered in Kukushkin (2007); one universal for finite potential games, the other for all of them. The
possibility to combine both constructions into one was not discussed, actually, was overlooked alto-
gether. Somewhat later, Le Breton and Weber (2011) produced a construction generating potential
games, which can rightfully be described as a combination of those universal constructions although
not universal itself.

The main objective of this paper is to develop the most general universal construction of this type,
which would generate potential games and include all those previous constructions as particular cases.
We start with defining a general class of strategic games where the players are able to choose both
which facilities to use and how to use them. Those games need not admit potentials of any kind, nor
possess Nash equilibria. Then we formulate conditions ensuring that such a game admits an exact
potential; naturally, they are satisfied for both congestion games and games with structured utilities,
as well as games of Le Breton and Weber. Since those conditions are formulated independently for
every facility, a necessity result becomes obtainable: if a facility does not satisfy them, adding it to a
potential game may destroy that property.

Harks et al. (2011) found two classes of potential games, which are similar to congestion games,
but lack two key features of the latter, viz. anonymity and commonality: different players may affect
the same facility differently and derive different utilities therefrom. A straightforward modification in
the style of Kukushkin (2007, Section 4) shows that such games, as well their more general analogs,
are also generated by our construction.

An important (probably, the most important) reason to be interested in potentials of strategic
games is their connection with the existence of (pure-strategy) Nash equilibrium. From this viewpoint,
however, it is not enough for a game to admit a potential: that potential should admit a maximizer.
Since the strategy sets in our games may be infinite, the latter cannot be taken for granted. Le
Breton and Weber (2011) showed, even in a much less general case, that straightforward assumptions
such as the compactness of each strategy set and continuity of every local utility function are not
enough. Modifying their approach, we formulate a set of assumptions ensuring that the maximum of
the potential is attained and hence a Nash equilibrium does exist.

Our basic construction is described in the following section. In Section 3, the key definitions of a
trim facility and a trim game are given; Theorem 1 asserts the presence of an exact potential in every
trim game. Theorem 2 in Section 4 shows kind of necessity of trimness for this property.

In Section 5, the question of when the potential attains its maximum is addressed. We formulate
a list of assumptions ensuring the upper semicontinuity of the potential, and hence the existence of a
Nash equilibrium (Theorem 3). The proof of the theorem is in Section 6.

Section 7 demonstrates that the Le Breton–Weber construction is, indeed, a particular case of
ours. In Section 8, we show that every game from each class considered by Harks et al. (2011) can be
naturally represented as one from our class. Section 9 summarizes the message of the paper.
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2 Basic definitions

A strategic game Γ is defined by a finite set N of players, and, for each i ∈ N , a set Xi of strategies and
a real-valued utility function ui on the set XN :=

∏
i∈N Xi of strategy profiles. We denote N := 2N \{∅}

and XI :=
∏

i∈I Xi for each I ∈ N . Given i, j ∈ N , we use notation X−i instead of XN\{i} and X−ij

instead of XN\{i,j}.

A function P : XN → R is an exact potential of Γ (Monderer and Shapley, 1996) if

ui(yN )− ui(xN ) = P (yN )− P (xN ) (1)

whenever i ∈ N , yN , xN ∈ XN , and y−i = x−i. If x0N ∈ XN maximizes P over XN , then, obviously,
x0N is a Nash equilibrium.

A game with (additive) common local utilities (a CLU game) may have an arbitrary finite set N
of players and arbitrary sets of strategies Xi (i ∈ N), whereas the utilities are defined by the following
construction. First of all, there is a set A of facilities; we denote B the set of all (nonempty) finite
subsets of A. For each i ∈ N , there is a mapping Bi : Xi → B describing what facilities player i
uses having chosen xi. Every strategy profile xN determines local utilities at all facilities α ∈ A; each
player’s total utility is the sum of local utilities over chosen facilities. The exact definitions need plenty
of notations.

For every α ∈ A, we denote I−α := {i ∈ N | α ∈
∩

xi∈Xi
Bi(xi)} and I+α := {i ∈ N | α ∈∪

xi∈Xi
Bi(xi)}; without restricting generality, we may assume I+α ̸= ∅. For each i ∈ I+α , we denote

Xα
i := {xi ∈ Xi | α ∈ Bi(xi)}; if i ∈ I−α , then Xα

i = Xi. Then we set Iα := {I ∈ N | I−α ⊆ I ⊆ I+α }
and Ξα := {⟨I, xI⟩ | I ∈ Iα & xI ∈ Xα

I }. The local utility function at α ∈ A is φα : Ξα → R. For every
α ∈ A and xN ∈ XN , we denote I(α, xN ) := {i ∈ N | α ∈ Bi(xi)}; obviously, I−α ⊆ I(α, xN ) ⊆ I+α .
The total utility function of each player i is

ui(xN ) :=
∑

α∈Bi(xi)

φα(I(α, xN ), xI(α,xN )). (2)

Both games with structured utilities and congestion games are CLU games. In the former case, for
each i ∈ N , the set Bi(xi) is the same for all xi ∈ Xi; hence I(α, xN ) does not depend on the second
argument and hence the first argument of φα can be dropped. In the latter case, Xi ⊆ B for each
i ∈ N , each Bi is an identity mapping, and hence the second argument of φα can be dropped; besides,
φα only depends on #I. Note that A is finite in both cases, which is not required generally.

3 Trim facilities and games

For every α ∈ A, we denote n−(α) := minI∈Iα #I = max{1,#I−α }.
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We call a facility α ∈ A trim if there is a real-valued function ψα(m) defined for integer m between
n−(α) and #I+α − 1 such that

φα(I, xI) = ψα(#I) (3)

whenever I ∈ Iα, I ̸= I+α , and xI ∈ Xα
I .

In other words: whenever a trim facility is not used by all potential users, neither the identities of
the users, nor their strategies matter, only the number of users. A term like “quasi-Rosenthal facility”
might be justified, but it seems too cumbersome.

The property can also be defined as invariance of the local utility function to certain manipulations
with its arguments.

Proposition 1. A facility α ∈ A is trim if and only if these two conditions are satisfied:

1) whenever i /∈ J ⊂ N , I+α ̸= J ∪ {i} ∈ Iα, xi, yi ∈ Xα
i , and xJ ∈ Xα

J , there holds

φα(J ∪ {i}, (xJ , xi)) = φα(J ∪ {i}, (xJ , yi)); (4a)

2) whenever J ⊂ N and i, j ∈ N \ J are such that i ̸= j, J ∪ {i} ∈ Iα ∋ J ∪ {j}, and xJ∪{i,j} ∈
Xα

J∪{i,j}, there holds

φα(J ∪ {i}, xJ∪{i}) = φα(J ∪ {j}, xJ∪{j}) (4b)

(J = ∅ is allowed in both conditions, in which case the term xJ should be just ignored).

Proof. The implication “only if” is obvious; let α ∈ A satisfy both conditions (4). If I+α = I−α , then
Iα = {I+α } and hence (3) is not required for any I ∈ Iα. Therefore we may assume that I−α ⊂ I+α .

Whenever I ∈ Iα, I ̸= I+α , and xI , yI ∈ Xα
I , we can, picking, one by one, i ∈ I and replacing xi with

yi, obtain, by (4a), that φα(I, xI) = φα(I, yI), i.e., the choice of strategies does not matter indeed.

Let us show the irrelevance of the identities of users. If I−α ̸= ∅, we define ψ(#I−α ) := φα(I
−
α , xI−α ),

which does not depend on xI−α ∈ Xα
I−α

by the argument of the preceding paragraph. There is no other

I ∈ Iα with the same #I. If I−α = ∅, we set ψ(1) := φα({i}, xi), which does not depend on i ∈ I+α by
(4b) with J = ∅, or on xi ∈ Xα

i by the argument of the preceding paragraph again.

Finally, supposing that I, J ∈ Iα, n−(α) < #I = #J < #I+α , xI ∈ Xα
I and yJ ∈ Xα

J , we
have to prove that φα(I, xI) = φα(J, yJ). Obviously, there is a one-to-one correspondence between
J \ I := {j1, . . . , jk} and I \ J := {i1, . . . , ik}. Consecutively applying (4b), we obtain:

φα(I, xI) = φα((I ∩ J) ∪ {j1, i2, . . . , ik}, (x(I∩J)∪{i2,...,ik}, yj1)) =
φα((I ∩ J) ∪ {j1, j2, i3, . . . , ik}, (x(I∩J)∪{i3,...,ik}, y{j1,j2})) = · · · = φα(J, yJ).

Now we can set ψ(m) := φα(I, xI) for an arbitrary I ∈ Iα with #I = m and an arbitrary xI ∈ Xα
I ,

and have (3) satisfied.
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We call a CLU game trim if so is every facility. It is instructive to check that both congestion
games and games with structured utilities are trim. In the first case, (3) holds for all I ∈ Iα, even for
I = I+α ; in the second case, conversely, I−α = I+α for each facility α and hence (3) is not required at all.

Theorem 1. Every trim CLU game admits an exact potential.

Proof. Given xN ∈ XN , we denote A(xN ) := {α ∈ A | I(α, xN ) ̸= ∅} and A+(xN ) := {α ∈ A |
#I(α, xN ) > n−(α)} [⊆ A(xN )]; since N and each Bi(xi) are finite, A(xN ) is finite too. Now we define
our potential function in this way:

P (xN ) :=
∑

α∈A(xN )

φα(I(α, xN ), xI(α,xN )) +
∑

α∈A+(xN )

#I(α,xN )−1∑
m=n−(α)

ψα(m). (5)

Given i ∈ N and x−i ∈ X−i, we denote I−i(α, x−i) := {j ∈ N \{i} | α ∈ Bj(xj)}, A−i(x−i) := {α ∈
A | I−i(α, x−i) ̸= ∅} and A+

−i(x−i) := {α ∈ A | #I−i(α, x−i) > n−(α)} [⊆ A−i(x−i)]. Then we define
these auxiliary functions Q−i : X−i → R (i ∈ N):

Q−i(x−i) :=
∑

α∈A−i(x−i)

φα(I−i(α, x−i), xI−i(α,x−i)) +
∑

α∈A+
−i(xN )

#I−i(α,x−i)−1∑
m=n−(α)

ψα(m). (6)

Once we show that
P (xN ) = ui(xN ) +Q−i(x−i) (7)

for all i ∈ N and xN ∈ XN , Theorem 2.1 of Voorneveld et al. (1999) will imply that P is an exact
potential.

Whenever α /∈ Bi(xi), we have I−i(α, x−i) = I(α, xN ); therefore, this α brings the same contri-
bution to Q−i(x−i) as to P (xN ), while no contribution at all to ui(xN ). For every α ∈ Bi(xi), we
have I−i(α, x−i) = I(α, xN ) \ {i} and hence #I−i(α, x−i) = #I(α, xN ) − 1. If I(α, xN ) = {i}, then
this α brings to ui(xN ) the same contribution, φα({i}, xi), as to P (xN ), while no contribution at all
to Q−i(x−i). If I(α, xN ) = {i, j}, then this α contributes φα({i, j}, (xi, xj)) to ui(xN ), contributes
φα({j}, xj) to Q−i(x−i), and contributes φα({i, j}, (xi, xj)) + ψα(1) to P (xN ). Since α is trim, we
have φα({j}, xj) = ψα(1) and hence total contributions coincide again. Finally, if #I(α, xN ) > 2, we
argue virtually in the same way as in the previous case of #I(α, xN ) = 2. Equality (7) being satisfied,
Theorem 1 is proven.

Remark. In the case of a game with structured utilities, the second sum in (5) disappears since
Iα = {I+α } and hence #I+α = n−(α) and A+(xN ) = ∅. Thus, the potential defined by (5) coincides
with that defined in the proof of sufficiency in Theorem 4 from Kukushkin (2007). In the case of
a congestion game, φα(I(α, xN ), xI(α,xN )) = ψα(#I(α, xN )) and hence the potential defined by (5)
coincides with Rosenthal’s potential.
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4 Necessity of trimness

Let a finite set N of players be fixed. An autonomous facility α is defined by two subsets I−α ⊆ I+α ∈ N
[I−α may be empty], a set Xα

i of relevant strategies for each i ∈ I+α , and a local utility function
φα : Ξα → R, where Iα := {I ∈ N | I−α ⊆ I ⊆ I+α } and Ξα := {⟨I, xαI ⟩ | I ∈ Iα & xαI ∈ Xα

I }, exactly as
in Section 2. We call an autonomous facility α trim if it satisfies the same condition (3).

Let α be an autonomous facility, and let Γ be a CLU game with the same set N , a set A such that
α /∈ A, and Xi ∩Xα

i = ∅ for each i ∈ N . A CLU game Γ∗ is called an extension of Γ with α if these
conditions are satisfied: N∗ = N ; A∗ = A∪{α}; X∗

i = Xi when i ∈ N \I+α ; X∗
i ⊆ Xα

i ∪(Xα
i ×Xi) when

i ∈ I−α ; X∗
i ⊆ Xα

i ∪ (Xα
i ×Xi)∪Xi when i ∈ I+α \ I−α ; B∗

i (xi) = Bi(xi) for all xi ∈ Xi; B
∗
i (x

α
i ) = {α} for

all xαi ∈ Xα
i ; B

∗
i (⟨xαi , xi⟩) = {α} ∪Bi(xi) for all x

α
i ∈ Xα

i and xi ∈ Xi; whenever J ⊆ I ∈ Iα, xαI ∈ Xα
I ,

x∗j = xαj for all j ∈ J , and x∗i = ⟨xαi , xi⟩ for all i ∈ I \ J , there holds φ∗
α(I, x

∗
I) = φα(I, x

α
I ); whenever

β ∈ A, J ⊆ I ∈ Iβ , xβI ∈ Xβ
I , x

∗
j = xβj for all j ∈ J , and x∗i = ⟨xαi , x

β
i ⟩ for all i ∈ I \ J , there holds

φ∗
β(I, x

∗
I) = φβ(I, x

β
I ).

Remark. It is important to note that there may be various extensions of the same game Γ with the
same facility α. Two other features of the definition are also worth mentioning. First, we allow some
strategies available in Γ to become unavailable in Γ∗, and some strategies from Xα

i (for i ∈ I+α ) may
also be unavailable. Second, each player i ∈ I+α may have an option of choosing the “new” facility α,
forgetting the “old” game Γ altogether. A straightforward modification of our definition would dispense
with either feature or both; Theorem 2 would remain correct since neither is invoked in the proof.

Theorem 2. For every autonomous facility α the following statements are equivalent:

1. α is trim.

2. Whenever Γ∗ is an extension with α of a trim CLU game Γ, Γ∗ admits an exact potential.

3. Whenever Γ∗ is an extension with α of a congestion game Γ, Γ∗ admits an exact potential.

4. Whenever Γ∗ is an extension with α of a game with structured utilities Γ, Γ∗ admits an exact
potential.

Proof. The implication Statement 1 ⇒ Statement 2 immediately follows from Theorem 1; the implica-
tions Statement 2 ⇒ Statement 3 and Statement 2 ⇒ Statement 4 are trivial. We only have to show
the implications Statement 3 ⇒ Statement 1 and Statement 4 ⇒ Statement 1; so let Statement 3 hold.

Claim 2.1. Let i, j ∈ I+α , i /∈ I ∈ Iα, j ∈ I, xαI ∈ Xα
I and yαj ∈ Xα

j . Then φα(I, x
α
I ) =

φα(I, (x
α
I\{j}, y

α
j )).
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Proof of Claim 2.1. Let us consider a congestion game Γ with the same set N of players, a singleton
set of facilities A := {β}, and a singleton set of strategies Xh := {xβh} with Bh(x

β
h) := {β} for each

h ∈ N , and an arbitrary constant (in lieu of a function) φβ(N, x
β
N ) = ψβ(#N). We define an extension

Γ∗ of Γ with α by: N∗ := N ; A∗ := {α, β}; X∗
h := {xβh} for each h ∈ N \ I+α ; X∗

h := Xα
h ∪ {xβh}

for each h ∈ I+α \ I−α ; X∗
h := Xα

h for each h ∈ I−α ; B∗
h(x

β
h) = {β}; B∗

h(x
α
h) = A∗ for each xαh ∈ Xα

h ;

φ∗
α(J, x

α
J ) = φα(J, x

α
J ) for every J ∈ Iα and xαJ ∈ Xα

J ; φ
∗
β(N,x

β
N ) = φβ(N, x

β
N ).

Remark. To avoid too cumbersome notations, we allowed a small discrepancy with the general def-
inition of an extension of a CLU game. Strictly speaking, the strategy set of each player h ∈ I−α in
Γ∗ is Xα

h × Xh, which can be identified with Xα
h because of an obvious one-to-one correspondence

⟨xαh , x
β
h⟩ ↔ xαh . The same correspondence allows us to identify (Xα

h ×Xh)∪Xh with Xα
h ∪Xh for each

h ∈ I+α \ I−α .

Since we assumed Statement 3 to hold, Γ∗ admits an exact potential; hence so does every subgame.
As was noted by Monderer and Shapley (1996, Theorem 2.8), it is enough to consider 2×2 subgames. We

leave players i and j with two strategies each: {xαi , x
β
i } and {xαj , yαj }, respectively, fixing strategies for

all other players: xαh for h ∈ I and xβh for h /∈ I. Note that h /∈ I−α whenever h /∈ I, and hence xβh ∈ X∗
h;

in particular, xβi ∈ X∗
i . Introducing auxiliary notations, uβ := φβ(N,x

β
N ), vαx := φα(I ∪ {i}, xαI∪{i}),

vαy := φα(I∪{i}, (xαI∪{i}\{j}, y
α
j )), u

α
x := φα(I, x

α
I ), and u

α
y := φα(I, (x

α
I\{j}, y

α
j )), we obtain the following

matrix of the resulting subgame:

xαj yαj
xαi
xβi

[
⟨vαx + uβ , vαx + uβ⟩ ⟨vαy + uβ , vαy + uβ⟩

⟨uβ , uαx + uβ⟩ ⟨uβ , uαy + uβ⟩

]
.

Straightforward calculations show that P (xβi , y
α
j , x−ij) − P (xβi , x

α
j , x−ij) = [P (xαi , x

α
j , x−ij) −

P (xβi , x
α
j , x−ij)] + [P (xαi , y

α
j , x−ij)− P (xβi , x

α
j , x−ij)] + [P (xβi , y

α
j , x−ij)− P (xαi , y

α
j , x−ij)] = vαx + (vαy −

vαx )− vαy = 0. Therefore, φα(I, x
α
I ) = uj(x

β
i , y

α
j , x−ij) = uj(x

β
i , x

α
j , x−ij) = φα(I, (x

α
I\{j}, y

α
j )). In other

words, (4a) is established.

Claim 2.2. Let i, j ∈ I ∈ Iα, I−α ⊆ I\{i, j}, and xαI ∈ Xα
I . Then φα(I\{i}, xαI\{i}) = φα(I\{j}, xαI\{j}).

Proof of Claim 2.2. We consider the same congestion game Γ used in the proof of Claim 2.1 and the
same extension Γ∗ of Γ with α. This time, we consider a 2× 2 subgame where players i and j have two
strategies each: {xαi , x

β
i } and {xαj , x

β
j }, respectively, while the strategies of all other players are fixed:

xαh for h ∈ I and xβh for h /∈ I.

Again, this subgame must admit an exact potential. Introducing auxiliary notations, uβ :=
φβ(N,x

β
N ), uα := φα(I, x

α
I ), v

α
i := φα(I \ {i}, xαI\{i}) and vαj := φα(I \ {j}, xαI\{j}), we obtain the
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following matrix:

xαj xβj
xαi
xβi

[
⟨uα + uβ , uα + uβ⟩ ⟨vαj + uβ , uβ⟩

⟨uβ , vαi + uβ⟩ ⟨uβ , uβ⟩

]
.

Now we have 0 = [P (xαi , x
α
j , x−ij) − P (xβi , x

α
j , x−ij)] + [P (xαi , x

β
j , x−ij) − P (xαi , x

α
j , x−ij)] +

[P (xβi , x
β
j , x−ij)−P (xαi , x

β
j , x−ij)] + [P (xβi , x

α
j , x−ij)−P (xβi , x

β
j , x−ij)] = uα − uα − vαj + vαi = vαi − vαj .

Therefore, φα(I \ {i}, xαI\{i}) = vαi = vαj = φα(I \ {j}, xαI\{j}). In other words, (4b) is established.

A reference to Proposition 1 completes the proof of the implication Statement 3 ⇒ Statement 1.

The proof of the implication Statement 4 ⇒ Statement 1 is now straightforward: the congestion
game Γ used in the proofs of Claims 2.2 and 2.1 can as well be perceived as a game with structured
utilities. Theorem 2 is proven.

Theorem 2 takes it for granted that the players sum up their local utilities. Actually, the necessity
(in a sense) of addition was showed in Kukushkin (2007): If the players may aggregate local utilities
with arbitrary (continuous and strictly increasing) functions, then the existence of an exact potential
is ensured regardless of other characteristics of the game only if the players sum up local utilities; that
statement remains valid when attention is restricted to congestion games (Theorem 2 of Kukushkin,
2007), or to games with structured utilities (Theorem 4).

Strictly speaking, those theorems do not exclude the possibility that the aggregation of local utilities
with some other, non-strictly increasing functions might also ensure the existence of an exact potential,
but there is no reason to expect anything interesting here. On the other hand, the minimum aggre-
gation, as envisaged by Germeier and Vatel’ (1974), ensures the acyclicity of coalitional improvements
and hence the existence of a strong Nash equilibrium (Harks et al., 2013; Kukushkin, 2017).

5 The existence of Nash equilibrium

To ensure that the potential P attains a maximum, some additional assumptions are needed. The
simplest approach would be to have XN compact and P upper semi continuous. As was noted by Le
Breton and Weber (2011) even in a much less general case, a certain degree of subtlety is required,
however, since even the continuity of every φα does not imply the upper semicontinuity of the potential.

Assumption 1. The set of facilities A and each strategy set Xi are metric spaces; each mapping
Bi is continuous in the Hausdorff metric on the target; for every α ∈ A and I ∈ Iα, the function
φα(I, ·) : XI → R is upper semicontinuous.

Henceforth, we assume each set XI (I ∈ N ) to be endowed with the maximum metrics. For each
i ∈ N and m ∈ N, we denote Xm

i := {xi ∈ Xi | #Bi(xi) = m}.
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Assumption 2. For each i ∈ N and m ∈ N, either Xm
i = ∅ or Xm

i is a compact subset of Xi.

Assumption 3. For each i ∈ N , Xm
i ̸= ∅ only for a finite number of m ∈ N.

Assumptions 1 – 3 have a technical implication useful in the following.

Lemma 1. Let i ∈ N , xki ∈ Xi for all k ∈ N, and xki → xωi ∈ Xi; let open neighborhoods Oα of α ∈
Bi(x

ω
i ) be such that Oα ∩Oβ = ∅ whenever α ̸= β. Then #Bi(x

k
i ) = #Bi(x

ω
i ) and #(Bi(x

k
i )∩Oα) = 1

for all α ∈ Bi(x
ω
i ) and all k ∈ N large enough.

Proof. By Assumption 3, there is a finite number of possible values of #Bi(x
k
i ); therefore, we must

have xki ∈ Xm
i for some m ∈ N, m ̸= 0, and an infinite number of k ∈ N. Since Xm

i is compact by
Assumption 2, and hence closed in Xi, we have xωi ∈ Xm

i too. It follows immediately that such an m
must be unique, i.e., xki ∈ Xm

i for all k ∈ N large enough.

By Assumption 1, we have Bi(x
k
i ) → Bi(x

ω
i ). Therefore, for each k ∈ N large enough and for each

α ∈ Bi(x
ω
i ), there is αk ∈ Bi(x

k
i ) ∩Oα. Since Oα ∩Oβ = ∅ whenever α ̸= β, and #Bi(x

k
i ) = #Bi(x

ω
i ),

we must have #(Bi(x
k
i ) ∩Oα) = 1 indeed.

Our final assumption combines some sorts of upper semicontinuity (of φα “in α”) and monotonicity
(of φα “in I”).

Assumption 4. For every α ∈ A, I ∈ Iα, and ε > 0, there is δ > 0 such that:

φα(I, xI) > φβ(J, yJ)− ε (8)

whenever β ∈ A \ {α}, J ∈ Iβ, xI ∈ Xα
I , yJ ∈ Xβ

J , J ⊆ I, and the distance between α and β in A, as
well as between xJ and yJ in XJ , is less than δ.

If A is finite as, e.g., in a game with structured utilities or in a congestion game, then Assumption 4
holds vacuously since a δ > 0 smaller than the minimal distance between α ̸= β can be chosen.

Theorem 3. Every trim CLU game satisfying Assumptions 1, 2, 3, and 4 possesses a (pure strategy)
Nash equilibrium.

The proof is deferred to Section 6.

It is impossible to argue that the assumptions imposed in Theorem 3 are necessary in a proper
sense. After all, neither upper semicontinuity, nor compactness are necessary for a function to attain
its maximum. Nonetheless, dropping any one of them makes the theorem wrong. There is no need to
discuss Assumption 1, but for the three others, appropriate counterexamples follow. In Examples 1
and 2, even one-player games suffice.
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Example 1. Let us consider a “congestion game with an infinite set of facilities,” where N := {1},
A := [0, 1], X1 := {{0}}∪{{1/2m, 1/2m+1}}m∈N, B1(x1) := {x1} for every x1 ∈ X1, and ψα(1) := 1−α
for every α ∈ [0, 1]. All assumptions of Theorem 3 except Assumption 2 are satisfied, X1 is compact
(in the Hausdorff metrics), but X2

1 is not. And there is no Nash equilibrium, i.e., maximum of u1:
supx1∈X2

1
u1(x1) = 2, whereas u1(x1) < 2 for every x1 ∈ X1.

Example 2. Let us consider a “congestion game with an infinite set of facilities,” where N := {1},
A := [0, 1], X1 := {{0}} ∪ {{1/2m − k/[(m+ 1)2m+1]}k=0,...,m}m∈N, B1(x1) := {x1} for every x1 ∈ X1,
and ψα(1) := 1 − α for every α ∈ [0, 1]. All assumptions of Theorem 3 except Assumption 3 are
satisfied, X1 is compact, as well as each Xm

1 (m ∈ N), which is actually a singleton. And again, there
is no Nash equilibrium, i.e., maximum of u1, since supx1∈X1

u1(x1) = +∞.

Example 3. Let us consider a “congestion game with an infinite set of facilities,” where N := {1, 2},
A := X1 := X2 := [0, 1], Bi(xi) := {xi} for every xi ∈ Xi, ψα(2) := 1 − α and ψα(1) := 2 − α for
every α ∈ [0, 1]. All assumptions of Theorem 3 except Assumption 4 are satisfied, but there is no Nash
equilibrium. Let (x1, x2) ∈ XN and i ∈ N . If xi ̸= 0, then player i is better off slightly decreasing
xi. On the other hand, ({0}, {0}) is not an equilibrium either, because each player will be better off
choosing any xi ∈]0, 1[.

6 Proof of Theorem 3

As was hinted at the start of Section 5, our strategy is to show that P defined by (5) is upper
semicontinuous on a compact XN . Then any strategy profile which maximizes P will be a Nash
equilibrium.

The compactness of XN immediately follows from Assumptions 2 and 3. Let xkN → xωN ∈ XN ; we
have to show that

P (xωN ) ≥ lim sup
k→∞

P (xkN ).

Since A(xωN ) is finite, there is an open neighborhood Oα of each α ∈ A(xωN ) such that Oα ∩Oβ = ∅
whenever α ̸= β ∈ A(xωN ). Now Lemma 1 applies; therefore, we may, without restricting generality,
assume that Bi(x

k
i )∩Oα = {βki } for each α ∈ A(xωN ), i ∈ I(α, xωN ), and k ∈ N [we should have written

βki (α), but β
k
i related to different α’s will never be considered simultaneously]. Note that βki → α for

each i ∈ N . Since there is a finite number of possible values of I(βki , x
k
N ), we may, without restricting

generality, assume that, given i ∈ I(α, xωN ), the set I(βki , x
k
N ) is the same for all k. Similarly, we may

assume that I(α, xωN ) is partitioned into Ī(α, xωN ) := {i ∈ I(α, xωN ) | ∀k ∈ N [βki = α]} [= {i ∈ I(α, xωN ) |
∀k ∈ N [α ∈ Bi(x

k
i )]}] and Ĩ(α, xωN ) := {i ∈ I(α, xωN ) | ∀k ∈ N [βki ̸= α]} [= {i ∈ I(α, xωN ) | ∀k ∈ N [α /∈

Bi(x
k
i )]}].
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Now we are ready to analyze and compare the right-hand side of (5) for xkN ,

∑
α∈A(xk

N )

φα(I(α, x
k
N ), xk

I(α,xk
N )
) +

∑
α∈A+(xk

N )

#I(α,xk
N )−1∑

m=n−(α)

ψα(m), (9a)

and for xωN , ∑
α∈A(xω

N )

φα(I(α, x
ω
N ), xI(α,xω

N )) +
∑

α∈A+(xω
N )

#I(α,xω
N )−1∑

m=n−(α)

ψα(m). (9b)

If Ĩ(α, xωN ) = ∅ and hence I(α, xωN ) = I(α, xkN ) =: I for each k, then this α contributes

φα(I, x
k
I ) +

[ #I−1∑
m=n−(α)

ψα(m)
]

to (9a) [the term in square brackets disappears if #I = n−(α)] and

φα(I, x
ω
I ) +

[ #I−1∑
m=n−(α)

ψα(m)
]

to (9b); since φα(I, ·) is upper semicontinuous by Assumption 1, there is no problem with this α.

If Ĩ(α, xωN ) ̸= ∅, the analysis is more complicated. For brevity, we denote I := I(α, xωN ), Ī :=
Ī(α, xωN ), Ĩ := Ĩ(α, xωN ), and I(i) := I(βki , x

k
N ) for each i ∈ Ĩ; as was noted above, I(i) does not depend

on k. Now the contribution of this α to (9a) is

φα(Ī , x
k
Ī ) +

[ #Ī−1∑
m=n−(α)

ψα(m)
]
+

∑
i∈Ĩ

1

#I(i)

(
φβk

i
(I(i), xkI(i)) +

[#I(i)−1∑
m=1

ψβk
i
(m)

])
. (10a)

[The terms in square brackets disappear if, respectively, #Ī = n−(α) or #I(i) = 1; we divide the
rightmost sum in (10a) by #I(i) to compensate for multiple counting of the same terms.]

The contribution of the same α to (9b) is

φα(I, x
ω
I ) +

[ #Ī−1∑
m=n−(α)

ψα(m) +

#I−1∑
#Ī

ψα(m)
]
. (10b)

Taking into account Assumption 4 and the fact that Ĩ(α, xωN ) ⊆ I(α, xωN ), we see that the upper
limit of (10a) cannot be greater than (10b).

The upper semicontinuity of P is proven, and so is the theorem.
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7 Le Breton–Weber construction

First, we reproduce the construction in somewhat streamlined notations. All strategy sets Xi are
compact subsets of a Euclidean space RT ; X =

∪
i∈N Xi. Given a strategy profile xN ∈ XN and

x ∈ X, we denote n(x, xN ) the number of players with xi = x. The payoff Ui(xN ) of player i is the sum
of three terms (“taste component,” “local social interaction component,” and “global social interaction
component”):

Ui(xN ) = Vi(xi) +
∑

j∈N\{i}

W j
i (xi, xj) +H(xi, n(xi, xN )). (11)

Three substantial assumptions are made: (1) each function Vi, W
j
i , and H(·,m) (m ∈ N) is upper

semi-continuous; (2) W j
i (xi, xj) = W i

j (xj , xi) for every i, j ∈ N , every xi ∈ Xi and every xj ∈ Xj ; (3)
H(x, ·) is increasing for all x ∈ X. Under those assumptions, Le Breton and Weber (2011) showed that
the following function is an upper semi-continuous exact potential:

P (xN ) =
∑
i∈N

Vi(xi) + 1/2
∑
i∈N

∑
j∈N\{i}

W j
i (xi, xj) +

∑
x∈X : n(x,xN )>0

n(x,xN )∑
m=1

H(x,m). (12)

Given a Le Breton–Weber game Γ, we denote N2 the set of all unordered pairs in N , i.e., subsets of
cardinality 2. Then we define a CLU game Γ∗ by A∗ := N∪N2∪X; B∗

i (xi) := {i}∪{{i, j}}j∈N\{i}∪{xi};
φ∗
i (xi) := Vi(xi); φ

∗
{i,j}(xi, xj) :=W j

i (xi, xj); ψ
∗
x(m) := H(x,m).

Proposition 2. For every Le Breton–Weber game Γ, the CLU game Γ∗ just defined is trim and
isomorphic to Γ. Assumptions 1–4 are satisfied for Γ∗. Moreover, the exact potential (5) for Γ∗

coincides with potential (12) for Γ.

A straightforward proof is omitted.

Remark. Actually, Assumptions 1–4 were developed as a generalization of the assumptions of Le
Breton and Weber (2011).

8 Player-specific local utilities

Congestion games with player-specific local utilities are a natural generalization of Rosenthal’s (1973)
model. Typically, one cannot expect the existence of an equilibrium, to say nothing of an exact poten-
tial, in such games. Nonetheless, there are results on the existence of a Nash equilibrium (Milchtaich,
1996) or even a strong Nash one (Konishi, et al., 1997) in some particular cases. Sometimes, even an
exact potential exists; the most advanced results to this effect are due to Harks et al. (2011). In this
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section, we show that our construction generates all potential games discovered in that paper and some
more.

Harks et al. (2011) started with “weighted congestion games,” where the strategy sets are Xi ⊆ B,
as in proper congestion games, Bi’s are identity mappings, each player is characterized by a “demand”
di ∈ R, and the (player-specific) local utility function at each facility α ∈ A is di · pα(

∑
j∈I(α,xN ) dj);

in other words, each player’s load is multiplied by the unit cost depending on the total load on the
facility. Note that local utilities become common if each player’s utility is divided by di; however, the
trimness condition need not hold.

Then (on pp. 66–69), two extensions of the model are considered, where local utilities are not
common in an essential way. In the first, “weighted congestion games with facility-dependent demands,”
the demand of each player is additionally parameterized by the facility, so the local utility function
of player i at facility α ∈ A is dαi · pα(

∑
j∈I(α,xN ) d

α
j ). In the second, “weighted congestion games

with elastic demands,” the demand of each player is uniform over facilities, but may be chosen by the
player from a feasible set, di ∈ Di, so the local utility function of player i at facility α ∈ A is again
di · pα(

∑
j∈I(α,xN ) dj), but the strategy sets are Xi × Di. Every weighted congestion game obviously

belongs to both extended classes.

Generally, a game from either class need not admit an exact potential; however, it does so in the
case of affine local unit cost functions, pα(d) = bα+ aα · d. In the following, we assume that affine local
cost functions are included in all the three above definitions, although Harks et al. (2011) did not do
that.

We consider an even more general model, which simultaneously includes both extensions as partic-
ular cases. There is a finite set N of players and an arbitrary set A of facilities; we denote X the set
of x = ⟨xα⟩α∈A ∈ RA such that B(x) := {α ∈ A | xα ̸= 0} is finite. For each player i ∈ N , there is
a strategy set Xi ⊆ X and a function Fi : Xi → R; for every α ∈ A, there are constants aα, bα ∈ R.
Given a strategy profile xN ∈ XN , the local utility obtained by player i from a facility α is

φα
i (x

α
N ) := xαi ·

(
bα + aα ·

∑
j∈N

xαj
)
. (13)

The total utility function is

ui(xN ) := Fi(xi) +
∑

α∈B(xi)

φα
i (x

α
N ). (14)

We may say that the players belonging to the set I(α, xN ) := {i ∈ N | xαi ̸= 0 [≡ α ∈ B(xi)]}
have chosen facility α. Then we notice that φα

i (x
α
N ) = 0 whenever i /∈ I(α, xN ); similarly, φα

i (x
α
N ) only

depends on xαI(α,xN ), so we could write φα
i (x

α
I(α,xN )) in the left hand side of (13) and the right hand

side of (14). Now we see that (14) can be viewed as a generalization of (2) where different players may
extract different local utilities from the same facility. By an analogy with Harks et al. (2011), we may
call such models generalized weighted congestion games with controllable demands (and affine local unit
cost functions), or, for brevity, games with controllable demands (CD games).
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Now we introduce three special subsets of X: Y w(d) := {x ∈ X | ∀α ∈ A [xα ∈ {0, d}]} (d ∈ R),
Y fd(dA) := {x ∈ X | ∀α ∈ A [xα ∈ {0, dα}]} (dA ∈ RA), and Y e :=

∪
d∈R Y

w(d) [= {x ∈ X | ∀α, β ∈
A [(xα − xβ)xαxβ = 0]} ].

Proposition 3. A CD game is a weighted congestion game if and only if A is finite, Fi(xi) = 0 for
all i ∈ N and xi ∈ Xi, and there is dN ∈ RN such that Xi ⊆ Y w(di) for each i ∈ N . A CD game is a
weighted congestion game with facility-dependent demands if and only if A is finite, Fi(xi) = 0 for all
i ∈ N and xi ∈ Xi, and there is dAN ∈ RN×A such that Xi ⊆ Y fd(dAi ) for each i ∈ N . A CD game is a
weighted congestion game with elastic demands if and only if A is finite, Fi(xi) = 0 for all i ∈ N and
xi ∈ Xi, and Xi ⊆ Y e for each i ∈ N .

A straightforward proof is omitted.

As an example of a CD game not covered by Harks et al. (2011), assume that A is the set of edges
of a network. A strategy of each player is a flow through the network with given source and destination
nodes, satisfying Kirchhoff’s law at each intermediate node. The cost of pushing a unit of flow through
an edge α is affine in the total load: −bα − aα

∑
i∈N xαi . The function Fi is the gain obtained from

the total flow. Under this interpretation, (14) is an adequate description of the payoff to player i. The
natural assumptions are aα, bα ≤ 0 and xαi ≥ 0 for all i and α. Upper restrictions on xαi can be added;
moreover, there may be arbitrary restrictions on xαi as well, e.g., they may be all integer.

Given a CD game Γ, we define, in a simple and natural way, a trim CLU game Γ∗ which is isomorphic
to Γ. There are the same players with the same strategy sets, N∗ := N and X∗

i := Xi for each i ∈ N .
The set of facilities is modified: A∗ := N ∪ (A × N) ∪ (A × N2), where, as in Section 7, N2 is the
set of all unordered pairs in N , i.e., subsets of cardinality 2. Given i ∈ N and xi ∈ Xi, we define
B∗
i (xi) := {i} ∪ {{(α, i)} ∪ {(α, {i, j})}j∈N\{i}}α∈B(xi); thus, I

+
i = I+(α,i) = {i} and I+(α,{i,j}) = {i, j}

for all α ∈ A and i, j ∈ N , i ̸= j. The local utilities are defined in this way: φ∗
i ({i}, xi) := Fi(xi);

φ∗
(α,i)({i}, x

α
i ) := xαi ·(bα+aα ·xαi ); φ∗

(α,{i,j})(I, x
α
I ) := aα ·xαi ·xαj if I = {i, j}, while φ∗

(α,{i,j})(I, x
α
I ) := 0

if I ̸= {i, j}.

Proposition 4. For every CD game Γ, the CLU game Γ∗ just defined is trim and isomorphic to Γ.

A straightforward proof is omitted.

Remark. If A is finite, we could set B∗
i (xi) := {i} ∪ {{(α, i)} ∪ {(α, {i, j})}j∈N\{i}}α∈A for all i ∈ N

and xi ∈ Xi, in which case Γ∗ would be a game with structured utilities. For an infinite A, such a
representation is inadmissible without a revision of our basic definitions.

If all strategy sets Xi are finite, then we have the existence of a Nash equilibrium as well. If A is
finite, then it will be enough to assume that each Xi is compact (the utility functions are continuous
anyway). Otherwise, we may assume that A is a metric space; then each Xi is also a metric space and
Assumption 1 holds. We have to impose Assumptions 2 and 3 as they are; as to Assumption 4, it holds
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if Dα
i ⊂ R+ for all i ∈ N and α ∈ A, while bα, aα > 0 for all α ∈ A. In other words, it is natural in

this case to restrict attention to positive externalities (Le Breton and Weber, 2011, have already come
to the same conclusion in their situation).

Harks et al. (2011) also showed the necessity of affine local unit costs for the guaranteed existence
of a potential; it does not seem possible to derive the fact from our Theorem 2. On the other hand, if
we drop the idea that the unit costs should be the same for all users of a given facility, then polylinear
combinations with symmetric coefficients would be acceptable as well. For instance, consider local
utility functions of the form

φα
i (x

α
N ) := xαi ·

[
ciα +

∑
j∈N

bijα · xαj +
∑

j,k∈N\{i}, j ̸=k

aijkα · xαj · xαk
]
,

where coefficients bijα and aijkα are invariant w.r.t. permutations of the indices from N for every α ∈ A.
Virtually the same argument as above shows that such a game is isomorphic to a trim CLU game and
hence admits an exact potential. One may doubt that such cost functions could adequately describe
any real-world interrelationships; but an interesting point is that they also emerge in the study of
Cournot tâtonnement in aggregative games with monotone best responses (Kukushkin, 2005).

9 Conclusion

Let us summarize our main findings. It is, in principle, possible to allow the players in a congestion
game to choose some additional parameters beside the facilities they use (e.g., type of vehicle, load, etc.)
without destroying the presence of an exact potential. The “only” restriction is that those additional
parameters should not affect the local utility unless all players able to use the facility actually show
up. Games with structured utilities fit here since each player uses the same list of facilities under every
strategy.

This generalization allowed us to include the classes of potential games considered by Le Breton
and Weber (2011) and Harks et al. (2011) into the same general scheme; moreover, a wider class of
congestion-style games with player-specific local utilities also fits in. It seems quite possible that still
other examples could be found as well, but, so far, I have been unable to produce anything specific.
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